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GENERA OF THE TORSION FREE POLYHEDRA

РОДИ ПОЛIЕДРIВ БЕЗ СКРУТУ

We study genera of polyhedra (finite cell complexes), i.e., the classes of polyhedra such that all their localizations are stably
homotopically equivalent. More procisely, we describe the genera of the torsion free polyhedra of dimensions not greater
than 11. In particular, we find the number of the stable homotopy classes in these genera.

Вивчаються роди полiедрiв (скiнченних клiтинних комплексiв), тобто класи полiедрiв, усi локалiзацiї яких є стабiль-
но гомотопiчно еквiвалентними. А саме, описано роди полiедрiв без скруту розмiрностi щонайбiльше 11. Зокрема,
обчислено кiлькiсть стабiльних гомотопiчних класiв у цих родах.

1. Stable category and genera. The theory of genera of polyhedra was developed in [11] analo-
gously to the theory of genera of integral representations. This paper discovered relations between
two theories and established technique for calculation of genera of polyhedra.

The present paper contains calculations of genera of particular polyhedra. Namely, genera of tor-
sion free polyhedra with integral homologies in dimensions at most 11 are described. Such polyhedra
were described in [12, 13] (see also [14]).

In this paper, the number of stable homotopy classes of genera of those torsion free polyhedra is
found. This number can only be 1, 2 or 4.

We consider polyhedra (i.e., finite CW-complexes) as objects of the stable homotopy category
S . In particular, isomorphism always means stable homotopy equivalence. An important feature of
S is that its homomorphism groups are finitely generated [7].

Let CWm
n be the full subcategory of S consisting of (n− 1)-connected polyhedra of dimension

at most n + m. The suspension functor maps CWm
n to CWm

n+1. If n > m + 1 it is an equivalence
of categories. If n = m + 1, it is an epivalence, i.e., this functor is full, dense and conservative. In
particular, it is one-to-one on the isomorphism classes of objects. We set Sm =

⋃∞
n=1 CW

m
n . So all

objects of Sm are suspensions of the objects from CWm
m+1.

Let Zp =
{ a
b

∣∣∣a, b ∈ Z, p - b
}
, where p is a prime integer. We denote by Sp the category

which has the same objects as S , but its sets of morphisms are Hosp(X,Y ) = Hos(X,Y ) ⊗ Zp.
Actually, Hosp(X,Y ) coincides with group of stable maps between p-localizations in the sense of
Artin – Mazur – Sullivan [9]. For the sake of convenience, we denote the image in Sp of a polyhedron
X by Xp.

Definition 1.1 [11]. We say that two polyhedra X and Y are in the same genus and write
X ∼ Y if Xp ' Yp for every prime p. By G(X) we denote the genus of the polyhedron X, i.e., the
full subcategory of S consisting of all polyhedra that are in the same genus as X, and by g(X) the
number of isomorphism classes in G(X). Note that it is always finite.

For any abelian group A we denote by tors(A) its torsion part, i.e., the subgroup of all torsion
elements.

Let Λ = End(X) and Λ̄ = Λ/ nil Λ, where nil Λ is the nilpotent radical of Λ. Then Λ̄ is an order

in the semisimple algebra
∏k

i=1
Mat(ri(X),Q) for some k, where ri(X) = dimQ HosQ(Si, X),
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according to [11] (Corollary 1.8 (3)). Then g(X) = g(Λ) = g(Λ̄) [11], where g(Λ) is the number of
isomorphism classes of Λ-modules M such that Mp ' Λp for all prime p. In particular, g(Λ) < ∞
by the Jordan – Zassenhaus theorem [3] (Theorem 24.1).

2. Calculations
For calculation of g(X) for a particular polyhedron X, the following facts are used.

Proposition 2.1 [11]. Let Λ be an order in
∏k

i=1
Mat(ri,Q) for some k, Γ be a maximal order

containing Λ and Λ ⊇ mΓ for some integer m > 1. Then g(Λ) equals the number of cosets

Im γ\(Γ/mΓ)×/(Λ/mΓ)×,

where γ is the natural map Γ× → (Γ/mΓ)×.

Applied to polyhedra, it gives the following result.
Theorem 2.1 [11]. Let X be a polyhedron, B =

∨k
i=1 riS

ni with different n1, n2, . . . , nk and

some k. Suppose that there are maps X
β−→ B

α−→ X such that αβ ≡ m1X mod tors(X) and
βα ≡ m1B mod tors(B) for some integer m > 1. Then g(X) = 1 if m = 2 and g(X) ≤

(
ϕ(m)/2

)k
if m > 2.

In the following examples, definitions and results from [6] (Section 3) and [11] (Sections 1, 2)
are used. In particular, we denote by a the ath multiple of a generator of the group πn(Sn) ' Z, by
η the nonzero element of πSn (Sn−1) ' Z/2, by η2 the nonzero element of πSn (Sn−2) ' Z/2 and by
ν the generator of πSn (Sn−3) ' Z/24. We also denote by Z ×m Z the subring of Z × Z consisting
of all pairs (α, β) with α ≡ β (mod m). Note that Z×m Z ⊇ m(Z× Z), so g(Z×m Z) equals the
number of double cosets

{±1} × {±1}\Z×m × Z×m/Z×m

under the diagonal embedding of Z×m into Z×m × Z×m. It easily gives g(Z×m Z) = ϕ(m)/2.

We consider the torsion free polyhedra from subcategories S 4 and S 5 (see Section 1), i. e.,
the polyhedra X with torsion free homology groups Hi(X) for all i. Recall that these are just the
cases when there are only finitely many isomorphisms classes of torsion free polyhedra. From [12],
it is known that the torsion free polyhedra from subcategory S 4 arise from the following cofibration
sequences:

S8 f→ S5 → A(v)→ S9,

where f = v;

S7 ∨ S8 f→ S5 → A(η2v)→ S8 ∨ S9,

where f = (η2, vν);

S8 f→ S5 ∨ S7 → A(vη)→ S9,

with f =

(
vν

η

)
;

S6 ∨ S8 f→ S5 → A(ηv)→ S7 ∨ S9,
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with f = (η, vν);

S8 f→ S5 ∨ S6 → A(vη2)→ S9,

where f =

(
vν

η2

)
;

S7 ∨ S8 f→ S5 ∨ S7 → A(η2vη)→ S8 ∨ S9,

where f =

(
η2 vν

0 η

)
;

S7 ∨ S8 → S5 ∨ S6 → A(η2vη2)→ S8 ∨ S9,

where f =

(
η2 vν

0 η2

)
;

S6 ∨ S8 → S5 ∨ S6 → A(ηvη2)→ S7 ∨ S9,

with f =

(
η νv

0 η2

)
;

S6 ∨ S8 → S5 ∨ S7 → A(ηvη)→ S7 ∨ S9,

where f =

(
η νv

0 η

)
.

Here 1 ≤ v ≤ 6, except of the cases A(v), when 1 ≤ v ≤ 12, and A(ηvη), when 1 ≤ v ≤ 3.

We provide calculations only for A(v), A(η2v) and A(η2vη). The rest of the cases is treated in
the analogous way with the similar results.

Consider the polyhedron A(v). It follows from [6] (Theorem 2.4) that modulo the nilpotent
radical, End

(
A(v)

)
is isomorphic to the ring of pairs (α, β), where α, β ∈ Z and αvν = βvν, that

is α ≡ β (mod m), where m = 24/d and d = gcd(v, 24). It is the ring Z×m Z. Therefore

g
(
A(v)

)
=


4 if d = 1,

2 if d = 2 or d = 3,

1 if d > 3.

Actually, all atoms A(v) with fixed gcd(v, 24) are in the same genus [11].
For the polyhedron A(η2vη) the cofibration sequence is

S7 ∨ S8 f→ S5 ∨ S7 → A(η2vη)→ S8 ∨ S9

where

f =

(
η2 vν

0 η

)
and ν is the generator of πS8 (S5) ' Z/24.

To simplify the calculations of g(A), we can use the Theorem 2.2 from [6] (Section 3). It implies
that modulo the nilpotent radical, End

(
A(η2vη)

)
is isomorphic to the ring of pairs (α, β), where
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α : S7 ∨ S8 → S7 ∨ S8 and β : S5 ∨ S7 → S5 ∨ S7 such that fα = βf, modulo the pairs (γf, fγ′),

where both γ and γ′ are the maps S5 ∨ S7 → S7 ∨ S8. Here

α =

(
a bη

0 c

)
, β =

(
x yη

0 z

)
for some integers a, b, c, x, y, z. The equation fα = βf turns into

xη2 = aη2, xvν + 12yν = 12bν + vcν, zη = cη,

that is

x ≡ a(mod 2), xv ≡ cv(mod 12), z ≡ c(mod 2),

because η3 = 12ν. Both γ and γ′ are of the form

(
0 t

0 0

)
, so the products γf, fγ′ are of the form(

0 tη

0 0

)
and

(
0 tη2

0 0

)
for some t ∈ Z. It kills bη in α and yη2 in β, and we obtain the subring

Λ of Γ = Z4 consisting of the quadruples (a, c, x, z) such that

a ≡ c ≡ x ≡ z(mod 2), c ≡ x(modm),

where m = 12/gcd(v, 12), if m 6= 3. If m = 3, then we have

a ≡ x(mod 2), c ≡ z(mod 2), c ≡ x(mod 3).

If m 6= 3, then the cosets from Proposition 2.1

Im γ\(Γ/mΓ)×/(Λ/mΓ)×

which describe g(A) become

U\C×2 × C
×
m × C×m × C×2 /V,

where U = {±1} × {±1} × {±1} × {±1}, Cm = (Z/m)× and

V =
{

(a, c, x, z) | a ≡ c ≡ x ≡ z(mod 2), c ≡ x(modm)
}
.

In case of m = 3 we have Λ ⊃ 6Γ, therefore g(A) = 1. So, we always set g(A) = ϕ(m)/2, which
equals 1 if m ≤ 6 and 2 if m = 12. Hence

g(A(η2vη)) =

2 if v = 1 or v = 5,

1 otherwise.

For the polyhedron A(η2v) the cofibration sequence is

S7 ∨ S8 f→ S5 → A(η2v)→ S8 ∨ S9,

where f =
(
η2 vν

)
.
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As it was done in the previous case, we shall use Theorem 2.2 from [6] (Section 3). Here modulo
the nilpotent radical, End(A(η2v)) is isomorphic to the ring of pairs (α, β) with α : S7∨S8 → S7∨S8

and β : S5 → S5 such that fα = βf since there are no nonzero maps S5 → S7 ∨ S8. Here

α =

(
a bη

0 c

)
, β = x

for some integers a, b, c, x. The equation fα = βf becomes

xη2 = aη2,

xvν = 12bν + cvν,

that is

x ≡ a(mod 2),

xv ≡ cv(mod 12).

Modulo the nilpotent radical, we obtain the subring Λ of Γ = Z3 consisting of the triples (a, c, x)

such that

a ≡ c ≡ x(mod 2), c ≡ x(modm),

where m = 12/gcd(v, 12) (case m = 3 is treated analogously to the previous example). Thus

Γ×\
∏
p|m

Γ×p /
∏
p|m

Λ×p ' U\C×2 × C
×
m × C×m/V,

where U = {±1} × {±1} × {±1}, Cm = (Z/m)× and

V = {(a, c, x) | a ≡ c ≡ x(mod 2), c ≡ x(modm)}.

It gives g(A) = ϕ(m)/2, which equals 1 if m ≤ 6 and 2 if m = 12. Hence

g(A(η2v)) =

2 if v = 1 or v = 5,

1 otherwise.

As the result we obtain

g(A(v)) =


4 if d = 1,

2 if d = 2 or d = 3,

1 if d > 3,

where d = gcd(v, 24), and

g(A) =

2 if v = 1 or v = 5,

1 otherwise,
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in all other cases of the torsion free polyhedra A from S 4.

Now we treat the Baues – Drozd A-atoms from S 5 [6] (Section 5). In all cases v, w ∈ {1, 2, 3, 4, 5, 6}.
These atoms are defined by the following cofibration sequences:

S9 ∨ S10 f→ S6 ∨ S7 → A(vη2w)→ S10 ∨ S11,

where f =

(
vν1 0

η2 wν2

)
and ν1, ν2 are the generators of πS9 (S6) ' Z/24 and πS10(S

7) ' Z/24

respectively;

S8 ∨ S9 ∨ S10 f→ S6 ∨ S7 ∨ S9 → A(η2vη2wη)→ S9 ∨ S10 ∨ S11,

with f =

η2 vν1 0

0 η2 wν2
0 0 η

;

S9 ∨ S10 f→ S6 ∨ S7 ∨ S8 → A(vη2wη2)→ S10 ∨ S11,

where f =

vν1 0

η2 wν2
0 η2

;

S9 ∨ S10 f→ S6 ∨ S7 ∨ S9 → A(vη2wη)→ S10 ∨ S11,

where f =

vν1 0

η2 wν2
0 η

;

S8 ∨ S9 ∨ S10 → S6 ∨ S7 ∨ S8 → A(η2vη2wη2)→ S9 ∨ S10 ∨ S11,

with f =

η2 vν1 0

0 η2 wν2
0 0 η2

;

S7 ∨ S9 ∨ S10 → S6 ∨ S7 ∨ S9 → A(ηvη2wη)→ S8 ∨ S10 ∨ S11,

with f =

η vν1 0

0 η2 wν2
0 0 η

;

S7 ∨ S9 ∨ S10 → S6 ∨ S7 → A(ηvη2w)→ S8 ∨ S10 ∨ S11,

where f =

(
η vν1 0

0 η2 wν2

)
;

S8 ∨ S9 ∨ S10 → S6 ∨ S7 → A(η2vη2w)→ S9 ∨ S10 ∨ S11,

where f =

(
η2 vν1 0

0 η2 wν2

)
;
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S7 ∨ S9 ∨ S10 → S6 ∨ S7 ∨ S8 → A(ηvη2wη2)→ S8 ∨ S10 ∨ S11,

with f =

η vν1 0

0 η2 wν2
0 0 η2

.
We provide calculations only for A(vη2w), A(ηvη2w) and A(η2vη2wη). Other cases are treated

in the analogous way giving the similar results.
For A(vη2w) the cofibration sequence is

S9 ∨ S10 f→ S6 ∨ S7 → A(vη2w)→ S10 ∨ S11,

where f =

(
vν1 0

η2 wν2

)
. Analogously to the previous cases, we apply the Theorem 2.2 from [6]

(Section 3). Here α : S9 ∨ S10 → S9 ∨ S10 and β : S6 ∨ S7 → S6 ∨ S7. γ and γ′ are zero maps and

α =

(
a bη

0 c

)
, β =

(
x yη

0 z

)
for some integers a, b, c, x, y, z. The equation fα = βf implies

cw ≡ zw(mod 12),

xv ≡ av(mod 12),

z ≡ a(mod 2),

and we obtain the subring Λ of Γ = Z4 consisting of the quadruples (a, c, x, z) such that

a ≡ z(mod 2), a ≡ x(modm), c ≡ z(modm′),

where m = gcd(v, 12) and m′ = gcd(w, 12), if m,m′ 6= 3. Suppose that both m,m′ are even. Then
we have

a ≡ x(modm), c ≡ z(modm′),

so that the cosets are defined by the subring Λ× ⊃
(
a ≡ (m), c ≡ µ(m′), x ≡ (m), z ≡ µ(m′)

)
and

by (Z/m)× × (Z/m)×. Therefore g(A) = ϕ(m)/2× ϕ(m′)/2.

Assume now that m′ = 3 and m is even. Then

a ≡ x(modm), c ≡ z(mod 3), a ≡ z(mod 2),

so that the cosets are defined by (a ≡ 1(m), c ≡ 1(6), x ≡ 1(m), z ≡ 1(3)), wherefrom g(A) =

= ϕ(m)/2× ϕ(m′)/2. Hence

g(A(vη2w)) =



1 if v, w ∈ {2, 3, 4, 6},

2 if v = 1 or v = 5, w ∈ {2, 3, 4, 6},

2 if w = 1 or w = 5, v ∈ {2, 3, 4, 6},

4 in all other cases.
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The polyhedron A(ηvη2w) comes from the cofibration sequence

S7 ∨ S9 ∨ S10 f→ S6 ∨ S7 → A(ηvη2w)→ S8 ∨ S10 ∨ S11,

where f =

(
η vν1 0

0 η2 wν2

)
.

In this case α : S7 ∨ S9 ∨ S10 → S7 ∨ S9 ∨ S10 and β : S6 ∨ S7 → S6 ∨ S7 so that

α =


a bη2 wαν2

0 c dη

0 0 g

, β =

(
x yη

0 z

)

for some integers a, b, c, d, g, wα, x, y, z. The equation fα = βf gives

cv ≡ xv(mod 12),

gw ≡ zw(mod 12),

z ≡ c(mod 2),

a ≡ x(mod 2).

Here γ and γ′ are of the form

0 t

0 0

0 0

, so the products γf, fγ′ are of the form

0 tη2 twν2
0 0 0

0 0 0

 and

(
0 tη

0 0

)
for some t ∈ Z. It kills bη2 and wαν2 in α and yη in β

and we get the subring Λ of Γ = Z6 consisting of the elements (a, c, d, g, x, z) such that

a ≡ c ≡ x ≡ z ≡ g(mod 2),

c ≡ x(modm), g ≡ z(modm′),

where m = gcd(v, 12) and m′ = gcd(w, 12).

Applying the same considerations as in the previous case, we obtain that g(A) = ϕ(m)/2 ×
× ϕ(m′)/2. Hence

g(A(ηvη2w)) =



1 if v, w ∈ {2, 3, 4, 6},

2 if v = 1 or v = 5, w ∈ {2, 3, 4, 6},

2 if w = 1 or w = 5, v ∈ {2, 3, 4, 6},

4 in all other cases .

The polyhedron A(η2vη2wη) appears in the cofibration sequence

S8 ∨ S9 ∨ S10 f→ S6 ∨ S7 ∨ S9 → A(η2vη2wη)→ S9 ∨ S10 ∨ S11,
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where f =

η2 vν1 0

0 η2 wν2
0 0 η

.
In this case α : S8 ∨ S9 ∨ S10 → S8 ∨ S9 ∨ S10 and β : S6 ∨ S7 ∨ S9 → S6 ∨ S7 ∨ S9 so that

α =

a bη cη2

0 d fη

0 0 g

, β =

x yη vβν1
0 z pη2

0 0 q


for some integers a, b, c, d, f, g, vβ, x, y, z, p, q. The equation fα = βf implies

dv ≡ xv(mod 12), gw ≡ zw(mod 12), z ≡ d(mod 2),

a ≡ x(mod 2), g ≡ q(mod 2),

and γ and γ′ are of the form

0 0 tη

0 0 u

0 0 0

, so the products γf, fγ′ are of the form

0 0 tη2

0 0 uη

0 0 0

 and

0 0 tη3 + uvν1
0 0 uη2

0 0 0

 for some t, u ∈ Z.

It kills cη2 and fη in α and pη2 and vβν1 in β and we get the subring Λ of Γ = Z8 consisting of
the elements (a, b, d, g, x, y, z, q) such that

a ≡ x ≡ d ≡ z ≡ g ≡ q(mod 2),

d ≡ x(modm), g ≡ z(modm′),

where m = gcd(v, 12) and m′ = gcd(w, 12).

Again, as in the previous case, we obtain that g(A) = ϕ(m)/2× ϕ(m′)/2 and therefore

g
(
A(η2vη2wη)

)
=



1 if v, w ∈ {2, 3, 4, 6},

2 if v = 1 or v = 5, w ∈ {2, 3, 4, 6},

2 if w = 1 or w = 5, v ∈ {2, 3, 4, 6},

4 in all other cases.
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5. Drozd Y. A. Idèles and integral representations // Izv. AN SSSR. Ser. Mat. – 1969. – 33. – P. 1080 – 1088.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 10



GENERA OF THE TORSION FREE POLYHEDRA 1341

6. Drozd Yu. Matrix problems, triangulated categories and stable homotopy types // São Paulo J. Math. Sci. – 2010. –
4. – P. 209 – 249.

7. Hu S.-T. Homotopy theory. – New York; London: Acad. Press, 1959. – 468 p.
8. Jacobson N. Structure of rings // AMS Colloq. Publ. – Providence, RI, 1956. – 37. – 302 p.
9. Sullivan D. Geometric topology. K-monographs in mathematics. – Dordrecht: Springer, 2005. – 8. – 284 p.

10. Switzer R. M. Algebraic topology – homotopy and homology. – Berlin etc.: Springer-Verlag, 1975. – 608 p.
11. Drozd Yu., Kolesnyk P. On genera of polyhedra // Cent. Eur. J. Math. – 2012. – 10(2). – P. 401 – 410.
12. Baues H.-J., Drozd Yu. Classification of stable homotopy types with torsion free homology // Topology. – 2001. – 40.

– P. 789 – 821.
13. Baues H.-J., Drozd Y. A. The homotopy classification of (n − 1)-connected (n + 4)-dimensional polyhedra with

torsion free homology, n ≥ 5 // Exp. Math. – 1999. – 17. – P. 161 – 179.
14. Drozd Y. A. On classification of torsion free polyhedra. – Bonn, 2005. – 20 p. – (Preprint / Max-Plank-Ins. Math.;

2005-99).

Received 10.01.13,
after revision — 30.06.13

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 10


