UDC 517.581

N. X. Thao (Hanoi Univ. Technol., Vietnam),
N. O. Virchenko (Nat. Techn. Univ. Ukraine “KPI”, Kyiv)

ON THE GENERALIZED CONVOLUTION
FOR F,, F,, AND K - L INTEGRAL TRANSFORMS"

ITPO Y3ATAJIBHERY 3T'OPTKY
JJIS F,., Fs TA K- L IHTETPAJIBHUX IIEPETBOPEHb

We study new generalized convolutions f l g with weight function (y) = y for the Fourier cosine, Fourier sine, and
Kontorovich—Lebedev integral transforms in weighted function spaces with two parameters L(R., % P%dx). These
generalized convolutions satisfy the factorization equalities

F{g}(flg){é}(y) = y(Frey Hy)(Kiyg) Yy > 0.

We establish a relationship between these generalized convolutions and known convolutions, and also relations that asso-
ciate them with other convolution operators. As an example, we use these new generalized convolutions for the solution
of a class of integral equations with Toeplitz-plus-Hankel kernels and a class of systems of two integral equations with
Toeplitz-plus-Hankel kernels.

. . vy .
BuBUaroThCs HOBi y3aranbHeHi 3ropTKd [ * g 3 BaroBoro QyHkuiew y(y) = y it kocunyc-Dyp’e, cunyc-Oyp’e Ta
KonTopoBuua —JlebeneBa iHTErpaJbHUX IIEPETBOPEHb Y BAaroBUX (YHKIIOHAJBHHUX MPOCTOpax 3 JABOMA IIapaMeTpaMu
L(R, 2% #%dz). Jlna nux y3aransHeHHX 3rOPTOK CIPABIKYIOThCS (yHKIIOHAIBHI piBHOCTI

F{i}(flg){%}(y) =y(Frey /)W) (Kiyg) Vy > 0.

OpepxaHo CHIBBITHOIIEHHS MK UMM y3araJlbHEHHMH 3TOPTKAMHU Ta BiJOMHMH 3TOPTKaMH, & TAaKOXK BiINOBiAHI CITiBBiA-
HOIIICHHS 3 IHIIMMH OllepaTopaMy 3ropToK. SIK MpuKIIaz, i HOBI y3arajabHEeHi 3rOPTKH 3aCTOCOBAHO 10 KJIACy IHTEerpajbHUX
piBHsHB 3 cyMoto siaep Terurina i aHkesns1, a TaKoXk 10 Kiacy CHCTEMH JBOX IHTErpajJbHUX PIBHSAHB 3 CyMOo siiep Termina
i lankens.

Introduction. The commutative convolution of two functions f and g for the Fourier cosine trans-
form is well known [16]:

(f *g)(=

ﬂ\

/ 9@ +y) + gz —y)ldy, >0, 0.1)
0

For f,g € L1(R,), this convolution belongs to L;(R;.), and the following identity holds:
Fe(fx9)(y) = (Fef)(y)(Feg)(y)  Vy € R, (0.2)

where F,. denotes the Fourier cosine transform [16]. In 1967, Kakichev gave a constructive method
for defining a convolution with weight function for an arbitrary integral transform (see [11]). On the
basis of this method, a convolution of two functions f and g with weight function ~(y) = siny for
the Fourier sine transform was introduced in [11]:

9)(x) = 2m/f Jlsign(e +y — g(lz +y — 1]) + sign(z — y + g(lz — y + 1) -
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—g(z+y+1)—sign(z —y — Dg(jlxr —y — 1])]dy, x> 0. (0.3)

For f,g € Li(R), the convolution f ;k g belongs to L1 (R ) and the following factorization identity
holds: ’

Fy(f % 0)(y) = siny(F )W) (Fag)(w) ¥y > 0. (0.4)

In 1998, Kakichev and Thao introduced a constructive method for defining a generalized convolution
with weight function for three arbitrary integral transforms (see [12]), which seems to be very impor-
tant in convolution theory. The following noncommutative generalized convolution of two functions
f and g for the Fourier sine and Fourier cosine transforms was studied in [16]:

1 o0
(39 = o= 0/ flg(le ~ ul) - gla+ wldu, >0, ©3)

If f,g € L1(R4), then (f * g) belongs to L1(R) and satisfies the following identity:

Es(fx9)(y) = (Fs ) (y)(Feg)(y) ¥y > 0. (0.6)

Here, F is the Fourier sine transform [17]. The following commutative generalized convolution of
two functions f and g for the Fourier cosine and sine transforms was defined in [13]:

o

/f(u)[sign(u —2)g9(lu —z|) + g(u+ z)|du, =z >0. 0.7)
0

(fx9)(x) =

2

5~
3

For f,g € L1(Ry), this generalized convolution belongs to L; (R ) and the following factorization
equality holds:

Fe(f 5 9)(y) = (Fs ) () (Fsg)(y) Yy > 0. (0.8)

The generalized convolution with weight function v(y) = siny for the Fourier cosine and sine
transforms of f and g has the form [14]

1)) = —— [ Flglle +u—1]) + gz —u+ 1) — gz +u+ 1)
3 2\/%0/

—g(Jr —u—1|)]du, =z >0. (0.9

For f,g € Li(Ry), (f % g)(z) also belongs to L;(R.) and

Fo(f % 9)(y) = siny (Ff) (W) (Feg)(y) Yy > 0. (0.10)

The Kontorovich—Lebedev transform is of the form [17]
Kalf) = [ Ki(o) (@)
0

where K, (t) is the modified Bessel function [2].
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Throughout this paper, we are interested in the following function spaces of two parameters:
LYP(Ry) = Ly(Ry;2% PPdz), a€R, 0<B<1

The norm of a function f in this space is defined as follows:
1/p

1l e,y = /‘f Pt g

In recent years, there has been much interest in convolution theory for integral transforms, and
several interesting applications have been considered (see [4, 6, 7, 18, 20]), in particular, the integral
equations with Toeplitz-plus-Hankel kernel [10, 15, 19]

o0

f@) + / oz +9) + (e — ))f (w)dy = g(2), x>0, 0.11)

0

where ki, ko, g are known functions and f is an unknown function. The problem of solving this
equation in a closed form in the general case of a Toeplitz kernel k; and Hankel kernel ko remains
open. Many partial cases of this equation can be solved in a closed form with the help of convolutions
and generalized convolutions and have interesting applications in biology and medicine (see [8, 9]).

In this paper, we construct and investigate two generalized convolutions for the Fourier cosine,
Fourier sine, and Kontorovich—Lebedev transforms in the function spaces L; B (R4 ). Applications
to the solution, in a closed form, of a class of integral equations with Toeplitz-plus-Hankel kernels
and systems of two integral equations with Toeplitz-plus-Hankel kernels are considered.

1. Noncommutative generalized convolutions.

Definition 1.1. The generalized convolution of two functions f and g with weight function
v(y) = y for the Fourier cosine, Fourier sine, and Kontorovich— Lebedev integral transforms is

defined as follows:

(f 1 g){ % } () = % / v[sinh(a: +u)e ™’ cosh(z+u) sinh(z —u)e™ COSh(x*“)} f(uw)g(v)dudv.

2
RY

(1.1)

For convenience, throughout this paper we use the following notation:

9{ 1}(96, w,v) = sinh(z 4 u)e YT 4 ginh(z — w)e v OhETY g 5 0.
2

Theorem 1.1. Let f € L1(Ry), g € L?’B(RJF), and 0 < [ < 1. Then the generalized
convolution (1.1) belongs to L1(Ry) and satisfies the factorization equalities

Fys }f*g{ } ) = y(Fey H)Y)(Kiyg) Yy > 0. (1.2)
Moreover, the following estimates are true:
f+g) < [If1 gl Los g, y- (1.3)
H { } L&) Li(R)NIN LB Ry )
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Furthermore, the generalized convolution (1.1) belongs to Co(Ry.), and the following Parseval-type
identities are true:

¥ 2 sin zy
=1/— Fre K; dy. 1.4
U@ =y (s nwae {7 Ly (14
0
Proof. We have
/v| sinh(z 4 u) 7@ 4 ginh(z — ) 7YYy <
0
< /v [| sinh(z + w)| v eosh@EH) o sinh(z — u)| 7Y COSh(”“)]d:U =

0

= /Usinh te-veoshtgy 4 /v| sinh t|e v oshtgr = 2/vsinh te veoshtgr — 9¢7, (1.5)

u —u 0

Using (1.5) and the Fubini theorem, we get

/I(flg){é}(xﬂdx < /6_”|f(U)||g(v)|dudv <
0

2
RJr

< [Pl lgo)idudo = £z, w0 ol e, (16)

2
RY

This implies the existence of the generalized convolution (1.1) in L1 (R4 ) and the validity of relation
(1.3). Note that integral (1.1) is absolutely convergent. Indeed, we have

v sinh(az + u)efv(cosh(zqtu)fl) — v Sinh(:c + u)efv sinh(z+u) tanh I;u <

< vsinh(z + u) (etanh =N ) —vsinh(z+u) < ¢ tanh =5 < 1. (1.7)

Similarly,

[usinh(z — u)e v E@E—W=) <,
Then relation (1.7) yields
‘9 1 (az,u,v)‘ < 2e Y. (1.8)
{3}
Therefore,
v

(5 39) 3y @ < 1 s 9l e, (1.9)

Further, using relation (12.1.1) from [3, p. 130] (Theorem 2) and the Fubini theorem, we get
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)@ =2 [ustg { T K w)audody =
]

-2 Zy(F{;}fxy)(Kiyg) {smeday

Then the Parseval-type identity (1.4) holds for f € L1(Ry) and g € L(l]’ﬁ (Ry),0< 8 < 1.

Using the Parseval-type identity (1.4), relation (1.9), and the reverse formula of the Fourier cosine
and Fourier sine transforms, one can easily obtain the factorization property (1.2).

On the other hand, integral (1.1) is absolutely convergent in x, and it follows from the Riemann —
Lebesgue lemma that (f X g){ %} € Co(Ry).

Theorem 1.1 is proved.

An extension of Theorem 1.1 to the spaces L, (R, ) and Lg’ﬁ (R4 ) is given as follows:
1 1

Theorem 1.2. Let f € L,(R), g € Lg’ﬂ(RJr), —+-=1,p,g>1,and 0 < 8 < 1. Then
p g

the generalized convolutions (1.1) exist for all x > 0, belong to Ly (Ry), a > —1,v > 0,r > 1,
and satisfy the relation

2 — (& T T
||(f*g){%}”L?’“’(R+) <y O (@ DI ey 9l o6 . - (1.10)

If, in addition, f € L1(Ry) N Ly,(Ry), then the factorization equalities (1.2) are true. Moreover, the
generalized convolutions (1.1) belong to Cy(R.), and the Parseval-type identities (1.3) are true.
Proof. Using the Holder inequality and relations (1.5) and (1.8), we obtain

ip 1/q
(F39)3y @)l < 3 | [ 1frzetaua | [l )
R2 0
o0 /p / 1/q
| [1rran) | [ls@rerds ) =l oy, D
0 0
On the other hand, using relations (3.225.3) from [3, p. 165] and (1.11), we get
~ 1/r
G F )yl < | [ 2oz ) 1ol go, ) =
0

—(« 1/r
= (VI @+ )Ny 9l oo,y @> =1, 7> 0.

Estimate (1.10) is proved.
Furthermore, since L(qw (Ry) C L(l]’ﬁ (Ry), Theorem 1.1 shows that (f X 91y € Li(Ry).
2

Therefore, using (1.11), relation (12.1.1) from [3, p. 130] (Theorem 2), and the Fubini theorem, we
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obtain the Parseval-type identity (1.4), and, hence, the factorization identity (1.2) is true. Finally, it

follows from relation (1.11) and the Riemann — Lebesgue lemma that ( f X 9) { 1} € Co(Ry).
2

Theorem 1.2 is proved.

Corollary 1.1. Under the same assumptions as in Theorem 1.2, the generalized convolutions

(1.1) exist for all positive x, are continuous, belong to L,(R..), and satisfy the following estimate:

Y
1(f *9){%}($)||LP(R+) S Al llgllzos @, -

In particular, for p = 2, we obtain a Parseval identity of the Fourier type:
v
10 o @ = [ e H) 0
0 0

Proof. Using relations (1.5), (1.7), and (1.8) and the Holder inequality, we get

00
1

/|(flg){%}(x)]pdx < o / ’f(u)|pv| sinh(z + u)e~veosh@tu) 4
0

2
0 R3

+ sinh(z — u)e~veosh@—w)

dudv / ’g(v)‘qv’ Sinh(x + u)e—UCOSh(x+u):l:

2
R+

p/q

+sinh(z — u)e V@ | dydy dz <

o0 p/q
1
< zp/\f(u)]p%_”dudv /\g(v)\q%_”dv
R 0

Therefore,

)
I 39) 3y @y < Wl 191 35e,

Estimate (1.12) is proved. Moreover, (f x 9) { 1 } (x) is continuous and belongs to L, (R ).
2

In the case p = 2, we obtain the Parseval identity

1E gy oo = 1 lzas

Therefore, the factorization identity (1.2) yields a Parseval identity of the Fourier type.
Corollary 1.1 is proved.

(1.12)

(1.13)
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Corollary 1.2. 1. Let f € Li(Ry) N Ly(Ry), g € LY’ (R,), and 0 < B < 1. Then the
generalized convolutions (1.1) exist, are continuous, belong to Ly (Ry), r > 1,7 > 0, a > —1,
and satisfy the following estimate:

v — (& '
1203 @z < G-I DY I ln@olloligog,y (119

Furthermore, these generalized convolutions satisfy the factorization identities (1.2) and Parseval-
type identities (1.4).

2. Let f,g € L1(Ry). Then the generalized convolutions (1.1) exist, belong to Ly (Ry), r > 1,
v >0, a > —1, and satisfy the following estimate:

Y —(« r
G2 (Ry) S Y a Li(R)IIIL1(R)- ‘
1(f = ){2}( il < (@I (@+ 1)) /] lgll (1.15)

Moreover, the factorization identities (1.2) and Parseval-type identities (1.4) are true.
Proof. Using the Schwarz inequality and relations (1.7), (1.8), and (1.5), we get

1/2 1/2

rog@l<g | [ || il P | <
R2 R?

< ||f”L1(R+)HgHLg»B(R”.

Therefore, using relation (3.225.3) from [5, p. 165], we obtain
v —(« r
1(f *g){%}“Lf"’(R+) < (I + D)YIf |y 19l ey ) -

This yields estimate (1.14). Moreover, by virtue of Theorem 1.2, the factorization identities (1.2) and
Parseval-type identities (1.4) are true.
On the other hand, using the Schwarz inequality and relations (1.7) and (1.8), we get

1/2 1/2

(Froyy @l < | [1rlgwizedus || [ 1ra)la)e vy | <
0 R2

<l gl Ly s )-

Therefore, using relation (3.225.3) from [5, p. 165], we obtain (1.15). Furthermore, using Theo-
rem 1.1, we obtain the factorization identities (1.2) and Parseval-type identities (1.4).

Corollary 1.2 is proved.

Since L(l)”g (Ry) € Li(Ry), by using relations (1.1), (0.7), and (0.5) one can easily prove the
following assertion:

Proposition 1.1. Let f € Ly(Ry) and g € LY?(R,). Then

(f*xg)1(z) = il Ug(v)(f(u) * sinhue_”COSh“)(:n)dv,
5 ot
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(f*xg)a(x) =— T vg(v) (f(u) sinhue_“COSh“) (z)dv.
[£ oot

Proof. Using (1.1) and (0.7), we obtain the representation for the convolution (f * g)1(z). On
the other hand, one can easily prove the representation for the convolution (f * g)2(z) by using (0.5).

Using Theorem 1.1 and relations (0.6), (0.8), (0.4), and (0.10), we obtain the following proposi-
tion:

Proposition 1.2. Let f,g € Li(Ry), h € L?’B(R+), and 0 < B < 1. Then the following
equalities are true:

@) frlgxh)i=g*(f*h),
®) fx (9% h)2 = ((f*g)*h)a,
© ((Fx9)xh)a= fx(g*h),

v Y
@ fx(gxh)r=((f x g)xh).
2. Applications. Integral equations with Toeplitz-plus-Hankel kernels were studied in [15, 19].

=%

=% =

In this section, we consider a partial class of these integrals, namely, the integral equations

f(x) +/(90*1<f)(y)[k($+y) — k(x —y)ldy = h(x), 2.1
0
where
k(t) = ;/vsinhte”COShtg(v)dv

0
©, g, and h are given, and f is unknown.
Theorem 2.1. Let p,h € L1(Ry) and g € L?"B(RJF) be such that 1 + y(Fsp)(y) %
X(Kiyg) # 0 for all positive y. Then Eq.(2.1) has a unique solution in Li(R.), which is deter-
mined as follows:

f(@) = h(z) = (h*D)(2),

where | € L1(Ry) is defined by the formula (F.l)(y) = : i(j{?é)si?i();ﬁ}gjg) )

Proof. Using Theorem 1.1 and relation (0.6) and applying the Fourier cosine transform to both
sides of (2.1), we get

(Feh)(y) + y(Fsp) ) (Fef)(y)(Kiyg) = (Feh)(y)-
By virtue of the factorization equality (1.2), we obtain
y(Fsp) (y) (Kiyg)

F. = (F.h 1-— . 2.2
D) = EWW |1 (o) ) (Koy0) 22
According to the Wiener—Levy theorem [1], there is a function [ € L; (R ) such that

T 1+ y(Fep)(y)(Kiyg)
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Using (2.2) and (2.3), we obtain the unique solution of (2.1) as follows:

f(@) = h(z) = (h*1)(z).

Theorem 2.1 is proved.
Corollary 2.1. The necessary condition for the existence of a solution f € L1(R,) of Eq. (2.1)
is as follows:

17z, =)
1 + ng”Ll(RJr) |’g”L(1)’6(R+)

1Ay sy =

Consider the following system of two integral equations with Toeplitz-plus-Hankel kernels:

o0

f(x) + /g(y)[/ﬁ(w +y) + ka(z — y)ldy = p(z), x>0,
’ (2.4)

)+ [ fW)ks(x +y) + ka(z — y)] = q(2),
oo [0

where p, ¢, and k;, i = 1,4, are given functions and f and g are unknown functions. The problem
of solving these systems in explicit form remains open. Here, we consider the class

+/g*s Vkn(z +9) + ko — y)ldy = p(a), = >0,
0

2.5)
D)+ [ @lkste+9) +hale = pldy = g(a),
0
where
1 : —wvcosht
ki(t) = 5 vsinh te o(v)dv = ka(t),
0
1 i : —vcosht
ks(t) = 5 vsinhte Y(v)dv = —ky(t),
0

w, ¥, p, q, &, and n are given functions, and f and g are unknown functions.
Theorem 2.2. Let&,n,p,q € L1(Ry) and ¢,v € L(l]’ﬁ(RJr) be such that

L=y (Fef) (v) (Fem) () (K iy p) (Kiyh) # 0 Wy > 0.
Then system (2.5) has the following unique solution (f,g) € L1(R4) x L1(R4):

f@) =p(@) + (p (@) — (E* )z )@) = (E* )13 a) £ D(a),
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g()

@)+ (I q)(@) = (px (n+

V(@) = L+ (px 0+ 1) (@),
where | € L1(Ry) is defined by the formula

(Fel)(y)

1+ y2(Fe8) (y) (Fen) (y) (Kiy ) (Kiyt))
Proof. Using the factorization identity (1.2) and relations (0.2) and (0.6) and applying the Fourier

sine transform and the Fourier cosine transform, respectively, to the two equations of system (2.5),
we obtain

(Fs ) () + y(Fel) (v) (Kiyp) (Feg) (v)

(Fsp)(y),
(Feq)(y)-

Solving the above linear system with the use of the Cramer technique and relations (1.2) and (0.8),
we get

2.7)
y(Fen) (y) (Kiy ) (Fs f)(y) + (Feg)(y)

A=1=F(Expn(yFs(nxd)iy) =1 = F((Ex @) x (nx 9)i(y)-

By virtue of the Wiener — Levy theorem (see [1]), there exists a function [ € Lq(R ) defined by (2.6),
whence

L= L EDD) o8
Using (2.7), (2.8), (1.2), and (0.8), we obtain
,
(Fof)(y) = [1 4 (F.)(y)] (Fsp)(y)  Fs(&x9)1(y) _
(Feq)(y) 1

Y

= (Fp)(y) + Fs(p s D) = F((E+ )1 1 a)(y) = Fo((€* 0)1 £ 0) £ D).

Using inverse Fourier sine formula, we get

f(@) = p(@) + (pD(@) = (E* )1 g @) = (E* )1 5 0) £ D) € Li(Ry).

(2.9)
By analogy, using (2.8), (1.2), (0.2), and (0.8), we obtain
(Feg)(y) = (F)(y) + Fell * @)(y) = Felp s (0% 9)1)(y) = Fell * (p 1 (%)) (v).
Hence,
9(@) =1(@) + (1 x@)(@) = (px (n*¥))(@) = (L (p g P+ )))(@) € Li(Re). (2.10)

Using (2.9) and (2.10), we obtain the unique solution of system (2.5) in L;(R4) x L1 (R4).
Theorem 2.2 is proved.
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