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SOLVABILITY FOR A COUPLED SYSTEM
OF FRACTIONAL DIFFERENTIAL EQUATIONS
WITH PERIODIC BOUNDARY CONDITIONS AT RESONANCE *

PO3B’SI3HICTH 3B’SI3AHOI CUCTEMH
JAUPEPEHIIAJIBHUX PIBHAHDb IPOBOBOI'O ITIOPAJAKY
3 HEPIOIMYHUMHU N'PAHUYHUMHU YMOBAMMU I1PU PE3OHAHCI

By using the coincidence degree theory, we study the existence of solutions for a coupled system of fractional differential
equations with periodic boundary conditions. A new result on the existence of solutions for above fractional boundary-value
problem is obtained.

I3 BukopucTaHHsIM Teopii 30iry CTENEeHIB JOCIIKEHO iICHYBaHHS PO3B’S3KiB 3B A3aHUX CHCTEM Iu(epeHIiaTbHuX PiBHIHD
JIPOOOBOTO MOPSIKY 3 NMEPIONMYHUMH IPAaHUYHUMH YMOBaMH. BCTaHOBIEHO HOBHI pe3ynbTaT 00 iCHYBaHHS PO3B’SI3KiB
TpaHUYHOI 3a/1a4i APOOOBOTO TOPSIKY.

1. Introduction. In recent years, the fractional differential equations have received more and more
attention. The fractional derivative has been occurring in many physical applications such as a non-
Markovian diffusion process with memory [1], charge transport in amorphous semiconductors [2],
propagations of mechanical waves in viscoelastic media [3], etc. Phenomena in electromagnetics,
acoustics, viscoelasticity, electrochemistry and material science are also described by differential
equations of fractional order (see [4-9]).

Recently, boundary-value problems for fractional differential equations have been studied in many
papers (see [10-19]). Moreover, the existence of solutions to a coupled systems of fractional differ-
ential equations have been studied by many authors (see [20—26]). But the existence of solutions for
a coupled system of fractional differential equations with periodic boundary conditions at resonance
has not been studied. We will fill this gap in the literature. In this paper, we consider the following
periodic boundary-value problem (PBVP for short) for a coupled system of fractional differential
equations given by:

D§cu(t) = f(t,0(t),v' (), te(0,1),
DP w(t) = g(t,ut), (1)), te(0,1), (1.1)

w(0) =u(l),  W(0)=d(1), w0)=0v(), V(0)=2(1),

where D, , Dg , are the standard Caputo fractional detivative, 1 < o« < 2,1 < 8 < 2 and
f,9:[0,1] x R? — R is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary notations,
definitions and lemmas. In Section 3, we establish a theorem on existence of solutions for PBVP (1.1)
under nonlinear growth restriction of f and g, basing on the coincidence degree theory due to Mawhin
(see [27]). Finally, in Section 4, an example is given to illustrate the main result.
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2. Preliminaries. In this section, we will introduce some notations, definitions and preliminary
facts which are used throughout this paper.

Let X and Y be real Banach spaces and let .: dom L C X — Y be a Fredholm operator with
index zero, and P: X — X, @Q: Y — Y be projectors such that

Im P = KerL, Ker@Q =Im L,
X =KerL & Ker P, Y=ImL®ImQ.
It follows that
Llgom LrKer p: dom LN Ker P — Im L

is invertible. We denote the inverse by Kp.

If Q2 is an open bounded subset of X, and dom L N Q) # @, the map N: X — Y will be called
L-compact on Q if QN (Q) is bounded and Kp(I — Q)N: Q — X is compact. Where I is identity
operator.

Lemma 2.1 [27]. Let L: dom L C X — Y be a Fredholm operator of index zero and N : X —
— Y is L-compact on ). Assume that the following conditions are satisfied

(1) Lz # AN for every (z,\) € [(dom L\ Ker L)] N9 x (0,1);

(2) Nz & Im L for every x € Ker L N 082,

(3) deg(QN|kerr,KerLN§,0) # 0, where Q: Y — Y is a projection such that Im L = Ker Q.
Then the equation Lx = Nx has at least one solution in dom L N ).

Definition 2.1. The Riemann— Liouville fractional integral operator of order o > 0 of a func-

tion x is given by
. ¢
I§ x(t) = =T / s)ds,
0

provided that the right-hand side integral is pointwise defined on (0, +00).
Definition 2.2. The Caputo fractional derivative of order o« > 0 of a continuous function x is
given by

dtm (n—a)

t
dn
D§,x(t) = I'7° ®) / e (s)ds,
0

where 1 is the smallest integer greater than or equal to o, provided that the right-hand side integral
is pointwise defined on (0, 400).
Lemma 2.2 [28]. Assume that x € C(0,1)NL(0, 1) with a Caputo fractional derivative of order
a > 0 that belongs to C(0,1) N L(0,1). Then
& DS x(t) = 2(t) + o+ ert + cat® + ..+ eprt"

where ¢; € R, i =0,1,2,...,n — 1, here n is the smallest integer greater than or equal to o.
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In this paper, we denote X = C'[0,1] with the norm ||z||x = max {||z[|x,||2’||sc} and ¥V =
= C[0,1] with the norm ||y||y = ||y||so, Where ||#||oc = max;e(1) |#(t)|. Then we denote X = X x
x X with the norm H(%”)HY = max {||ul|x, |lv||x} and Y =Y x Y with the norm H(m,y)H7 =
= max {||z||y, [ly|ly } Obviously, both X and Y are Banach spaces.

Define the operator L;: dom L C X — Y by

Liu = Dgyu,
where
dom Ly = {u € X|D§u(t) € Y,u(0) = u(1),u'(0) = u'(1)}.
Define the operator Ly: dom Ls C X — Y by
Lov = Dngv,
where
dom Ly = {v € X|DJ, v(t) € Y,0(0) = v(1),2'(0) = v/(1)}.
Define the operator L: dom L C X — Y by
L(u,v) = (L1u, Lav), 2.1
where
domL = {(u,v) € X|u € dom Ly,v € dom Ly }.
Let N: X — Y be the Nemytski operator
N(u,v) = (Nyv, Nau),
where N1:' Y — X
Ny (t) = f(t,0(t), (1),
and No: Y — X
Nou(t) = g(t,u(t),u'(t)).
Then PBVP (1.1) is equivalent to the operator equation
L(u,v) = N(u,v), (u,v) € dom L.

3. Main result. In this section, a theorem on existence of solutions for PBVP (1.1) will be given.
Theorem 3.1. Let f,g: [0,1] x R? — R be continuous. Assume that
(H1) there exist nonnegative functions p;,q;,r; € C[0,1], 7 = 1,2, with

e+ DB +1) = (a+ 1B+ 1)(Q1 + R1)(Q2 + Ry)
[+ 1E(B+1)

>0
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1466 ZHIGANG HU, WENBIN LIU
such that for all (u,v) € R?, t € [0,1]

| (t,u,0)| < pr(t) + qu(t)|ul +ri(t)]o],
and
|g(t,u,0)| < pa(t) + ga(t) |ul + r2(8)]],
where Pi = ||pillco, @i = [|gilloc, Ri = [|7illoc, i = 1, 2;
(Ha) there exists a constant B > 0 such that for all t € [0, 1], |u| > B, v € R either
uf(t,u,v) >0, ug(t, u,v) > 0,
or
uf(t,u,v) <0, ug(t, u,v) < 0;

(Hs) there exists a constant D > 0 such that for every c1,co € R satisfying min{cy,co} > D
either
clNl(Cg) > 0, CQNQ(C]_) >0

or
61N1<CQ) <0, CQNQ(Cl) < 0.

Then PBVP (1.1) has at least one solution.
Now, we begin with some lemmas below.
Lemma 3.1. Let L be defined by (2.1), then

Ker L = (Ker Ly, Ker Ly) = {(u,v) € X|(u,v) = (a,b),a,b € R}, (3.1
ImL = (Im Ly,Im Ly) = {(z,y) € Y|T1 = 0,75 = 0}, (3.2)

1 1

where Th = / (1 — 8)*2x(s)ds, T = / (1 —5)7"2y(s)ds.
0 0
Proof. By Lemma 2.2, Lyu = D§, u(t) = 0 has solution
u(t) = co+ crt, co,c1 € R.
Combining with the boundary-value conditions of PBVP (1.1), one has
Ker L1 = {u € X|u=a, a € R}.

For x € Im Ly, there exists u € dom L such that x = Liu € Y. By Lemma 2.2, we have

t

/tso‘l s)ds + co + cit.
0

Then, we obtain

Ta-1) x(s)ds + cq.

o\“
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By conditions of PBVP (1.1), we can get that = satisfies

1
= / (1 —s5)*%x(s)ds = 0.
0

1
On the other hand, suppose = € Y and satisfies / (1—5)*2x(s)ds = 0. Let u(t) = I§ x(t) —

0
— pt, where p = If x(t)|;=1, then u € dom Ly and Df u(t) = x(t). So that, z € Im Ly. Then we
have

ImL; = {z € Y|T} = 0}.
Similarly, we can show that
KerLy = {ve Xv=»b, be R},
Im Ly = {y € Y|T, = 0}.

Lemma 3.1 is proved.
Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index zero, and the
linear continuous projector operators P: X — X and Q:Y — Y can be defined as

P(u,v) = (Piu, Pov) = (u(O),v(O)),

Qz,y) = (Q1z,Q2y) = (( = 1)T1, (8 — 1)T3).

Furthermore, the operator Kp: Im L — dom L N Ker P can be written by
Kp(z,y) = (Igvx(t) — pt, I,y(t) = vt),

where p = I x(t)]i=1, v = Ingy(t)]t:l.

Proof. Obviously, Im P = Ker L and P?(u,v) = P(u,v). It follows from (u,v) = ((u,v) —
— P(u,v)) 4+ P(u,v) that X = Ker P + Ker L. By simple calculation, we can get that Ker L N
NXKer P = {(0,0)}. Then we get

X =Ker L @ Ker P.
For (z,y) € Y, we have
QZ(%y) = Q(leaQQy)) = ( %%,ng)

By the definition of ()1, we can get

1

Qlz = Qiz - ( a—1/1—8a2d$—Q1$

0

Similar proof can show that Q3y = Q2y. Thus, we obtain Q?(z,y) = Q(z,y).
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1468 ZHIGANG HU, WENBIN LIU

Let (:E,y) = ((x7y) - Q(l',y)) + Q($,y), where (:U,y) - Q(xay) € KGI'Q = ImL7 Q(x,y) €
€ Im Q. It follows from Ker @ = Im L and Q?(z,y) = Q(z,y) that ImQNIm L = {(0, 0)} Then,
we have

Y=ImL®ImQ.
Thus
dim Ker L = dimIm ) = codimIm L.

This means that L is a Fredholm operator of index zero.
Now, we will prove that Kp is the inverse of L|qom rnKer p- In fact, for (z,y) € Im L, we have

LEp(w,y) = (DG (Igex — ut), DG, (Igyy = vt) ) = (2,). (3.3)

Moreover, for (u,v) € dom L N Ker P, we get u(0) = 0, v(0) = 0 and

KPL(U,U)_< L DO u(t) — { D0+u()}’t t, 1%, D2, o(t) - {I@Dwv()}‘t:lt)_

B
t:1t, v(t) +co+ a1t — {IO+DO+’U( )Ht:1t>’

_ (u(t) oot ert— {18 Dgut) )|
which together with «(0) = «(1) and v(0) = v(1) yields that
KpL(u,v) = (u,v). (3.4)

Combining (3.3) with (3.4), we know that Kp = (L|qom LrKer P) *

Lemma 3.2 is proved.

Lemma 3.3. Assume Q C X is an open bounded subset such that domL N ) # @, then N is
L-compact on Q.

Proof. By the continuity of f and g, we can get that QN (Q) and Kp (I — Q)N (Q) are bounded.
So, in view of the Arzela—Ascoli theorem, we need only prove that Kp(I — Q)N(Q2) C X is
equicontinuous.

From the continuity of f and g, there exist constant A;, B; > 0, i = 1,2, such that V(u,v) € Q

|(I — Q1)Nv| < Ay, |16 (I — Q1)Nyv| < By,
[(I = Q2)Nau| < Ay, |15 (I — Q2)Nau| < Bo.

Furthermore for 0 < ¢; < to <1, (u,v) € ﬁ, we have
‘KP(I — Q)N (u(tz),v(t)) — (KP(I - Q)N(U(tl)av(tl))>‘ =
- (Ig; (I — QU)N1v(ts) — pita, I2.(I — Qo) Nau(ts) — Vtg) -

. (Igg (I — QNww(tr) — pity, I2.(I — Qo) Nau(t:) — th) -
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SOLVABILITY FOR A COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL ... 1469
= (I (1 = QUNvo(t2) = I (1 = QU)Nvw(t) — plta — 1),

I3 (1 = Qo) Nyu(ts) — I, (I = Q2)Nau(tr) = vi{ta — 1)),

where 11 = {I¢. (I — Q1)N1v(t)}|,_,, v = {I& (I — Q2)Nou}|,_,.

By
1621 = QU)Nyv(ta) = I (I = Qu)Nuw(ta) = ults — )] <
|7
< —— — ) Y1 - 0N _
< Ta) /(t2 5)*7 (I — Q1)N1v(s)ds
0
t1
— / (tl — S)ail(I — Ql)va(S)dS + B1|t2 — t1| <
0
A t1 t2
< F(;) /(tg — S)a_l — (tl — S)a_lds + / (t2 — S)a_ldS + Bl|t2 — t1| =
0 t1
Aq
et S Y < ST o B _
F(a+1)(t2 t9) + Bilta — ti
and

‘([&(1 — Qu)Nw) () — (I8 (I — Ql)va)’(tl)’ _

to
a—1

— / (t2 — £)* (I — Qu)Nyv(s)ds—

0
A t1 to
1 a—2 a—2 a—2
< t] — — (ty — d ty — ds| <
S Tla—1) (t1 —s) (t2 —s) s+/(2 5)* "ds| <
1
A1 —1 —1 —1
< a—1 o _ a
< fa 1570 = 571+ 2t — 1)

Similar proof can show that
Iéi (I — QQ)NQU(tQ) — Ing(I — QQ)NQU(tl) — I/(tg — tl)’ §
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1470 ZHIGANG HU, WENBIN LIU

A2 Ié; 8
< ——(th, —t Bolto — ¢
"Ixﬁ-+1)(2 1)+ Balta — t1],

(1520 = @2)Nou) (82) = (1. (1 = Qa)Now)' (1) <

As
()

Since t*, t*~1, % and %! are uniformly continuous on [0, 1], we can get that Kp(I —Q)N(Q) C X
is equicontinuous.

Thus, we get that Kp(I — Q)N : © — X is compact.

Lemma 3.3 is proved.

Lemma 3.4. Suppose (Hi),(H2) hold, then the set

[ﬁ‘V—f‘1+2@2—tgﬂ4]

0 = {(u,v) € dom L\ Ker L | L(u,v) = AN (u,v),\ € (0, 1)}

is bounded.
Proof. Take (u,v) € 4, then N(u,v) € ImL. By (3.2), we have

(1—38)*"2f(s,v(s),0'(s))ds = 0,

o

(1-— s)ﬁ_Qg(s,u(s),u’(s))ds =0.

o _

Then, by the integral mean value theorem, there exists constants &, 7 € (0, 1) such that f(£,v(£),'(€)) =
=0 and g(n,u(n),w'(n)) = 0. So, from (Hs), we get |v(£)| < B and |u(n)| < B. Hence

t
() —|—/u Jds| < B + |t/ oo. (3.5)
n
That 1s
[ulloo < B + ||t/ |o- (3.6)

Similar proof can show that

[v]loo < B+ [|[v[|oo- (3.7)
By L(u,v) = AN(u,v), we have
\ t
I‘(a/ ) f(s,0(s),0'(s))ds + u(0) — At
0
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and

\ .

—561 SUS S S v — AUV
- 5 O/t ), (5))ds + v(0) — Avt,

sy

where p = I8 f (¢, v(t), V' (t))]i=1, v = Ig+g(t,u(t),u () |e=1-
Then we obtain

/ )4 2fsv (s),7'(s))ds — Ap
0

and

/t—sﬂ 2 u(s),u'(s))ds — Av.
0

From (H;) and (3.7), we get that

= [ (000 0)] | =

1
= / (1-— s)a_l‘f(s,v(s),v/(s)) ‘ds <
0

1
< L / (1—s)1 [p1(8) +qu(s)|v(s)| + n(s)|v’(s)uds <
0

IA

1
PL+ QB+ (Q1+ RV / $)°~Lds <
0

< F(al—i— D [Pl + Q1B+ (Q1+ R1)||U,||oo}
So, we have
t
|lu/]| o0 < /t—saz (s,0(s),v 3))‘d8+]u!§
0

o

-

=
o

(t — )2 [pl(s) +q1(s)|v(s)] +r1(s)[v/ (s uds 4l <

t
[P @B+ @ RO [ (=54l <
0
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< (rl bt >[P1+Q1B+(Q1+R1)HUIHO<>} =

() T(a+1)
a+1 ,
= W[P1+Q13+(Q1+Rl)||v ||00} (3.3)
Similarly, we can get
/ p+1 /
IVl < fg g [P+ @B + (@2 + Bl luc] (3.9)
Together with (3.8), (3.9), we have
[0]loe <
< 2L P QB (@it R [Pat QuB + Qe+ R )
S CES) 1 1 1 1F(,B+1) 2 2 2 2 ool (-

Lo+ DI(B+1) = (a+1)(B+1)(Q1+ R1)(Q2 + Ro)
T(a+ 1)I(8+1)

Thus, from > () and (3.9), we obtain

that
(a+1) [F(B+1)(PL +QiB) + (8 +1)(Q1 + Ra) (P2 + Q2B)|

Il = T D @ DB D@ T Rt R 0

and

B+1

/
0o <
Together with (3.6), (3.7), we get

[PQ + Q2B + (Q2 + RQ)MI} = M.

| (w,v) || < max{M; + B, My + B} := M.

So €4 is bounded.
Lemma 3.4 is proved.
Lemma 3.5. Suppose (Hs) holds, then the set

Q2 = {(u,v)|(u,v) € Ker L, N(u,v) € Im L}

is bounded.

Proof. For (u,v) € o, we have (u,v) = (c1,c2), c1,c2 € R. Then from N(u,v) € Im L, we
obtain

(1 - 3>a_2f(87 €2, O)dS =0,

o _

(1—15)""2g(s,¢1,0)ds = 0,

o —
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which together with (Hs) implies |c;|, |c2| < D. Thus, we get
[(u, v)llx < D-

Hence, €25 is bounded.
Lemma 3.5 is proved.
Lemma 3.6. Suppose the first part of (Hs) holds, then the set

0y = {(u,v) € Ker LIA(u,v) + (1 — NQN (u,v) = (0,0), )\ € [0, 1}}
is bounded.

Proof. For (u,v) € Q3, we have (u,v) = (c1,¢2), c1,c2 € R and

et 4+ (1 =N (a—1) [ (1—8)*"2f(s,c,0)ds = 0, (3.10)

o _

Mg+ (1=N(B—=1) [ (1=25)72g(s,c1,0)ds = 0. (3.11)

o

If A = 0, then |c1], |ca] < D because of the first part of (Hs). If A = 1, then ¢; = ¢o = 0. For
A € (0,1], we can obtain |c1|, |c2| < D. Otherwise, if |c1| or |co| > D, in view of the first part of
(Hs), one has

/\C%—F(l_ (@a—=1) [(1—s)* le(876270)d8>0

O\H

or

A2+ (1 - (1 —5)°"2cag(s, c1,0)ds > 0,

O\H

which contradict to (3.10) or (3.11). Therefore, {23 is bounded.
Lemma 3.6 is proved.
Remark 3.1. 1If the second part of (H3) holds, then the set

5= {(u,v) € Ker L| = A(u,v) + (1 = N)QN(u,v) = (0,0),X € [0,1]}

is bounded.

Proof of Theorem 3.1. Set Q = {(u,v) € X|||(u,v)|x < max{M, D} + 1}. It follows from
Lemmas 3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-compact on ). By
Lemmas 3.4 and 3.5, we get that the following two conditions are satisfied:

(1) L(u,v) # AN (u,v) for every ((u,v),\) € [(dom L\ Ker L) N 9Q] x (0, 1);
(2) Nz ¢ ImL for every (u,v) € Ker L N 9S.
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Take
H((u,v),A) = £A(u,v) + (1 = N)QN(u, v).

According to Lemma 3.6 (or Remark 3.1), we know that H ((u,v), A) # 0 for (u,v) € Ker L N 9.
Therefore

deg (QN\KerL, QN Ker L, (0, 0)) = deg (H(-, 0),2 NKer L, (0,0)) =

= deg(H(-, 1),QNKerL, (0,0)) = deg( +1,QONKerL, (0,0)) #0.

So that, the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we can get that L(u,v) =
= N(u,v) has at least one solution in domZL N €2. Therefore PBVP (1.1) has at least one solution.
Theorem 3.1 is proved.
4. Example.
Example 4.1. Consider the following PBVP:

D2 u(t) = i[ (t) — 10} +£ “Ol e o,1]
T 16° ’ b

5 3

D u(t) = 1% ut) — 8] + 1 sin? (W (1), £ 0,1, @.1)

11 3 1 1
Choose pl(t) = Ea PQ(t) = 17 Q1(t) = Ea Q2(t) = ﬁa Tl(t) = TZ(t) = Oa B =D =10.

By simple calculation, we can get that (H;), (H2) and the first part of (H3) hold.
By Theorem 3.1, we obtain that the problem PBVP (4.1) has at least one solution.
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