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METHOD OF LINES FOR QUASILINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

METOJI JITHIA JJIS1 KBASIJITHIMHUX
®YHKIIOHAJIBHO-TU®EPEHIIIAJIBHUX PIBHSHb

We give a theorem on the error estimate of approximate solutions for ordinary functional differential equations. The error
is estimated by a solution of an initial problem for nonlinear functional differential equation. We apply this general result to
the investigation of the convergence of the numerical method of lines for evolution functional differential equations. Initial
boundary-value problems for quasilinear equations are transformed by discretization in spatial variables into systems of
ordinary functional differential equations. Nonlinear estimates of the Perron-type with respect to functional variables for
given operators are assumed. Numerical examples are given.

HaBeneno teopemy Ipo OLHKY MOXHMOKM HAONMKEHMX PO3B’S3KiB 3BHYAWHHUX OH(epeHIianbHuX piBHAHB. [loxnOka omi-
HIOETHCS 32 JOTIOMOT'OK0 PO3B’SI3Ky MOYATKOBOI 3a1adi Uil HeJTiHIHHOTO (QYHKIIIOHAIBHO-TU(epeHIiaTbHOTO piBHAHHA. Llei
3arajibHUM Pe3yabTaT 3aCTOCOBYEThLCS MIPU TOCHIKEHHI 301KHOCTI YMCIOBOTO METOY JIiHiH AJIs €BOTOLIT (DYHKITIOHATIBHO-
nIudepeHIiabHIX PIBHSHb. 32 JIOTIOMOTOI0 UCKPETH3AIIii IT0 TIPOCTOPOBHUX 3MIHHUX ITOYaTKOBO-KpaioBi 3a1a4i T KBa3iJi-
HIHHUX PIBHSAHB 3BOAATHCA A0 CUCTEM 3BHUYAHHUX AW(epeHLialbHUX PiBHAHb. [IpHITyCcKaeThCs ClIpaBeIUBICTD HEMTHIMHUX
OLIIHOK IEPPOHIBCHKOTO THITYy BiTHOCHO (DYHKI[IOHAJBHHMX 3MIHHUX JJISI 3aJaHHUX olreparopiB. HaBeneHo Takox dmcernbHI
HPHUKIIA/IH.

1. Introduction. The numerical method of lines for partial differential or functional differential equa-
tions consists in replacing derivatives with respect to spatial variables by difference expressions. This
leads to systems of ordinary differential or functional differential equations. They satisfy consistency
conditions on classical solutions of original problems. The main task in these considerations is to find
sufficient conditions for the stability of differential difference problems.

There is an ample literature on the method of lines. The classical papers are [7, 8, 22, 23] where
parabolic equations were considered. Existence results based on the method of lines can be found in
[3, 14, 19, 24, 25]. Parabolic problems and first order partial differential equations and boundary-value
problems for nonlinear elliptic equations were considered. The papers [1, 2, 4, 13, 29, 30] initiated
the theory of the method of lines for evolution functional differential equations. Initial problems on
the Haar pyramid for Hamilton —Jacobi-type equations and parabolic equations with initial or initial
boundary conditions of the Dirichlet-type were investigated. For further bibliographical informations
concerning the method of lines see [9, 11, 17, 21, 28].

Results on the method of lines for evolution functional differential equations are based on the
following ideas. Comparison theorems for differential difference inequalities generated by nonlinear
functional differential equations are obtained. These theorems state that functions satisfying differential
difference inequalities may be estimated by solutions of ordinary differential or functional differential
equations. Comparison theorems are used in proofs of the existence of approximate solutions. Results
on the convergence of sequences of approximate solutions are also based on comparison theorems
for differential difference inequalities. Theorems on the numerical method of lines for nonlinear first
partial functional differential equations [1, 2, 12, 29] and for parabolic problems [15, 30] were obtained
by using the above comparison methods.
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The aim of the paper is to show a new method of investigations of the numerical method of lines
for evolution functional differential equations. We prove that results on the existence of approximate
solutions and theorems on the convergence of the methods are consequences of simple theorems on
ordinary functional differential equations.

The paper is organized as follows. Section 2 deals with ordinary functional differential equations.
Numerical methods of lines for functional differential equations lead to systems of equations consid-
ered in this section. We prove a theorem on the existence of solutions to initial problems and we give a
theorem on estimates of the difference between the exact an approximate solutions. The errors of ap-
proximate solutions are estimated by solutions to initial problems for nonlinear comparison equations.

We apply this general idea to investigations of the numerical method of lines for evolution func-
tional differential equations. Initial boundary-value problems for quasilinear first order partial func-
tional differential equations are considered in Section 3. In the next section we give results on the
numerical method of lines for quasilinear parabolic functional differential problems.

Two types of assumption are needed in theorems on the convergence of the numerical methods of
lines. The first type conditions concern regularity of given functions. The second type conditions con-
cern the mesh. The authors of the papers [2, 12, 15, 29, 30] have assumed that given functions satisfy
the Lipschitz condition or they satisfy nonlinear estimates of the Perron-type with respect to functional
variables and these conditions are global with respect to functional variables. Our assumptions on the
regularity of given functions are more general. We assume nonlinear estimates of the Perron-type and
suitable estimates are local with respect to functional variables. There are differential equations with
deviated variables and differential integral equations such that local estimates of the Perron-type hold
and global inequalities are not satisfied. We give suitable examples.

Results presented in [1, 2, 15, 22 —24, 29, 30] are not applicable to quasilinear functional problems
considered in the paper. Theorems presented here are new also in the case of differential equations
without the functional dependence.

Now we formulate our functional differential problems. For any metric spaces X and Y we denote
by C(X,Y) the class of all continuous functions from X into Y. We use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding components. Write

Ey = [—bo,0] x [—b,b], E =10,a] x [~b,b], E = [0,a] x ([—b, b\ (—b, b))7

where by € Ry, Ry = [0,400),a > 0and b = (by,...,b,) € R, and b; > 0 for 1 < i < n. For
each (t,x) € E we define the set D]t, | as follows:

Dlt,z] = {(r,y) e R"*": 7 <0, (t+7,2+y) € EyUE}.

It is clear that D[t,x] = [—by — ¢,0] x [-b — x,b — z|. For a function z: Ey U E — R and for a
point (¢, ) € E we define a function 2(; ;) D[t,x] — R as follows: 2(; ,)(7,y) = z(t + 7,2 + y),
(7,y) € DIt,x]. Then 2, is the restriction of z to the set (Eo U E) N ([~bo,t] x R") and this
restriction is shifted to the set D[t, z].

Write 7 = by + @ and B = [—7,0] x [—-2b,2b]. Then D[t,z] C B for (t,z) € E. Set Q =
= E'x C(B,R) and suppose that F': Q@ — R", F = (F1,...,F,),G: Q@ - Rand¢: EgUJFE — R
are given functions. Let z be an unknown function of the variables (¢,z), x = (x1,...,2,). We
consider the functional differential equation
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n

8tz(ta $) = Z Fi(ta x, z(t,x))aziz(t7 l‘) + G(ta €L, z(t,x)) (1)
=1

with the initial boundary condition
z(t,x) = Y(t,x) on EyUQE. )

We will say that F' and G satisfy the condition (V) if for each (¢,z) € E and for w, w € C(B,R)
such that w(r,y) = w(7,y) for (1,y) € DIt,z] we have F(t,z,w) = F(t,z,w) and Gt,z,w) =
= G(t,z,w). Condition (V') means that the values of F' and G at (¢, z,w) € € depend on (¢, x) and
on the restriction of w to the set D[t, 2] only. We assume that F' and G satisfy condition (V') and we
consider classical solutions to (1), (2).

Now we formulate an initial boundary-value problem for a parabolic functional differential equa-
tion. Let M,,«, be the class of all n x n matrices with real elements. Suppose that F: Q — M, «n,
F:Q—=R" G: Q- Ry: FyUI,FE are given functions and

F=[F, F=(F,...,F,).

j]i,j:l,...,n’

We consider the functional differential equation

n n
Ozt ) = > Fij(t, @, 21,0)) Oy (6, 1) + Y Filt, 2, 2(1.0)) 0, 2(6 ) + Gt 2, 200))  (3)
ij=1 i=1
with the initial boundary condition (2).

We will say that F satisfies the condition (V') if for each (¢, ) € E and for w,w € C(B,R) such
that w(r,y) = w(r,y) for (7,y) € DIt, z] we have F(t,z,w) = F(t, z,w). We assume that F, F' and
G satisfy condition (V') and we consider classical solutions to (3), (2).

Sufficient conditions for the existence and uniqueness of classical or generalized solutions of evo-
lution functional differential equations can be found in [3, 5, 6, 10, 16, 18, 20, 26].

Differential equations with deviated variables and differential integral equations can be derived
from (1) and (3) by specializing given operators. Information on applications of functional differential
equations can be found in [11, 27].

2. Approximate solutions of ordinary functional differential systems. For any spaces X and
Y we denote by F'(X,Y) the class of all functions defined on X and taking values in Y. Let N and
Z be the sets of natural numbers and integers respectively. We define a mesh with respect to spatial
variables in the following way. Let (hy,...,hy,) = h, h; > 0 for 1 < ¢ < n, stand for steps of the
mesh. For m = (my,...,m,) € Z" we put

2(m — (xgm1)7 . ,x%mn)) = (myhy,...,muhy)
and
R = {(t,2™): te R, m € Z"}.
Write
B =BORY",  Fon= BRI, 0B =hENRL"
and
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By =BNRI",  Dyft,m] = D[t,z™] NRE".

For z: Ey, UE), — R and w: Bj, — R we write z2(™) (t) = z(t, x(m)) on Ey, U Ej, and w(™) (t) =
— w(t, ™)) on By. Let us denote by H the set of all b = (hy,. .., h,) satisfying the condition:
there is K = (K1,..., K,) € N" such that (K hq,..., K hy,) = b. Set

K={meZ": —K <m < K}, mtK={meZ": —-K<m<K}.

Forz € R", A € M, x,, where z = (21,...,2,), A = [aij] , we put

i,j=1,...,n

n n
Iz =) loil  and  [[Allpxn =max{ Y agl: 1<i<n
i=1 j=1

Let F.(Fy; UE}, R) be the class of all z: Eg ;U Ej; — R such that z( -, 2™)) € C([~by, a],R) for
m € K. In a similar way we define the spaces F.(Bjy,R) and F.(Eg, U 0o Ep, R).

For z: Eyp U Ep — R and (t,2™) € Ej;, we define a function Zitm): Dalt,m] — R in the
following way: 2, ) (7, y) = 2(t + T, =™ 4 4), (1,y) € Dp[t, m]. Write

A={Xx=,...., ) A e{-1,0,1} for 1<i<n and ||\ <2},
AN =A\{6}, 6=(0,...,0) € R,

and k = 1+ 2n2. Note that  is the number of elements of A. Let m: A — {1,..., s} be a function
such that () # m(A) for A # A. We assume that < is an order in A defined in the following way:
A < Aif w(A\) < 7(A). Elements of the space R* will be denoted by & = {&)\}aea. Write

Ap = {a:(m): m=(my,...,my) € A}.

For ¢: A, — R we put (™) = ¢(z(™).

For z: Eyj, U E), — R and (t,z(™) € Ej,, m € IntK, we define a function Zimy: Ap — Rin
the following way: z( .,y (y) = 2(t, ™ +y), y € Ay. Write Q), = Ej, x F.(By,R) and suppose
that

Gh: Qh—>R, Fh: Qh—>RH, Fh:{Fh./\})\eAa

are given functions. For (¢, z,w) € Qp, ¢ € F(Ax, R) we put
Fp(t,m,w)o (=Y Fyalt,z,w) (W,
A€A

Set
Fh(tv T, w, C) - Gh(ta x,w) + Fh(ta x7w) ° C

Given ¢, : Fop U ER — R, we consider the functional differential equations
d
—z
dt

with the initial boundary condition

M) = Fp(t, 2™, 24 s 206my), - m € IntK, (4)

2 =™ () on EgpUdEn. )
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We will say that F, and G}, satisfy the condition (V3,) if for each (¢,z("™) € Ej, and for w,w €
€ F.(Bp,R) such that w(r,y) = w(r,y) for (r,y) € D[t,m] we have Fj,(t, 2™ w) =
= Fy(t, 2" ) and Gp,(t, 2™ w) = Gy (t, 2™, ). We assume that F}, and G, satisfy condition
(V1) and we consider classical solutions to (4), (5).

Let Wy : Fo(Bp,R) — C(]—r,0],R;) be an operator defined by

Wh[w](t) = max {|w(t, z™)|: 2™ € [~2b, 2b]}, ¢ € [~r,0].

The maximum norms in C'(B,R) and F.(Bj, R) are denoted by || - |z and || - || B, respectively. For
w: [-r,a] = R and t € [0,a] we define w;: [—r,0] as follows: wy(7) = w(t + 1), 7 € [-r,0]. If
n,n € C([—r,0],R) then the inequality n < 7 states that n(7) < 7(7) for 7 € [—r,0].

Assumption H[Y]. The function Y: [0,a] x C([-r,0],R;) — Ry is continuous and it is
nondecreasing with respect to the second variable and

1) for t € [0,a] and for v, 0 € C([—r,0],Ry) such that v(7) = 0(7) for 7 € [—by — ¢,0] we
have Y (t,v) = Y(t,0),

2) for each p € C([—bo, 0], Ry) the maximal solution of the Cauchy problem

() = Y(t, wy), w(t)=u(t)  for te[—bp,0], (6)

is defined on [—bg,a]. By a maximal solution of a Cauchy problem we mean a solution which
majorizes any other solution of the same problem on the intersection of respective domains.

Remark 2.1. Condition 1 of Assumption H|[Y] states that the value of Y at (t,v) € [0,a] x
x C([—r,0], R depends on t and on the restriction of v to [—by — ¢, 0] only.

Assumption H[Fy,, Gp, ¥p]. The functions F},: Q — R® Gp: Qp — R, ¢y EgpUOER —
— R satisfy the conditions:

1) Fj and G, are continuous and they satisfy condition (V},),

2) thereis Y: [0,a] x C([—r,0],R:) — R4 such that Assumption H[Y] is satisfied and

‘ Gh(t,x,w) } < T(t, Wh[w]) on Qh,
3) for (t,z,w) € ), we have

Fpa(t,z,w) >0 for Ae A and Z Fua(t,z,w) <0,
AEA

4) o € Feo(EgpUOyER,R) and ny, € C([—r,0], R;) satisfies the conditions: |¢}(Lm) (t)} < np(t)
on Fgj and
W ()] <w(tm)  on BB,

where w( -, np,) is the maximal solution to (6) with u = n,.
Lemma 2.1. If h € H and Assumption H|[F},, Gy, y] is satisfied then there is a solution
zn: Eopn U ER — R to (4), (5) and

’z}(Lm)(tﬂ < w(t,np) on Ej. 7

Proof. From classical theorems on functional differential equations it follows that there is € > 0
such that the solution zj, to (4), (5) is defined on (Ey; U ER) N ([—bg, ) x R™). Suppose that zj, is
defined on (Ep , U Ep) N ([—bp,a) x R™) and it is non continuable. We prove that

2™ (6| <w(t,m)  on Epn([0,a) x RY). ®)

For € > 0 we denote by w( -, 7y, ) the maximal solution of the Cauchy problem
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1368 W. CZERNOUS, [ Z. KAMONT |
() =Tt w) + ¢, w(t)=nu(t)+e  for te[—by,0].

There is € > 0 such that for 0 < & < £ the solution w( -, 7y, €) is defined on [—by, a] and

lin%w(t, Mh,€) = w(t, nn) uniformly on  [—by, a.
e—
We prove that
2 (Dloe < w(t,mne)  on Epn([0,) x RY), ©)

where 0 < € < €. Set
wp(t) = max {|z,(lm)(t)\: m e K}, te[—by,a).

It is clear that wy,(t) < w(t,nn, ) for t € [—bg, 0]. Suppose by contradiction that (9) fails to be true.
Then there is ¢ € (0, a) such that

wp (1) < w(T,Mp,€) for 7 € [—by,t) and wp(t) = w(t,np, €).

This gives
D—wh(t) > wl(t7nh7€)7 (10)
where D_ is the left-hand lower Dini derivative. There is m € K such that wy(t) = zém) (t)

or wy(t) = —z,(lm)( t). Let us consider the first case. We deduce from condition 4 of Assumption

H|[F}y,, Gy, vy that m € IntK. Then we have

d m m m
D_wp(t) < d*Z( \(t) = Gu(t, 2™, (2n) tm)) + Fu (2™ (z20) ) © (2) 1.y <

< T(tawt(' s Mhs € +Wh ZFh)\ t 33 zh)[t m]) < T(t7wt('anh7€)) +e= w,(t’ 77h>5)7
AEA

which contradicts (10). The case wy,(t) = —z}(Lm) (t) can be treated in a similar way. Hence, the proof

of (9) is completed. From (9) we obtain in the limit, letting ¢ tend to 0, inequality (8).

We prove that there are the limits lim; .5 z,(Lm) (t) for m € Int K. Write

O(t,t) = max{‘z}(Lm)(t) — z,(lm)(f)‘ :m € IntK},
where t,t € [0,a). We prove that

d}(t, {{) < ’W(t»ﬁh) 7(“)({7 ﬁh)‘ for ¢, te [07 d) (11)

Suppose that ¢ > . There is m € IntK such that & (¢, ) = z,(L )(t)—z,(lm) (t) or(t,t) = — [z,(lm) (t)—

z}(Lm)( t)]. Let us consider the first case. Then we have

t
/ Gh (7,2, (2 frm) + Fn(r, 2™, (2) ) © (Zh)<7,m>} dr <

t
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t t
< /T(ﬂwr(',nh))dTer(t, nh)/ZFh./\(Tvx(m)v(Zh)[‘r,m]>d7_ < w(t,nn) — w(t, nm).
4 L XeA
¢ i
The case W(t,t) = — [z}(Lm) (t) — z,(Lm) (t)] can be treated in a similar way. Then (11) is proved.
It follows from (11) that there are the limits

lim 2™ (t) = 2™ (@), m e ntK.
t—a

Then the solution zj, is defined on (Ey;, U Ep,) N ([—bg, a) x R”). If @ < a then there is @ > a such
that zp, is defined on (Egp, U Ep) N ([—bo, al x R"). This contradicts our assumption that z; given
on (Eyp UER)N ([—bo, a) X ]R") is non continuable. It follows that z;, is defined on Ey;, U E}, and
estimate (7) is satisfied.

Lemma 2.1 is proved.

We will consider approximate solutions to (4), (5). Let X}, C F.(By,R) and Y, C F(A4,,R) be

d
fixed subspaces. Suppose that z;, € F.(Ey U Ep, R) and there exists %2}(:”) (t) on E}, and there are

9,~v: H — R, such that

d _(m ) e 5
%Z](L )(t) - F (tv .%'( )7 (Zh)[t,m}7 (Zh)<t,m)) < V(h‘)v m € IntK, (12)
20 =] <o) for (t.2t™) € BypUdEn, (13)
lim (k) =0, lim 9(h) =0, (14)

and
(i) ey Gr)emy) € Xp x Yy for  (t,2™) € Ep. (15)

The function Z; satisfying the above relations is treated as an approximate solution to (4), (5).
It is important in our considerations that we look for approximate solutions to (4), (5) such that
condition (15) is satisfied with a fixed subspaces X, x Y}, C F.(Bj,R) x F(Ay,R). Remarks 2.2
and 3.3 contain additional comments on (15).

We give a theorem on the estimate of the difference between the exact and approximate solutions
to (4), (5).

Assumption H[o]. The function o: [0,a] x C([—r,0],R;) — Ry satisfies the conditions:

1) o is continuous and for each ¢t € [0, a] the function o(¢,-): C([—r,0],R+) — R4 is nonde-
creasing;

2) for t € [0,a] and for v,0 € C([—r,0],R}) such that v(7) = 0(7) for 7 € [—by — t,0] we
have o(t,v) = o(t,0),

3) for each ¢ > 1 the maximal solution of the Cauchy problem

W (t) = co(t,w), w(t) =0 for t e [—bo,0],

isw(t) =0 for t € [—by, al.
Theorem 2.1. Suppose that
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1) h € H and Assumption H|Fy,,Gp, ] is satisfied and zp,: Eyp U Ep, — R is the solution to
(4), (5) and
(zh) ) € Xn for (t,2™) € By,

2) Zp € F.(Eyp U Ep,R), the derivatives %E,(lm) (t) exist on Ey, and there are ¥,v: H — R
such that condition (12)—(15) are satisfied,

3) there exists o: [0,a] x C([—r,0],Ry) — Ry such that Assumption H|[o| is satisfied and for
w,w € Xy, ¢ €Yy, we have

‘Fh(tvxawac) - Fh(tawivg)‘ < U(tv Wh[w - TI)]),

where (t,x) € Ep,
4) the maximal solution w( - ,~,v) of the Cauchy problem

W'(t) = o(t,w) +v(h), w(t) =9(h) Sfor t € [—bp,0], (16)

is defined on [—bg, a).

Under these assumptions we have
1200 () — 2™ ()| < w(t,1,9)  on B (17)
Proof. For e > 0 we denote by w( -, 7,9, ) the maximal solution of the Cauchy problem
() =o(t,w) +y(h) + ¢, wt) =0(h)+¢ for te[-r0].
There exists € > 0 such that for every 0 < € < & the solution w( -, 7,9, ¢) is defined on [—bg, a] and
;ii%w(t, v,0,€) = w(t,v,9) uniformly on [—by, a].

Set
On(t) = max {|2™ (1) = 2 ()]: m e K}, t € [~bo,al.

We prove that
wp(t) < w(t,,9,¢) for t € [—by,al, (18)

where 0 < ¢ < £. It is clear that &y, (t) < w(t,~,V,¢) for t € [—r,0]. Suppose by contradiction that
assertion (18) fails to be true. Then the set

Iy = {te(0,a]: @n(t) >w(t,y,9,¢)}
is not empty. If we put ¢ = min I, it is clear that £ > 0 and
D_p(t) > ' (t,v,9,¢). (19)

There is m € K such that &y, (t) = z,(lm) (t)—é,(lm) (t) or p(t) = — [z,(lm) (t) —ilgm)(t)}. Let us consider
the first case. We conclude from (13) that m € Int K. It follows from Assumption H[F},, G}, 1y] that

Dn(t) < 5 [0~ 57(0)] <
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METHOD OF LINES FOR QUASILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 1371

< U(tv Wt( s 19)7 5) + V(h’) + a)h(t) Z Fh.)\ (t, x(m)’ (Zh)[t,m}) .

AEA
This gives
D_a(t) < o(t,w(t, v, 9,€)) +& = (1,7, 0,¢)
which contradicts (19). The case wp,(t) = — [z,(Lm) (t)— fi,(lm) (t)] can be treated in a similar way. Then

I, = @ and (18) is proved. From (18) we obtain in the limit, letting € tend to 0, inequality (17).
Theorem 2.1 is proved.
Remark 2.2. Let us consider the following condition:
3A) there exists o: [0,a] x C([—r,0],R;) — Ry such that Assumption H|[o] is satisfied and
for w, w € F.(By,R) and for ( € F(Ap,R) we have

’Fh(t,x,w,C) —Fu(t,z,w, C)‘ < o(t, Wp[w — w)),

where (t,z) € Ep, It is clear that Theorem 2.1 remains true if condition 3 is replaced by 3A. We
show in Sections 3 and 4 that assumption 3, is important in our considerations. The operators F,
generated by (1) or (3) satisfy condition 3 and they do not satisfy 3A.

Remark 2.3. Suppose that the assumptions 1, 2 of Theorem 2.1 are satisfied and there exists
L € R, such that and for w, w € X, ( € Y, we have

‘Fh(taxuwag) - Fh(tam)ﬂ}><—)‘ < LHU) - TDH)

where (t,z) € Ej,. Then
120(8) = 2™ (@) <ah)  on By

where

ele — 1

L

a(h) = 9(h)el + ~(h) if L>0, (20)

and
a(h) =9(h) + avy(h) if L=0. 21

The above estimates are obtained by solving problem (16).
3. First order partial functional differential equations. We construct a numerical method of
lines for (1), (2). The following assumptions of given functions are needed in our considerations.
Assumption Hy[F, G|. The functions F': Q — R" G: Q — R are continuous and they satisfy
condition (V') and there is € (—b,b), T = (%1, ...,Zn), such that

(x; — ;) Fi(t,z,w) > 0 on (2 for 1<i<n. (22)

Remark 3.1. Two types of assumptions are needed in theorems on the existence and uniqueness
of classical or generalized solutions to (1), (2). The first type conditions deal with regularity of given
functions. It is assumed in theorems on uniqueness of solutions that F' and G are continuous and they
satisfy nonlinear estimates of the Perron-type with respect to functional variables. More restrictive
conditions are needed in theorems on the existence of solutions.

The assumptions of the second type concern the bicharacteristics and they have the following
form. Suppose that z € C'(Eyp U E,R). Let us denote by g[z](-,t,x) = (¢1(+,t,2),...,gn(+,t,2))
the solution of the Cauchy problem
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1372 W. CZERNOUS, | Z. KAMONT

y,(T) = F(Tv y(T)> Z(T,y(T)))v y(t) =,

where (t,z) € E. Condition (22) asserts that the function g;( - ,¢, ) is non increasing if Z; < z; < b;
and it is non decreasing if —b; < x; < Z;. This property of bicharacteristics and assumptions on
regularity of given functions ensure the existence and uniqueness of classical or generalized solutions
to (1), (2) (see [6] and [11] (Chapter 5)).

Let us denote by H the set of all h € H satisfying the condition ||| < min {b,, b*}, where
by =min{b; — Z;: 1 <i<n}and b* =min{b; + Z;: 1 <i < n}.

Solutions of differential difference equations corresponding to (1), (2) are defined on Eyp U E},.
Equation (1) contains the functional variable z(; ;) which is an element of the space C(D[t, z], R).
Then we need an interpolating operator T}, : F.(Bp,R) — C(B,R). We assume that 7}, satisfies the
following condition (V): if w,w € F.(Bp,R), (t,2"™)) € Ej, and w(r,y) = w(r,y) for (1,y) €
€ Dylt,m] then (Tpw)(7,y) = (Thw)(r,y) for (1,y) € D[t,z(™)]. In the next part of the paper we
adopt additional assumptions on 77,.

Write e; = (0,...,0,1,0,...,0) € R with 1 standing on the i th place. For z: Ey, U B, — R
and (t, ™) € Ej,, m € IntK, we write

m 1 . . mi < ~
5™ (t) = @) )it 2™ > 7
5(7”) _ 1 (m) (m—e;) . (m; ~
(1) = W [24(t) — 27 (1) if @ <,
and we put 7 = 1, ..., n in the above definitions. Set

Fal2]™ (&) =Y Fi(t, 2™, T2y, m))8:2"™ (t) + G(t, 2™, Tz )
i=1

and suppose that ¢y : Egp U doEr — R is a given function. We approximate classical solutions to

(1), (2) with solutions of differential difference equations

%ZW (t) = Fplz]"™(t), m e IntK, (23)

with the initial boundary conditions
2@ =™ () on EypUdE. (24)

We claim that we have obtained a functional differential problem which is a particular case of (4),
(5). For m € IntK we put

Iiml={ie{l,...,n}: & < 2m) < bi},

Iml={ie{l,...,n}: =b; < ml(-mi) < %}

and

Fi(t, 2™, w,¢) = G(t, 2™, Thw) + > Fi(t, 2™, Tyw)s:¢?, (25)
=1
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where (t, 2™, w,() € Q; x F(Ap,R). The expressions 6;¢(?), 1 < i < n, are defined in the
following way:

5i¢? = —[¢) —¢O]  for i€ I[m],

1
h;

5;¢0 = —[¢@ — ¢ for i€ I_m),

1
hi
and we put ¢ = 1, ..., n in the above formulas. It is clear that problem (23), (24) is equivalent to (4),
(5) with the above defined Fy,.

We formulate assumptions on F, G, 1) and T},. Let us denote by W: C(B,R) — C([-r,0],R;)
the operator given by

Ww](t) = max {|w(t, z)|: x € [-2b,2b]}, ¢ € [-r,0].

Assumption H, [F, G, ). The functions F':  — R, G:  — R satisfy Assumption Hy[F, G]
and
1) thereis Y: [0,a] x C([-r,0],R1) — Ry such that Assumption H[Y] is satisfied and

|G(t,z,w)| < Y(t, W[w]) on €
2) Y € C(EyUOE,R), Yy, € Fe(Eop UJE,R) and there is ap: H— R such that

[0 (t) =™ (t)] < ag(h)  on EgpUdE,  and lim @ (h) =0,
H

3) 1€ C([~bo, 0], R, ) and

W6 <),  |[oSV@)] <nt)  on By

and the maximal solution w( -, 7n) to (6) with ;1 = 7 satisfies the conditions

WM @) <w(t,n), o) <wtn)  on 8B

Assumption H[T}]. The operator 1}, F.(By,R) — C(B,
1) if w,0 € F.(By,R), (t,z'™) € Ej, and w(r,y) =
(Tyw)(r,y) = (Ty@)(7,y) for (r,y) € Dit, ™).
2) for w,w € F.(Bp,R) we have

R) satisfies the conditions:
w(r,y) for (7,y) € Dplt,m], then

[Thw — Thol s < llw —wl s,

3) if Oy : B, — Ris given by 0,,(7,y) = 0 for (1,y) € By, then T, [0](7,y) = 0 for (1,y) € B,
4) for each w: B — R which is of class C! there is & € R, such that

|w — Thws|| s < €|h],

where wy, is the restriction of w to Bjy,.
Remark 3.2. An example of the operator T}, satisfying Assumption H|[T},] can be found in [11],
Chapter 5.
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Lemma 3.1. If Assumptions H,[F, G, ], H[T}] are satisfied then for each h € H there exists
a solution zy,: Fyp U Ep — R to (23), (24) and

2,(Lm)(t)‘ < w(t,n) on E.

Proof- We apply Lemma 2.1. Let us define G,: Qp — R, Fj,: Qp — R*, Fj, = { Fp.\ }aea, in
the following way:

Gh(t, =™, w) = G(t, 2™, Thw),

ot a™, w) = 3 %m,wmm_ 3 %Fi(t,x(m),Thw)

)

i€l_[m)] i€l [m)
and
(m) ) = L (m) :
Fh.ei(tax ,U)) = hi-Fl(tal‘ 7Thw) for i€ I‘i‘[m}v
(m) ) = L (m) ;
Fh_e,(t, 2\, w) = —EFi(t,x , Thw) for i€ I;[m]
and we put ¢ = 1,...,n in the above definitions. Set

Fa(t,z™ w)y=0  for A€ A\ {I[m]UI_[m]U{6}},

and F,(t, 2™, w,¢) = Gp(t, 2™, w) + F,(t, ™ w) o ¢. Then Assumption H[F},, G}, ] is
satisfied. Our lemma follows from Lemma 2.1.

Now we construct estimates of solutions to (1), (2).

Lemma 3.2. Suppose that Assumption H,[F, G, ] is satisfied and v: EyUE — R is a solution
to (1), (2) and v is of class C* on E. Then

v(t,a)| < w(tn) on E. (26)
Proof. For e > 0 we denote by w( -, 7, ) the maximal solution of the Cauchy problem
() = T(tw) + ¢, w(t)=n(t) +e for t € [—bo,0]. 27
There is £ > 0 such that for 0 < € < ¢q the solution w( -, 7, ) is defined on [—bg, a] and
i%w(t, n,e) =w(t,n) uniformly on [—by, a].

Write
@(t) = max {|v(t,z)|: @ € [-b,b]}, € [bo,al.

We prove that
o(t) < w(t,n,e) for t e [—bo,al. (28)

It is clear that &(7) < w(T,7,¢€) for T € [—bo, 0]. Suppose by contradiction that (28) fails to be true.
Then there is ¢ € (0, a] such that

O(71) < w(r,n,¢€) for 7€]0,t) and  @(t) = w(t,n,e).
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Then we have
D_a(t) > w'(tn, ). (29)

There is x € [—b, b] such that w(t) = |v(¢, x)|. It follows from condition 3 of Assumption H,[F, G, ]
that (¢,x) ¢ OpE and consequently 0, v(¢,z) = 6. Let us consider the case when w(t) = v(t,x).
Then we have

D_a(t) < Op(t, x) < L(t, @) < vlt,wi(-,n,e) +e=u(t,n,2),

which contradicts (29). The case @(t) = —v(t, x) can be treated in a similar way. This completes the
proof of (28). From (28) we obtain in the limit, letting ¢ tend to 0, estimate (26).

Lemma 3.2 is proved.

Suppose that Assumptions H,[F, G, | and H[T},] are satisfied. Write ¢ = w(a,n) and

= {w € C(B,R): |lw|p < é}

Assumption H[F, G, ). The functions F': Q@ — R", G: Q@ — R, ¢: Ey UphE — R satisfy
Assumption H,[F, G, ] and there is o: [0,a] x C([-r,0],R1) — Ry such that Assumption G|[o]
is satisfied and

|F(t, 2z, w) — F(t,z,0)|| < o(t, W[w—a)),

’G(t,x,w) — G(t,:c,d))‘ < o(t, Ww — w]),

for (t,z) € F and w,w € X|[¢|.

Remark 3.3. 1t is important that we have assumed nonlinear estimates of the Perron-type for
|lw| B, ||@w||p < é There are differential equations with deviated variables and differential integral
equations such that Assumption H[F, G, holds and global estimates are not satisfied. We give
suitable examples.

Suppose that F': ExR — R", F = (F},...,Fy),and G: E xR — R are given functions of the
variables (¢, z, p). Suppose that ¢g € C(E,R), <;5 € C(E,R") and 0 < ¢q(t,z) <t, ¢(t,z) € [-b,D]
for (t,z) € E. Write p(t,x) = (¢o(t, ), d(t,z)) on E. Let F': Q — R", G: Q@ — R be defined by

F(t,z,w) = F(t,z,w(o(t, ) — (t, 1)), G(t,z,w) = G(t, z,w(p(t, z) — (t,)). (30)

Then (1) reduces to the differential equation with deviated variables
Oz (t, ) ZF (t, 2, 2(0(t, )0, 2(t, ) + G(t, x, 2(0(t, 7))).

For the above F' and G we put

F(t,z,w)=F | t,x, / w(r,y)dydr |, G(t,z,w) =G | t,z, / w(r,y)dydr |. (31)
Dit,x] Dlt,x]

Then (1) is equivalent to the differential integral equation

t x
8tz(t,m):ZFi t,x,//z(T,y)dydT O, 2(t, +G |tz // (1,y)dy dr

71)0 —x 7b0 —T

Suppose that
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1) FeC(ExR,R"), G e C(E x R,R) and there are o, 3 € R such that
‘é(t»fﬂ,p)‘ < a+ Slp| on E xR,

2) the derivatives 9, F, 9,G exist on E x R and 9,F € C(F x R,R"), 9,G € C(E x R,R),

3) the functions 9, F and 8,G are unbounded on E x R.

Then the functions F' and G given by (30) and by (31) satisfy Assumption H[F, G, ] and they
do not satisfy global estimates with respect to functional variables.

Theorem 3.1. Suppose that Assumption H[F, G, | and H[T}) are satisfied and

1) v: Eg UE — R is a solution to (1), (2) and v is of class C,

2) he€ Hand z,: Ey;, UE;, — R is a solution to (23), (24).
Then there is oc: H — R such that

‘vém) (t) — z}(Lm) (t)‘ < a(h) on E and flg%) a(h) =0, (32)

where vy, is the restriction of v to Egp U Ej,.

Proof. We apply Theorem 2.1 to prove (32). Let I';, be defined by the relations

d m m m
%vg () = Fplon] ™) + T (),  te[0,a], mentK.
It follows from Assumption H[7},] and from the definition of dv;, = (d1vp, ..., d,v,) that there is

v H — R such that

‘I‘;Lm)(t)‘ < ~(h) for te€[0,a], meIntK and }Liﬂ(l) v(h) = 0.
%

There is ¢ € Ry such that ||0,v(t, z)|| < ¢ on E. Let us denote by Y}, that class of all ( € F'(Ap,R)
such that
<¢

1 )
h7~ [C(ez) _ C(e)]

Then (vp,) (,m) € X for (¢, (™) ¢ Ej. 1t follows from Lemmas 3.1 and 3.2 that

%[C(G) — (9 <e 1<i<n.

(Uh)[t,m]a (Zh)[t,m] e Xy, and (Wz)(t,m) ey, for (t,l‘(m)) € by
The operator F'j, given by (25) satisfies the condition:
{Fh(ta €T, w, C) - Fh(ta x, W, C)| < (1 + E)U(tv Wh[w - ’LZ)]) (33)

for (t,x) € Ep, w,w € Xp, ¢ € Y},. Then all the assumptions of Theorem 2.1 are satisfied and
assertion (32) follows.
Remark 3.4. Note that estimate (33) is not satisfied for all ¢ € F'(Ap, R).
Let us suppose that all the assumptions of Theorem 3.1 are satisfied and there is L € R such
that
||F(t>$vw) - F(tvwi)||a |G(t’wi) - G(t,l’,’d)ﬂ < IN’Hw - m||B7

for (t,x) € E, w,w € X[¢]. Then there is L € Ry such that
0™ (8) = 2™ (6 <ah)  on By,
where &: H — R is given by (20), (21).
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We apply the results on the numerical method of lines to differential equations with deviated
variables and to differential integral equations. We have transformed initial boundary-value problems
into systems of ordinary functional differential equations. The system such obtained is solved by
using the explicit Euler method. Let us denote by ¢, the maximal error of the difference method. In
the tables we give experimental values for ¢,

Example 3.1. Putn =2 and E = [0,0.25] x [—0.5,0.5] x [-0.5,0.5]. Consider the differential
equation

0.5 2
2
Oz(t,x,y) = x |1+ cosmy / (t,x,s)ds — —z(t,z,y)| Opz(t,z,y)+
v
—0.5
0.5 ) 2
+y |1 — cosmx / 2(t, s,y)ds + 2(t,x,y)| Oyz(t,x,y)+
-0.5
T Y
+zm? / 2(t, s,y)ds + ym* / z(t,xz,s)ds + z(t,x,y) + cosTx cos Ty (34)
0 0
with the initial boundary conditions
20,2,5) =0,  (z,y) € [-0.5,0.5] x [-0.5,0.5], (35)
2(t,—0,5,y) = 2(t,0.5,y) =0, t€[0,0.25], ye[-0.50.5] (36)
A(t,x,—0.5) = 2(t,,0.5) =0, te[0,a], x€[-0.5,0.5]. 37)

The solution to (34)—(37) is known. It is v(t, z,y) = (¢! — 1) cos mx cos 7y. Table 3.1 gives the
maximal errors for several step sizes h = (ho, hi, h2).

Table 3.1
(ho, b1, ha) e Time [s]
(278,276 276) 1.47690152 - 1073 0.037

(279,277, 277) 7.56321595 - 1074 0.196
(2710278 278) 3.83651338 - 1074 4.731
(2711279 279) 1.93483845 - 1074 41.351

(27122710 2-10y 1 972385359 - 107° | 497.0004
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Example 3.2. Putn =2, E =10,0.25] x [-1,1] x [—1, 1]. Consider the equation

Orz(t,a,y) = 7 [1+ 2(tsin(a +y), cos(e + )] Do(t,2,y)+

+=[1+ 2(t,sin(z — y), cos(z — y))]zﬁyz(t, x,y)+

PGS

+2(t,0.5(z +y),0.5(x — y)) sin z(t,x,y) + f(t,z,y)z(t,x,y),

(38)
x> 2
flt,x,y) = (m2 + yQ)(l —2t) — 1 —exp {—t (2 + 2) } sin exp{t(;v2 +y? = 1)}
with the initial boundary conditions
Z(O,ZE,Z/) :1’ (:U,y) € [_171]7 (39)
Z(ta —179) = Z(ta 17 y) = exp{tyQ}, (t7y) € [07 a] X [_17 ]-]7 (40)
2(tw,—1) = z(t,z, 1) = exp{ta®},  (t,2) € [0,a] x [-1, 1]]. (41)

The solution to (38)—(41) is known. It is Z(t,z,y) = exp{t(z? + y* — 1)}. Table 3.2 gives the
maximal errors for several step sizes h = (hg, hi, h2).

Table 3.2
(hos h1, ha) e Time [s]
(276,275.27%) | 1.47049139-1073 0.048
(277,276 276) | 7.53238436-10* 0.319
(278,277,277) | 3.81321493-10~* 2.924
(279,278 278) | 1.91826460-10~* 26.837
(2710279 279) | 9.62069745-107° | 255.386

Note that the right-hand sides of equations (34) and (38) satisfy the assumptions of Theorem 3.1.
The local Lipschitz condition with respect to unknown function holds and the global Lipschitz con-
dition is not satisfied.

4. Parabolic functional differential equations. We formulate a differential difference problem
corresponding to (3), (2). Write

J={(,5):4,5=1,...,n, i #j}

and suppose that we have defined the sets J,,J_ C J such that J, UJ_ = J JyNJ_ = @.
We assume that (i,5) € J4 if (j,4) € Jy. In particular, it may happen that J, = & or J_ = @.
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Relations between the sets .J;, J_ and equation (3) are given in Remark 4.1. Let us denote by H the
set of all h € H satisfying the condition: there is d > 0 such that h; < dh for (i,7) € J.
For z: Eg, UE, — R, (t,20™) € Ej,, m € IntK we write

1

= o) — 2], 5 @) = o[ — s 1)),

)

where i = 1,...,n. The difference operators 6 = (d1,...,d,) and 62 = [51'1]1']':1 _, are defined
in the following way. Set o

1
§;2™ (t) = 3 (6720 (@t) + 672 )], 6u2™(t) = 667 2™ (1), 1<i<n,
and

1
52 (t) = 3 (665 2™ () + 6707 2™ (1)) for (i,j) € J_,

1
8 2™ (t) = 5 [5?5; 2 () + d; 05 z(m) (t)] for (i,7) € Js4.

Let Tj,: F.(Bp,R) — C(B,R) be an interpolating operator. Write

Z Fzg Thz[tm})(szjz( )(t)+
i,j=1

+ > Fi(t, 2™, Ty )02 ™ () + Gt 2™, Tz 1) 835 2™ (1)

and suppose that ¢ : Ey, U E, — R is a given function. We consider the functional differential

equations
d

- =Fule] M) (1), m e ntK, (42)
with the initial boundary condition
2@y =™ () on EyjUEdE. (43)

We will approximate classical solutions of (3), (2) with solutions to (42), (43).
We claim that (42), (43) is a particular case of (4), (5). Write

Fi(t,z,w,Q) = Gt z, Thw) + > _ Fi(t,z, Tow)5i¢\W + > Fy(t, 2, Tow)s;¢?,  (44)
i=1 ij=1
where (t,z,w) € Qp, ¢ € F(Ap,R). The expressions

0D = (5:¢D, . 0uCD), 6D = [0
are defined in the following way. Put
_ 1
h;

| ~ 1 » .
O e (e S o (S S I L A
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Write 1
60 =[5 CD +67¢D), 6@ = 67077, 1<i<n,

and

1
5;;¢0) = 5 [0707¢O +6751¢P]  for (i,5) € J-,

1
5;;¢0) = 5 [667¢ D +6707¢ D] for (i,]) € Jy.

It is easy to see that problem (42), (43) with the above given [}, is equivalent to (4), (5).
Assumption Hy [F, F, G, ). The functions F: Q@ — M, F: Q@ - R" G: Q@ — R and
1 Fo U E — R satisfy the conditions
1) F, F, G are continuous and they satisfy condition (V'),
2) thereis Y: [0,a] x C([-r,0],R;:) — R, such that Assumption H[Y] is satisfied and

|G(t,z,w)| < Y(t, Ww) on €,

3) the matrix F is symmetric and for P = (¢, x,w) € §2 we have

Fij(t,x,w) <0 for (’L,j) S J_, Fij(t,x,w) >0 for (7,,]) S J+, (45)
and .
> Fjtmwyy; >0 for y=(yi,...,yn) €R", (46)
ij=1

4) h € H and for P = (t,z,w) € Q we have

< hy hi
Fu(P) =Y 2| F,;F(P)| - =|F(P)| >0, 1=1,...,n,
();hj\g()\ 2\()IO n
JFi
5) ¢ € C(EgUdHE,R), ¥y, € Feo(Eyp, UdyEy, R) and there is ag: H — R, such that

‘w(m) (t) — ¢}Sm) (t)‘ < ap(t) on FEypUOyE and }llin% ap(h0 =0,
—

6) ne C([—T‘, O]vRJr) and
W@l <n), MOl <a) on o
and the maximal solution w( -, 7n) to (6) with y = 7 satisfies the conditions:
W@l <wltn). YOl <wltn)  on GEo.
Remark 4.1. We have assumed that F satisfies the condition: for each (i, j) € J the function
Fij(t,x,w) =sign Fj(t,z,w), (t,z,w) € Q,

is constant. Inequalities (45) can be considered as definitions of J_ and J. .
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Suppose that there is @ > 0 such that

Fii(t,z,w) — Z!Fw 2& on € for 1<i<n.
J#Z

Then condition (46) is satisfied and there is g > 0 such that for ||| < € and for by = hy = ...
.. = hy, condition 4 of Assumption Hy[F, F, G, 1] is satisfied.
Lemma 4.1. If Assumptions Ho[F, F, G, v, H[T}] are satisfied then for each h € H there
exists a solution zZp: Eyn U B — R to (42), (43) and

@) <w(t,n)  on B

Proof. We apply Lemma 2.1. Let us define Fj,: Q, — R*, F, = {Fp. 2} aea and Gt Q, — R
in the following way. Write

AO:{)\EA: thereis 7, 1 <¢<mn, suchthat A=¢; or )\:—ei},
:{)\EA: there is (i,j) € J4 suchthat A =e¢; +e; or )\:—ei—ej},

Arp={Xe€A: thereis (i,j) € J_ suchthat A=¢; —¢; or A= —¢; +¢;}

and
A:A\ [A()UA[UA][U{H}].
Write
Gp(t,z,w) = G(t,z, Thw),
1
Fro(t,z,w) 22 h2 Fii(t,z, Thw) + Z @‘Fij(t,x,Thw)‘
=1 (.5)eJ
and
1 “ 1
Fh.ei(tamaw) = hilQFll(tvahw) Z h h l] )’ TmFl’(tWT)Thw)a
J#Z
F t *1F~t T; Fi(t,x, T 1Ft T
h.fei( T, W) = hf@g ii(t, , Thw) ; hzh ‘ zj z, hw)| 2, (t,z, Thw),
JFi
and we put ¢ = 1,...,n in the above formulas. Moreover we put
1 .
Fhepre; (tx,w) = Fh e e, (t,2,w0) = T ; Fij(t, z, Thw) for (i,7) € Jy4,
1 .
Fh.ei—ej (t,x,w) = Fh.—ei—&-ej (tawi) 2h h Z](t x Thw) for (Z,]) € J—a
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Fh)\(t,l‘,w) =0 for )\E[N\,

and Fp,(t, 2™, w,¢) = Gp(t, 2™, w) + Fy(t,z™w) o ¢. It follows that all the assumption of
Lemma 2.1 are satisfied and the assertion follows.

Now we construct estimates of solutions to (3), (2). We say that z € C(Ep U E,R) is of class
CY2if 2(-,x): [~by,a] — R is of class C* for z € [~b,b] and z(t,-): [~b,b] — R is of class C?
for t € [—bo, al.

Lemma 4.2. [f Assumption Hy[F, F, G, )| is satisfied and v: Ey U E — R is a solution to (3),
(2) and v is of class C'? then

o(t,2)| <w(t,n) on E. @)

Proof. For € > 0 we denote by w( -,n,¢) the maximal solution to (27). There is 9 > 0 such
that for 0 < € < gq the solution w( -, 7, ¢) is defined on [—bg, a] and

lim w(t,n, &) = w(t,n) uniformly on [—bp, a.
e—0

Write
&(t) = max {|v(t,z)|: x € [-b,b]}, € [bo,al.

We prove that
w(t) < w(t,n,e) for t € [—bo,al, (48)

where 0 < & < g¢. It is clear that w(t) < w(t,n,e) for t € [—bg,0]. Suppose by contradiction that
(48) fails to be true. Then there is ¢ € (0, a] such that

w(T) < w(r,n,¢€) for 7€ [—bo,t) and  @(t) = w(t,n,e).
This gives
D_o(t) > o/ (t,7.2). (49)

There is « € [—b, b] such that &(t) = |v(t, z)|. It follows from condition 6 of Assumption Hy[F, F,
G, )] that (t,2) &€ OpE. Let us consider the case when w(t) = v(t, z). Then we have

n
Opv(t,x) =6 and Z Oz, v(t, )yiy; <0 for y=(y1,...,yn) € R™.
ij=1

The above relations and (46) imply
n
Z Ej (ta Zz, U(t,z))aﬂﬂﬂjv(t? x) <0
i,j=1

and consequently
D_i(t) < Op(t,x) < T(t, @) < w'(t,n,e),

which contradicts (49). The case w(t) = —v(t, x) can be treated in a similar way. This completes the
proof of (48). From this we obtain in the limit, letting € tend to 0, estimate (47).
Lemma 4.2 is proved.
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Now we prove that the method of lines (42), (43) is convergent. Suppose that Assumption
Hy[F, F,G,v] and H[T},] are satisfied. Write ¢ = w(a,n) and

X[e] ={we C(B,R): ||lw|p < ¢}

Assumption H[F, F, G, ]. The functions F: Q — My, xp, F: w - R", G: Q - R, ¢: EgU
U O E satisfy Assumption Hy[F, F, G, 1] and there is o: [0,a] x C([-7,0],R:) — R4 such that
Assumption H|[o] is satisfied and the expressions

||F(tvwi) - F(t"r?@)”nxna HF(t’wi) - F(t’xvﬁ))na ’G(tax7w) - G(tvxﬂb)’

for are bounded from above by o(t, W[w — w]), where (t,x) € E, w,w € X|¢].

Remark 4.2. 1t is important that we have assumed nonlinear estimates of the Perron-type for
lw|| B, ||w||p < ¢ There are differential equations with deviated variables and differential integral
equations such that Assumption H[F, F, G, ] holds and global estimates are not satisfied. Example
given in Section 3 for first order partial functional differential equations can be extended on parabolic
problems.

Theorem 4.1. Suppose that Assumption H[F, F, G, | and H[T}) are satisfied and

1) v: EgUE — R is a solution to (3), (2) and v is of class C2,

2) he H and zn: Eop U ER — Ris a solution to (42), (43).

Then there is a: H: — Ry such that

o () 4™ (0| <alh)  on E, and  lima(h) =0. (50)

h—0

Proof. We apply Theorem 2.1 to prove (50). We start with the observation that

0ij Uh

L\DM—A

11
//Ozm] tmm)+7he@+1/hej)d7'dux
0 0

11
//axjxjv(t, ™ — rhie; — vhje;)dr dv,
0 0

X

N | =

where (i,7) € Jy and

11
1
51]“}1 2//696 ;U tl‘m)—l—Th e; — vhjej) dr dvx
00
. 11
><2//81, m) _ rh; i€i + vhje;) dr dv,
00

where (i,7) € J4. Let I'j, be defined by the relations

d (m

2 ™ () = Fulon] ™ () +T™ (@),  te€[0,a), m e ntK.
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It follows from the above relation and from Assumption H[7},] that there is v: H — R such that

@] <9(h)  for tef0.a, metK and  limy(h) = 0.
_>

We conclude that vy, satisfies (12)—(14). There is ¢ € R such that
|0zv(t, z)|| < e, |0220(t, )| nxn < € on FE.
Let us denote by Y}, the class of all { € F(Ap, R) satisfying the conditions:
I6¢ <2, (16P¢ D [uxn < e
Set X, = X|¢]. It follows from Lemmas 4.1 and 4.2 that

((On)tm)> (V) emy) € Xn X Yi,  (20)(t;m) € Xn-

We conclude from Assumption H[F, F, G, 1] and H|[T},] that there is ¢, > 0 such that the operator
F'}, given by (44) satisfies the condition

|Fu(t, 2, w,¢) — Fp(t,z,w, ()| < (14 c)o(t, Wylw — @), (51)

where (t,x) € Ep, w,w € Xp, ( € Yy,
Then all the assumptions of Theorem 2.1 are satisfied and condition (50) follows.
Remark 4.3. Note that estimate (51) is not satisfied for all ¢ € F/(Ax, R).
If all the assumptions of Theorem 4.1 are satisfied and there is L € R, such that the expressions

|F(t,z,w) — F(t, 2,0)||nxn, |F(t,z,w) — F(t,z,w)|, |G(t, z,w) — G(t,z,0)|

are bounded from above by L|w — || where (t,z) € F and w,w € C[¢] then there is L € R
such that

‘v,(Lm) (t) — z,(lm) (t)| < a(h) on E,
where &: H — R is given by (20), (21).

We apply the results on the numerical method of lines to differential equations with deviated
variables and to differential integral equations. We have transformed initial boundary-value problems
into systems of ordinary functional differential equations. The system such obtained is solved by
using the explicit Euler method. Let us denote by ¢, the maximal error of the difference method. In
the tables we give experimental values for ¢,

Example 4.1. Putn =2 and E = [0, 0.25] x [—0.5,0.5] x [—0.5,0.5]. Consider the differential
equation

1
atz(tv z, y) = axasz(ta z, y) + ayyz(ta z, y) =+ ﬁaxyz(ta €, y)*

x Y t
—772//7:(25, W, V) dv dp + /Z(T, x,y)dr + 2% 2(t, 2, y) + (t + 1) cos mx cos Ty
0 0 0

with the initial boundary conditions (35)—(37).
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The solution of the above problem is known. It is v(¢,z,y) = (¢ — 1) cosma cosmy (see
Table 3.3).

Table 3.3
(ho, ha, h2) e Time [s]
(2710274 274) | 2.38495068 - 10~3 0.099
(2712,27°275) | 6.05392401 - 10~* 0.458
(2714276 276) | 1.55723669 - 10~* 2.851
(2716277 277) | 5.51208597 - 10~° 27.469
(2718278 278) | 2.39516870-107° | 732.380

Example 4.2. Putn = 2and E = [0, 0.25] x [—1, 1] x [—1, 1]. Consider the differential equation

z(t, sin xy, cos xy)

Oz(t,,y) = 20502(t, x,y) + 20yy2(t, z,y) + |1 ] Opy2(t, x,y)+

1+ 22(t, sinay, cos xy)

+2(t,0.5(z +),0.5(x —y)) + f(t, ,y)z(t, z,y),

2 2

with the initial boundary conditions (38)—(41).
The solution of the above problem is known. It is v(t, z, y) = exp{t(2*+y*—1)} (see Table 3.4).

Table 3.4
(ho, h1,h2) en Time [s]
(279,273,273) | 2.51412371-10* 0.086
(2711274 274) | 6.33848401-107° 0.449
(2713275 275) | 1.58817990-10~° 3.877
(2717277 277) | 3.97273960 - 106 55.038
(2718278 278) | 2.39516870-10~° | 1120.800

Difference methods described in Section 4 have the following property: a large number of pre-
vious values z(™) must be preserved, because they are needed to compute an approximate solution
with ¢ = ¢("1),
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Remark 4.4. Suppose that we apply a difference method to (23), (24) or (42), (43). The superpo-
sition of the numerical method of lines and the difference method for ordinary functional differential
equations leads to difference schemes for original problems. The above examples show that there
are explicit difference schemes which are convergent. It is not our aim to show theoretical results on
such difference schemes.

Remark 4.5. All the theorems on the numerical method of lines presented in the paper can be
extended on weakly coupled functional differential systems.

5. Conclusions. A new theorem, useful for proving convergence of difference schemes for first
order or second order parabolic PDEs, is given. The theory embraces initial boundary problems with
functional dependence, namely integro-differential and deviating variable ones.

A wider class of these dependences has been made treatable, thanks to removing the requirement
of globality on the estimate of growth of coefficients in functional variable. This is also illustrated
by numerical examples of Section 3.

This is the last published work, written jointly by the authors. Professor Zdzistaw Kamont passed
away on the 3" of September 2012, in Gdarisk, Poland. The first author would like to express his deep
gratitude for the years of mentoring and cooperation in mathematics. Requiescat in pace.
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