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GENERA OF THE TORSION FREE POLYHEDRA
POIN NOJIIEAPIB BE3 CKPYTY

We study genera of polyhedra (finite cell complexes), i.e., the classes of polyhedra such that all their localizations are stably
homotopically equivalent. More procisely, we describe the genera of the torsion free polyhedra of dimensions not greater
than 11. In particular, we find the number of the stable homotopy classes in these genera.

BuB4aroThcs poay nosiespiB (CKIHYEHHUX KIITHHHUX KOMIUIEKCIB), TOOTO KJIaCH MOJMiepiB, yCi JOKai3aLil IKUX € CTabiIb-
HO TOMOTOIIIYHO €KBiBaJICHTHIMHU. A caMe, OMICaHO PO MOdieApiB 6e3 cKpyTy po3MmipHOCTI moHaiibinbmre 11. 3okpema,
00YHCIICHO KiNTbKiCTh CTAaOUIBHUX FOMOTOMIYHHUX KJIACIB y LUX POIAX.

1. Stable category and genera. The theory of genera of polyhedra was developed in [11] analo-
gously to the theory of genera of integral representations. This paper discovered relations between
two theories and established technique for calculation of genera of polyhedra.

The present paper contains calculations of genera of particular polyhedra. Namely, genera of tor-
sion free polyhedra with integral homologies in dimensions at most 11 are described. Such polyhedra
were described in [12, 13] (see also [14]).

In this paper, the number of stable homotopy classes of genera of those torsion free polyhedra is
found. This number can only be 1, 2 or 4.

We consider polyhedra (i.e., finite CW-complexes) as objects of the stable homotopy category
.. In particular, isomorphism always means stable homotopy equivalence. An important feature of
7 is that its homomorphism groups are finitely generated [7].

Let CW)" be the full subcategory of . consisting of (n — 1)-connected polyhedra of dimension
at most n + m. The suspension functor maps CW;" to CW}", ;. If n > m + 1 it is an equivalence
of categories. If n = m + 1, it is an epivalence, i.e., this functor is full, dense and conservative. In
particular, it is one-to-one on the isomorphism classes of objects. We set ™ = | J2 | CW]"". So all
objects of .7 are suspensions of the objects from CW." ., ;.

Let Z, = {% a,beZ, pJ(b}, where p is a prime integer. We denote by .7, the category
which has the same objects as .7, but its sets of morphisms are Hos,(X,Y) = Hos(X,Y) ® Z,,.
Actually, Hos,(X,Y") coincides with group of stable maps between p-localizations in the sense of

Artin —Mazur - Sullivan [9]. For the sake of convenience, we denote the image in ., of a polyhedron
X by X,

Definition 1.1 [11]. We say that two polyhedra X and Y are in the same genus and write
X ~Y if X, @Y, for every prime p. By G(X) we denote the genus of the polyhedron X, i.e., the
Sull subcategory of . consisting of all polyhedra that are in the same genus as X, and by g(X) the
number of isomorphism classes in G(X). Note that it is always finite.

For any abelian group A we denote by tors(A) its torsion part, i.e., the subgroup of all torsion
elements.

Let A = End(X) and A = A/ nil A, where nil A is the nilpotent radical of A. Then A is an order

k .
in the semisimple algebra H,_l Mat(r;(X), Q) for some k, where r;(X) = dimg Hosg(S*, X),
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GENERA OF THE TORSION FREE POLYHEDRA 1333

according to [11] (Corollary 1.8 (3)). Then g(X) = g(A) = g(A) [11], where g(A) is the number of
isomorphism classes of A-modules M such that M, ~ A, for all prime p. In particular, g(A) < co
by the Jordan — Zassenhaus theorem [3] (Theorem 24.1).

2. Calculations

For calculation of g(X) for a particular polyhedron X, the following facts are used.

k
Proposition 2.1 [11]. Let A be an order in H . Mat(r;, Q) for some k, I" be a maximal order
1=
containing A and A O mI for some integer m > 1. Then g(\) equals the number of cosets

ImA\(T/mI)* /(A/mT)*,

where 7y is the natural map I'* — (I'/mI")*.

Applied to polyhedra, it gives the following result.

Theorem 2.1[11]. Let X be a polyhedron, B = \/f:1 r;S™ with different ni,na,...,n, and
some k. Suppose that there are maps X ﬁ> B % X such that o8 = mlx mod tors(X) and
Ba = mlp mod tors(B) for some integer m > 1. Then g(X) = 1ifm = 2 and g(X) < (g@(m)/Q)k
ifm > 2.

In the following examples, definitions and results from [6] (Section 3) and [11] (Sections 1, 2)
are used. In particular, we denote by a the ath multiple of a generator of the group 7, (S™) ~ Z, by
7 the nonzero element of 7 (S"~1) ~ Z/2, by n? the nonzero element of 72 (S"~2) ~ Z /2 and by
v the generator of 75 (S"3) ~ Z/24. We also denote by Z x,, Z the subring of Z x Z consisting
of all pairs («, 5) with a = 8 (mod m). Note that Z X, Z O m(Z x Z), so g(Z X, Z) equals the
number of double cosets

{1} > {£1NE x 22

under the diagonal embedding of Z), into Z, x Z.,. It easily gives g(Z X, Z) = p(m)/2.

We consider the torsion free polyhedra from subcategories .74 and .#° (see Section 1), i.e.,
the polyhedra X with torsion free homology groups H;(X) for all 7. Recall that these are just the
cases when there are only finitely many isomorphisms classes of torsion free polyhedra. From [12],
it is known that the torsion free polyhedra from subcategory .74 arise from the following cofibration
sequences:

S8 L85 1 A(w) = 82,
where f = v;

STv S8 L 85 s A(ntu) - SBV S,

where f = (%, vv);

b f o vy)‘
with f <77 ;
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with f = (1, 00);

(%
where [ = ;
/ (772>

2
where f = (T(’) UV);

S8 1y 55y 86— A(vn?) — S°,
STv 88 2y §5v 8T 5 A(iPon) — SEV S°,

STv 88— 85V S8 = A(nPun?) — S8 v SY,
772 (04
where f = <0 2);

S0y 88— 85V S8 = A(nun?) = STV SY,

with f = (g Z?j) ;

SOV 8% 5 85V ST — A(nun) — STV S,

n v
where f = <O . )
Here 1 < v < 6, except of the cases A(v), when 1 < v < 12, and A(nvn), when 1 < v < 3.
We provide calculations only for A(v), A(n?v) and A(n?vn). The rest of the cases is treated in
the analogous way with the similar results.
Consider the polyhedron A(v). It follows from [6] (Theorem 2.4) that modulo the nilpotent
radical, End (A(v)) is isomorphic to the ring of pairs («, 3), where «, f € Z and awvv = Svv, that

is &« = 8 (mod m), where m = 24/d and d = ged(v, 24). 1t is the ring Z X, Z. Therefore
4 if d=1,
g(A(v))z 2 if d=2 or d=3,
1 if d>3.

Actually, all atoms A(v) with fixed ged(v, 24) are in the same genus [11].
For the polyhedron A(n?vn) the cofibration sequence is

STV §8 L 8% v 8T s A(nPun) — S8V S0
where

2

n® v

f= ( ) and v is the generator of 7§ (S°) ~ Z/24.
0 n

To simplify the calculations of g(A), we can use the Theorem 2.2 from [6] (Section 3). It implies
that modulo the nilpotent radical, End (A(n?vn)) is isomorphic to the ring of pairs (, 3), where
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a: STV S% - STv S®and 3: SV ST — S5V S7 such that fo = Bf, modulo the pairs (v.f, fv'),
where both ~ and +' are the maps S® vV S7 — S7 v S8, Here

a by T ooyn
o = s /8 g
0 c 0 z
for some integers a, b, ¢, x, y, z. The equation fa = Sf turns into
xn® = an?, xov + 12yv = 12bv + vev, zn = cn,

that is

zr = a(mod 2), v = cv(mod 12), z = ¢(mod 2),
because 1> = 12v. Both y and 7/ are of the form <8 3), so the products v f, f+' are of the form

2
(8 t(o)y > and (8 tz > for some ¢ € Z. It kills by in « and yn? in 3, and we obtain the subring

A of T' = Z* consisting of the quadruples (a, ¢, , z) such that
a=c=xz=z(mod2), ¢ = z(mod m),
where m = 12/gcd(v, 12), if m # 3. If m = 3, then we have
a = z(mod 2), ¢ = z(mod 2), ¢ = x(mod 3).
If m # 3, then the cosets from Proposition 2.1
m A\ (I/mI) /(A /mT)*

which describe g(A) become

U\CS x Cx x Cr x C5 ]V,
where U = {+1} x {£1} x {£1} x {£1}, C), = (Z/m)* and

V={(a,c,z,2) | a=c=z=2zmod2), c=z(modm)}.

In case of m = 3 we have A D 6T, therefore g(A) = 1. So, we always set g(A) = p(m)/2, which
equals 1 if m < 6 and 2 if m = 12. Hence

) 2 ifov=1 or wv=25,
g(A(nvn)) =
1  otherwise.

For the polyhedron A(n?v) the cofibration sequence is
STv S8 L §5 s A(nPu) - SBV S,

2

where f = (77 vy) .
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As it was done in the previous case, we shall use Theorem 2.2 from [6] (Section 3). Here modulo
the nilpotent radical, End(A(n?v)) is isomorphic to the ring of pairs («, ) with a.: STV.S® — STV S8
and 3: S® — S such that fo = Bf since there are no nonzero maps S° — S” Vv S®. Here

a bn
o= ,
0 c

for some integers a, b, ¢, x. The equation fa = [ f becomes

I
8

37772 = 6”727

zvv = 12bv + cov,
that is

x = a(mod 2),

zv = cv(mod 12).

Modulo the nilpotent radical, we obtain the subring A of I' = Z? consisting of the triples (a, ¢, )
such that

a =c=z(mod?2), ¢ = z(modm),
where m = 12/ged(v, 12) (case m = 3 is treated analogously to the previous example). Thus

DNTTT/ T AS = UNCY x G x Cx/V,

plm plm
where U = {+1} x {£1} x {£1}, C},, = (Z/m)* and
V={(a,¢c,x) | a =c=x(mod2), ¢ =xz(modm)}.
It gives g(A) = ¢(m)/2, which equals 1 if m < 6 and 2 if m = 12. Hence
2 ifv=1 or v=25,
9(A(r*v)) =
1 otherwise.
As the result we obtain
4 if d=1,
g(Aw) =<2 if d=2 or d=3,
1 if d>3,
where d = ged(v,24), and
2 if v=1 or v=>5,

1 otherwise,
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in all other cases of the torsion free polyhedra A from .74,
Now we treat the Baues — Drozd A-atoms from .’ [6] (Section 5). In all cases v, w € {1,2,3,4,5,6}.
These atoms are defined by the following cofibration sequences:

S9v S0 L 56\ 87y A(wnPw) — S1O0v S,

where f = (1;71/21 w(1)/2> and v, vy are the generators of 75 (S%) ~ Z/24 and 77, (S7) ~ Z/24
respectively;
S8V SPv S0 L 66\ ST v §0 s A(nPunwn) — 80V §10v S,
n? o 0
with f=| 0 n? wyy |
0 0 n
S9v 810 Ly g6y 5T\ 88 s A(unPwn?) — S0 v §11,
v 0
where f = | 72wy |;
0 n?
S9v S10 L 66 87 v 80 5 A(unuwn) — S1O0 v S,
v 0
where f = | 2w |;
0 U
S8 v 89V 810 5 56 v STV S8 — A(nPuntwn?) — §° v S0y S
n? o 0
with f =1 0 n”?  ww |;
0 0 n?
STv 8oV S0 5 56y STV 8% — A(nuniwn) — S8 v S0 v S
n oY 0
with f=(0 n? wwl;
0 0 n

STv 8%y 810 5 56\ ST A(nuntw) — S8 v S10v St

where f = <g Uny; w(l)/g);
S8 v 89 v S0 5 56 v ST 5 A(nPun?w) — S% v S0V St

2
where [ = (T(’) vny; woyg>;
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STv 8%y 810 5 56y 8T v S8 — A(nuntwn?) — S8 v S0V S

n vy 0
with f= [0 7?2 ww
0 0 n?

We provide calculations only for A(vn?w), A(nun?w) and A(n?vn?wn). Other cases are treated
in the analogous way giving the similar results.
For A(vn?w) the cofibration sequence is

S9v §10 4y 66y STy A(vnPw) — S0V S,

where f = <v771/21 wou ) Analogously to the previous cases, we apply the Theorem 2.2 from [6]
2

(Section 3). Here a: S? v S0 — §9v S0 and B: S6v ST — SV S7. v and 4/ are zero maps and

a by T yn
o = y /8 =
0 ¢ 0 z
for some integers a, b, ¢, x, y, z. The equation fa = B f implies

cw = zw(mod 12),
v = av(mod 12),

z = a(mod 2),
and we obtain the subring A of I' = Z* consisting of the quadruples (a, ¢, x, z) such that
a = z(mod 2), a = z(modm), ¢ = z(modm'),

where m = ged(v,12) and m’' = ged(w, 12), if m, m’ # 3. Suppose that both m, m’ are even. Then
we have

a = z(modm), ¢ = z(modm'),

so that the cosets are defined by the subring A* D (a = (m),c=u(m),z =
by (Z/m)* x (Z/m)*. Therefore g(A) = ¢(m)/2 x @(m’)/2.
Assume now that m’ = 3 and m is even. Then

I
—~
3
~
N
I
=
—~
5,
N—
~—
o
=
[oN

a = z(mod m), ¢ = z(mod 3), a = z(mod 2),
so that the cosets are defined by (a = 1(m), ¢ = 1(6), x = 1(m), z = 1(3)), wherefrom g(A) =
= p(m)/2 x p(m')/2. Hence
(1 if v,we {2,3,4,6},

2 if v=1 or v=5we{23,4,6},
g(A(vnw)) =
2 if w=1 or w=05,v¢€{23,4,6},

4 in all other cases.
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The polyhedron A(nvn?w) comes from the cofibration sequence

STV S0V S0 L 56\ 8Ty A(nunPw) — S8V S0V S,

where f = <g v1/21 0 )

n wrs
In this case a: S7V 82 v S10 — §7v §9v §10 and 3: §6 v ST — S6 v S7 so that

a bn2 Wa V2
r yn
o = O C dn ) /8 =
0 z
0 0 g

for some integers a, b, ¢, d, g, wq,, T, y, z. The equation fa = Sf gives

cv = zv(mod 12),

gw = zw(mod 12),

N
Il

¢(mod 2),

a = z(mod 2).

0 t
Here ~ and +' are of the foorm [0 0|, so the products ~f, f+ are of the form
0 0

0 tn® tww 0 ¢
0 0 0 and ( 77> for some t € Z. It kills bp? and wavs in o and yn in B

0 0 0 00
and we get the subring A of I' = Z5 consisting of the elements (a, ¢, d, g, z, z) such that

a=c=z=z=g(mod?2),

¢ = z(mod m), g = z(modm’),

where m = ged(v,12) and m’ = ged(w, 12).
Applying the same considerations as in the previous case, we obtain that g(A) = ¢(m)/2 x
X ¢(m')/2. Hence

1 if v,we{2,3,4,6},
2 if v=1 or v=5 we{23,4,6},

g(A(npon*w)) =
2 if w=1 or w=5 wve{23,4,6},

\4 in all other cases.
The polyhedron A(n?vn?wn) appears in the cofibration sequence
S8V SPv S0 L 56\ 87 v 80 s A(nPurwn) — 8%V S0 v S,
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n? oy 0
where f = | 0 n?  wry
0 0 n
In this case a: S® Vv 2 v S0 — S8 v §9v §10and 3: S6v 87V S? — SO v STV SY so that
a by ep xoyn  vpn
a=0 d fn], B=(0 =z ppf
0 0 g 0 0 q

for some integers a, b, ¢, d, f, g, vg, x, y, z, p, q. The equation fo = (f implies

dv = zv(mod 12), gw = zw(mod 12), z = d(mod 2),

a = z(mod 2), g = q(mod?2),

0 0 tn
and v and +' are of the form [0 0 wu |, so the products ~f, fy are of the form
0O 0 O
0 0 tn? 0 0 tn+uv
0 0 wnland |0 O un? for some t,u € Z.
0 O 0 0 O 0

It kills ¢n? and fn in « and pn? and vgry in 3 and we get the subring A of I' = Z8 consisting of
the elements (a,b,d, g,x,y, 2, q) such that

d = x(mod m), g = z(modm'),

where m = ged(v,12) and m’ = ged(w, 12).

Again, as in the previous case, we obtain that g(A) = p(m)/2 x p(m')/2 and therefore
1 if v,we{2,3,4,6},
) 2 if v=1 or v=5, we{23,4,6},
g(APon*wn)) =
2 if w=1 or w=5, wve{23,4,6},

4 1n all other cases.
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