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VECTOR BUNDLES OVER NONCOMMUTATIVE NODAL CURVES

BEKTOPHI PO3IIAPYBAHHSA HA/l HEKOMYTATUBHUMU
HOJAJBHUMU KPUBUMU

We describe vector bundles over a class of noncommutative curves, namely, over noncommutative nodal curves of string
type and of almost string type. We also prove that, in other cases, the classification of vector bundles over a noncommutative
curve is a wild problem.

OnncaHo BEKTOPHI pO3IIapyBaHHS HAJX JESKAM KJIaCOM HEKOMYTAaTHBHHX KPHBHX, a caMe, HaJl HONAJILHUMH HEKOMYyTa-
TUBHUMHU KPHBUMH CTPYHHOTO Ta Maike CTPYHHOTO THITy. BcTaHOBIEHO TakoX, IO B iHINMMX BHUNAAKax Kiachdikaris
BEKTOPHUX PO3LIAPyBaHb HaJl HEKOMYTAaTUBHOK KPUBOIO € JAUKOIO 33JIa4elo.

Introduction. Classification of vector bundles over algebraic curves is a popular topic in mod-
ern mathematical literature. It is due to their importance for many branches of mathematics and
mathematical physics. Vector bundles over the projective line were described by Birkhoff [2] and
Grothendieck [11], vector bundles over elliptic curves were classified by Atiyah [1]. In the paper [9]
Greuel and the first author described vector bundles over a class of singular curves (line configura-
tions of types A and A) and showed that in all other cases a complete classification of vector bundles
is a “wild problem” in the sense of representation theory of algebras.

This paper is devoted to analogous questions for noncommutative curves. Perhaps, the first results
in this direction were obtained by Geigle and Lenzing [10] who considered the so called weighted
projective lines. Though the original definition of this paper was in the frames of “usual” (com-
mutative) algebraic geometry, these curves are actually of noncommutative nature. They can be
considered as such noncommutative curves that the underlying algebraic curve is a projective line
and all localizations of the structure sheaf are hereditary. In some sense, it is the simplest example of
noncommutative curves, though their theory is far from being simple.

We consider the “next step,” namely the case when the localizations of the structure sheaf are
nodal in the sense of [5]. In particular, this class contains all line configurations in the sense of [9].
We reduce the description of vector bundles over such curves to the study of a bimodule category
in the sense of [8, 9]. Using this reduction, we describe vector bundles in two cases: string type and
almost string type, see Sections 3 and 4. Note that the string type is an immediate generalization of
line configurations of types A and A. The main tool in this description is a special sort of bimodule
problems, namely, the so called bunches of chains. Fortunately, these problems are well elaborated
and a good description of representations is given in [4]. We also show that in all other cases the
classification of vector bundles is a wild problem (Section 5). Thus, in some sense, the question
about the “representation type” of the category of vector bundles over noncommutative curves is
completely solved.

1. Noncommutative curves, vector bundles and categories of triples. We call a noncommu-
tative variety a pair (X,.A), where X is an algebraic variety over an algebraically closed field k
(reduced, but maybe reducible) and A is a sheaf of Ox-algebras which is coherent as a sheaf of
Ox-modules. We often speak about a “noncommutative variety .A” not mentioning explicitly the
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underlying variety X. We denote by Kx (or K) the sheaf of total rings of fractions of Ox (it is
locally constant) and set K(A) =A@, Kx. Without loss of generality we may (and usually will)
suppose that A is central, i.e., Ox , = center(.A,) for each x € X. Otherwise we can replace X by
the variety X’ = specC, where C = center(.A). We define a noncommutative curve as a noncom-
mutative variety (X,.4) such that X is a curve (that is all its components are 1-dimensional) and A
is reduced, that is has no nilpotent ideals. A coherent sheaf of .A-modules F is said to be a vector
bundle over (X, .A) if it is locally projective, i.e. the A,-module F, is projective for every x € X.
We denote by VB(X, A) or by VB(.A) the category of vector bundles over (X, .A).

We call a noncommutative curve (X,.4) normal if, for every point x € X, the algebra A, is
a maximal Ox g-order, that is there is no Oy ,-subalgebra A, C A" C K, which is also finitely
generated as Ox ;-module. Since A is reduced, there is a normal curve X = (X, fl) such that
A C A c Kx. Moreover, A, = A, for almost all z € X (it follows from [7]). We call (X, A) a
normalization of X and denote by sg A the set of all points z € X such that A, # A,. Note that such
a normalization is, as a rule, not unique, though sg A does not depend on the choice of normalization.
Let C = center(/i), X = specC. We can (and will) consider A as a sheaf of central O -algebras,
hence consider the normalization as the noncommutative curve (X,.A). The natural morphism of
ringed spaces 7 : (X, A) — (X, .A) is defined. We also denote by sg A the set-theoretical preimage
7l (sg A). If X1, Xo, ..., X, are the irreducible components of X, we set A; = .,Zl| %, 80 consider
the noncommutative curves (X;, 4;). We also set sg; A = sg. AN X;. Let X; = 7(X;). Certainly,
each X; is an irreducible component of X, but these components need not be different. We set
Ki(A) = K(A)|g,. It is a constant sheaf of central Kx;-gebras. Since k is algebraically closed, the
Brauer group of the field K; = Kx; is trivial [13] (Chapter II, §3), so KC;(A) ~ Mat(n;, K;) for
some n;. We call a noncommutative curve (X, .A) rational if so is the curve X, i.e., all components
of X are isomorphic to the projective line P*.

For calculation of vector bundles over noncommutative curves one can use the “sandwich pro-
cedure,” just as it has been done in [9] in the commutative case. Let 7: (X, A) — (X, A) be a
normalization of a noncommutative curve (X, A). We denote by 7 the conductor of A in A, that is
the maximal sheaf of A-ideals contained in .A. We consider the noncommutative varieties (sg.A, S)
and (sgA,S), where S = A/J and S = A/J. These varieties are 0-dimensional and usually not
reduced. We denote by 7: (5g.4,S) — (sg.A,S) the restriction of 7 onto (sg.A,S) and by ¢ and
i, respectively, the closed embeddings (sg A, S) — (X,.A) and (5g.4,S) — (X,.A). So we have a
commutative diagram of morphisms of noncommutative varieties

=

(58 A.S) (X, 4)

3

L

(sgA,S) — (X, A).
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Since (sg.A,S) and (sg.A,S) are 0-dimensional, coherent sheaves on them can be identified with
finitely generated modules over the algebras, respectively,

S= [ A:/T: and S= ][] A4,/

zesg A yesg A

Following [5, 6], we introduce the category of triples 7 (A) as follows.

The objects of T (.A) are triples (G, P,6), where

g is a vector bundle over fl,

P is a vector bundle over S, or, the same, a finitely generated projective S-module,

0 is an isomorphism 7*P — *G, or, the same, an isomorphism of S-modules S R P —
- Hy@sTg,A Gy/TyGy-

A morphism (G, P,0) — (G',P',¢') is a pair (®,¢), where & € Hom 3(G,G’) and ¢ €
Homg (P, P') such that the induced diagram

T

a* P’
0 l | o
P

Z*g - o Z*g/

is commutative.
One easily sees that 7(.A) is indeed a full subcategory of a bimodule category in the sense

of [8], namely, the category defined by the VB(S)-VB(.A)-bimodule Homg(7*P,7*G). It can also
be considered as the push-out of the categories VB(A) and VB(S) over the category VB(S) with
respect to the functors 7* and 7*. So it is an analogue of Milnor’s construction of projective modules
from [12] (§ 2).

We define the functor F: VB(A) — T(A), which maps a vector bundle F to the triple
(m*F,*F,0F), where O is the natural isomorphism 7*/*F — *n*F. The same considerations
as in [6, 9] give the following result.

Theorem 1.1. The functor F induces an equivalence of the categories VB(A) = T (A). The
inverse functor G: T (A) — VB(A) maps a triple (G, P, 0) to the preimage in G of the S-submodule
0(1Q P) Ci*G.

2. Nodal curves.

Definition 2.1. (1) An algebra R over a local commutative ring O of Krull dimension 1,
which is finitely generated and torsion free as O-module, is said to be nodal (5, 14] if the following
conditions hold:

(a) Endgr(rad R) = H is hereditary,

(b) rad H = rad R (under the natural embedding of R into H),

(c) lengthp(H QR U) < 2 for every simple R-module U. Note that a nodal algebra never has
nilpotent ideals, since it holds for any hereditary O-algebra.
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(2) A noncommutative curve (X, A) is said to be nodal if every algebra A, (v € X) is a nodal
Ox y-algebra. If A = Ox, so we deal with a “usual” (commutative) curve, it means that all singular
points of X are nodes (ordinary double points).

We recall the construction of nodal algebras over the ring O = k[[t]] from [14]. Up to Morita
equivalence such algebra is given by a tuple N = (s;n1,n2,...,ns;~), where s and ny,na, ..., ns
are positive integers, while ~ is a symmetric relation on the set of pairs I = {(k,7) |1 < k <s,1 <
< i < ny} satisfying the following conditions:

(ND) #{(,j) €| (,j)~ (ki) } <1 for each pair (k,i) € L.

(N2) If (k,i) ~ (k,d), then i < ng and (k,i+ 1) 4 (I, j) for any (I, j) € L.

Namely, define R(IN) as the subring of M (N) = HZ—l Mat(ng, O) consisting of such collec-
tions of matrices (A1, Ag, ..., As), where Ay = (afj) € Mat(ng, O), that

al; =0 (mod t) if i >j or i =j—1 and (k,i) ~ (k,i), 2.1)
a; = dl; (mod t) if (ki) ~ (1, 7). (2.2)

Theorem 2.1 [14]. (1) Every ring R(IN) is a nodal O-algebra.

(2) Every nodal O-algebra is Morita equivalent to one of the rings R(N).

(3) rad R(N) consists of such collections (A1, As, ..., Ay) that the condition (2.1) holds and
also ak. = 0 (mod t) for all k,i.

(4) The hereditary algebra H(N) = End () (rad R(IN)) consists of such collections (A1, Az, . ..
..., Ag) that

afj =0 (mod t) if'i > j, except the case when

i=7—1and (ki) ~ (k,1).

(5) M(N) is a maximal order containing R(IN) such that J(N) = rad M (N) is the conductor
of M(N) both in R(N) and in H(N), and J(N) C rad R(N).

(6) R(N)/J(N) is the subring of M(IN)/J(N) = HZ:1 Mat(ng, k) consisting of such collec-
tions of matrices (A1, Aa, ..., As) that

af; =0ifi>j ori=j—1and (ki)~ (ki)

In particular, R(N) is hereditary if and only if the relation ~ is empty. (Then we write R =
= R(s;n1,n2,...,ng).)

Actually, to define a ring Morita equivalent to R(IN), one only has to prescribe positive integers
m(k, i) for each pair (k,7) € I so that m(k,i) = m(l,5) if (k,7) ~ (I, ), and consider ai?j in the
definition of R(IN) not as elements of k, but as matrices from Mat(m(k, i) x m(k, j), k), preserving
all congruences modulo ¢. We denote such data by (N, m), where m is the function (k, i) — m(k, 1),
and the corresponding algebra by R(IN,m). Note that different data N or (N, m) can describe
isomorphic algebras, even if they do not only differ by a permutation of indices (k,i). We extend
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VECTOR BUNDLES OVER NONCOMMUTATIVE NODAL CURVES 189

the relation ~ to an equivalence relation ~ setting (k,7) ~ (l,j) if and only if (k,i) = (I,7) or
(k1) ~ (1, 7).

From the well-known properties of torsion free modules over reduced rings of Krull dimension 1
(see, for instance, [7]) it follows that, given a torsion free coherent sheaf F over a noncommutative
curve (X,.A), a finite set of closed points x1, z2, ...,z € X and a set of coherent .4, -submodules
Gi C Fu, ®0X IC, there is a unique coherent sheaf G C F ®Ox K such that G, = G; and G, = F,
if y = x; for all ¢. In particular, since almost all localizations .4, are maximal, one can construct a
normalization A of A locally, choosing arbitrary normalizations flx of A, for x € sg A. Therefore,
given a nodal noncommutative curve (X, .4), we can (and will) suppose that the normalizations of its
local components are chosen as in Theorem 2.1. Thus, if z € sg X, y € 7 1(x) = {y1,92, .-, ¥r },
we identify /Iy with a full matrix ring Mat(n,, O X y) and suppose that the ring A, is given by some
data (N, m) as above. In what follows, we write (yg,?) instead of (k, %), so the local embeddings
Ay = A, = H;l A, for x € sg A are described by the data N(A) consisting of integers n, and
m(y, i) fory € sg. A, 1 <i <mn,, and an equivalence relation ~ on the set of pairs (y, ¢) satisfying
the above conditions (N1) and (N2) and such that

(N3) the sum m, = Z?_yl m(y, ) is the same for all points y belonging to the same component
of X.

The last condition just expresses the fact that the sheaf IC(fl) is locally constant. One easily sees
that w(y) = w(y’) if and only if there is at least one relation (y, i) ~ (y', j). Moreover, if we suppose
that X is connected and A is central, the set 7~!(x) for each € sg X must be connected as the
graph defined by the symmetric relation y ~ 3’ which means that there is at least one pair , j such
that (y, 1) ~ (¢, j).

From now on we fix a connected central noncommutative nodal curve (X,.A) and its normal-
ization w: (X, A) — (X, A) chosen as described above. We write O instead of Ox and O in-
stead of Og. If X1, Xo,..., X, are the irreducible components of X, X = m(X}), we write
O = Oz, Ay = A|X , Ok = Oy, and A, = A|x,. Recall that the sheaves of rings Oy and
Ak are Morita equivalent. Namely, there is a vector bundle £ over Ak such that End kﬁk ~ (’)k,
Endp Li =~ Ay, so the functors Hom Ak(ﬁk,,) and £®@k_ establish an equivalence between

Coh(Ay) and Coh(Oy). We call £}, a basic vector bundle over Aj;. (Note that it is not uniquely
defined.)

Let J be the conductor of A in A. If z € sg A, then J, = @W(y )= Tad Ay, S ~y/‘7y ~
~ Mat(m,, k) and £,/J,L, ~ m,U,, where U, is the unique simple S -module. For any vector
bundle G over A; we define its rank: tk G = r if Gy/JyGy ~ rU, for some (then for any) y € X;.

Every pair (y,4), where 7(y) = z, 1 < i < n,, defines a simple S;-module V;, where
Sy = Ay/ Tz, and V,; ~ V,, ; if and only if (y,i) ~ (y', 7). Moreover, U, ~ @;*, V,; as S,-
module. We denote by P, ; the projective S,-module such that P, ;/rad P,; ~ V, ;. In particular,
P, ~ P, ; if and only if (y,7) = (v/, j).

To describe the category of triples 7 (A) it is convenient to introduce new symbols e i where
1 <4 < j < ny, and the sets Ez,’fj consisting of all e, i such that one of the following conditions
hold:

z=vy, (y,7) ~ (¢/,7) and either i = ¢’ or (y,4) ~ (y,i');

ISSN 1027-3190. Yxp. mam. xcyphu., 2012, m. 64, Ne 2



190 Y. A. DROZD, D. E. VOLOSHYN

z=y', (v,i') ~ (y,i) and eitherj =g or (y,j) ~ (v, 7).
We also set e = Z ‘ e;; and consider the copies Ue?. of the simple modules U,,. Then
(z.0)=(y%)

S®Pyvi: @ Ui el
S

(2,5)~=(y,1)

ke if (y,1) # (y,J) for any j # i,
Endg Py; ~ { ke! & ]key if (y,4) ~ (y,j) and i < 7,
ke! @ ]ke]Z if (y,i) ~ (y,j) and j < ¢
and, for (y,17) # (y', ),
HOHIS( y“ @E{GI/
EY;
y 27

Under such notations the maps S Qg Pyi — S ®g Py ; induced by the homomorphisms P, ; —
— Py ; as well as the multiplication of homomorphisms are given by the “matrix multiplication” on
the right, i.e., by the rules:

S e, . =
w2 €y

ey y' _{0 lfy?éy/ OI”L./#]./,
)

ify=19y andd = j'

Let (G, P, 0) be a triple from 7 (A). Decompose G and P:

g= @k’l 911Gk, where G are nonisomorphic indecomposable vector bundles over Ak,

P =@, pyiPyi
Set 7 = rk Gy Then the isomorphism 6 : 7P — 7*G is given by aset © = {©, | y € sg. A} of
invertible block matrices ©, = (@Zf), where y € sg;, A, the block @zf has coefficients from k and is
of size 719k X pyi- If another triple (G', P’,¢') is given by the matrices ©;,, a morphism (G, P, 0) —

— (G, P',0) is given by block matrices ®; = (®4},) and ¢, = ((bz’J) such that @1 (y)0, = O} ¢,
for every y € sg; A, where the elements of @gl, are from Hom ;. (Gki, Grrr), elements of (ﬁz; are
from k, qﬁzz = (bz’; if (y,4) ~ (v',j) and ¢y; = 0if i > jori = j — 1, (y,i) ~ (y,i). This
morphism is an isomorphism if and only if all “dlagonal” blocks @gl and ¢ZZ are invertible.

Let AV(A) be the ideal in 7 (A) consisting of all morphisms (®, ¢) such that all values ®(y),
where y € sgj, A, are zero. In the matrix presentation it means that ®}%,(y) = 0 for all possible
triples (k,1,!’) and all y € Xj. Denote 7(A) = T(A)/N(A). These categories have the same
objects and the natural functor 7 (A) — T (A) is full (not faithful), maps nonisomorphic objects to
nonisomorphic and indecomposable objects to indecomposable. Therefore, to obtain a classification
of vector bundles, we actually have to study the category 7 (A). Nevertheless, passing from 7 to
T we can lose some information. It is important, for instance, if we are looking for stable vector
bundles (see, for instance, [3]).
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VECTOR BUNDLES OVER NONCOMMUTATIVE NODAL CURVES 191

3. String case.

Definition 3.1. A4 noncommutative nodal curve (X, A) is said to be of string type if it is
rational and every set sg;, A contains at most 2 points.

If (X, A) is of string type, we identify all components X, with P* and fix an affine part A* C X,
containing sg;, A .

In this case the category of triples 7 (A) can be treated as the category of representations of a
certain bunch of chains B(A) in the sense of [5] (Appendix B)'. Namely, if £ is a basic vector
bundle over Ay, then every indecomposable vector bundle over Ay, is isomorphic to £ (d) for some
d, which is called the degree of £},(d) 2. Moreover,

0 ifd>d,

Hom 3(£4(d), £4(d)) = {kmd/_d ifd < d

where k|t],, denotes the set of polynomials f(¢) such that deg f(t) < m. Therefore, in the decom-
position of a vector bundle Gj, over flk we can suppose that Gi,; = L (1). Then the elements of the
matrices CID%, can be considered as the polynomials of degree I’ — [ if I’ > [; they are zero if I’ < [. If
y # vy are two points from sg; A and I’ > [, we can always choose a polynomial f(t) € k[t];_; such
that f(y) = a, f(y’') = b for any prescribed values a, b € k. It means that the values of the matrices
@M, at the points y and i/ can be prescribed arbitrary. Therefore, the rule ®4(y)O, = ©),¢y, from the
matrix description of morphisms in 7(.A) can be rewritten as F'(y)©, = ©y¢,, where F(y) is an
arbitrary lower block triangular matrix F(y) = (F(y)¥,) (F(y)¥, = 0if I < I') over the field k and
the only restrictions for these blocks is that F'(y)l = F(y/)kl if y and o' are in the same component
X

Thus we define the bunch of chains B(.A) as follows. We consider sg .4 as the index set of this
bunch and for every y € sg A set

¢ ={(yi)[1<i<ny }\{(y) | (y,i=1)~(y,i-1)},
3y ={(d,y) |deZ},

(y,9) < (y,5) ifi <,

(d,y) < (d',y) ifd<d,

(y,i) ~ (v, ) if and only if they are so in the nodal data N(.A),
(d,y) ~ (d',2) if and only if d = d’, y # z but y and 2 belong

to the same component X.

Recall [4, 5] that a representation M of this bunch of chains is given by a set of block matrices
M, = (Mj,), where y € sg. A, 1 <i < ny, My, € Mat(mg, x ny;, k) for some integers may, ny;

' Or a bundle of semi-chains in the terms of [4].
2 Note that it is not the degree of L (d) as of Oy-sheaf; the latter equals dny.
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such that mg, = mgy if (d,y) ~ (d,y') and ny; = ny; if (y,i) ~ (3, 7). Here we identify the
symbols (y,4)" and (y,7)” from [5] (Definition B.1), where (y,i) ~ (y, ), with the pairs (y,¢) and

(y,7 + 1). A morphism « : M — M’ given by a set of block matrices v, oy, where y € sg.A,

oy = (az;yy), oy = (QZZ/)7 such that "
ajfly € Mat(may x mqy, k),
azé, € Mat(my;r x my;, k),
ag =0 ifd>d,
azﬁ, =0 ifi>i ori =i+ 1and (y,i) ~ (y,i),
agy = gy i (dy) ~ (d.y),
ol = a7 if (y,1) ~ (¥, ),

and

o, M, = Moy forall y € sg.A.

The matrix presentations described above imply the following fact.

Proposition 3.1. Let the noncommutative nodal curve (X, A) is of string type, B = B(A).
Then the category T (A) is equivalent to the full subcategory repy(B) of the category of represen-
tations of the bunch of chains B consisting of such representations M that all matrices M, are
invertible.

In particular, the category 7 (A) and hence the category VB(.A) are tame in the sense that they
have at most 1-parameter families of indecomposable objects. Moreover, from the description of
representations of a bunch of chains given in [4] one can deduce a description of vector bundles
over a noncommutative nodal curve of string type. For the corresponding combinatorics we use the
terminology from [S5] adopted to our situation.

Definition 3.2. (1) Let € =, €, § = U, By, X = €UF. We define the symmetric relation
— on X setting (d,y) — (y,1) for all possible d,i,y. We also write & || £ if either both & and &’
belong to € or both of them belong to §, and & L &' if one of them belongs to € while the other
belongs to §.

(2) We define a word (more precisely, an X-word) as a sequence £111&o7s . .. &_111_1&; such that

@&eX,re{~—1};

(b) &ri&ivn1 for each 1 < i <l accordingly to the definition of the relations ~ and —;

(©)ri Zrig1foralll <i<l—1. Wecalll =1(w) the length of the word w and &1, the ends
of this word.

(3) We call the word w full if the following conditions hold:
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VECTOR BUNDLES OVER NONCOMMUTATIVE NODAL CURVES 193

(a) either 1y =~ or & & & for any £ # &y

(b) either ri_1 =~ or & # & for any & # &.

(4) We call the word w terminating if it is full and r1 = r;_1 = —.

(5) The end & (&) is said to be special if 11 = — and & ~ & (vespectively, & ~ & and
ri_1 = —). Otherwise it is said to be usual.

(6) The terminating word w is said to be

usual if both its ends are usual,

special if one of its ends, but not both, is special;

bispecial if both its ends are special.

(7) The word w* = &ri_q ...&r &1 is called inverse to the word w.

(8) We call w symmetric if w = w* and quasisymmetric if it can be presented as v ~ v* ~ v ~

.~ v* ~ v for a shorter word v. Note that a quasisymmetric word is always bispecial.

(9) The word w is said to be cyclic if 11 = ri_1 =~ and & — & in *B. Then we set ro = — and
$ivkt = &iy Tigm =1 for any k € Z.

(10) A shift of the cyclic word w is the cyclic word

k
wh = & 1re1 €y - Tob1TL - Eky

where k is even. In this case we set e(w, k) = (—1)F/2.

(11) The cyclic word w is said to be aperiodic if wF # w for 0 < k < 1. It is said to be
cyclic-symmetric if w* = wl¥ for some k.

Note that the length of a terminating or cyclic word is always divisible by 4.

Definition 3.3. (1) A usual string is a usual nonsymmetric terminating word.

(2) A4 special string is a pair (w, ), where w is a special terminating word and § € {0,1}.

(3) A4 bispecial string is a quadruple (w,m, dy, 01), where w is a bispecial terminating word that
is neither symmetric nor quasisymetric, m € N and 6; € {0,1} (i =0,1).

(4) 4 band is a triple (w,m,\), where w is a cyclic word, m € N, A € k* and, if w is
cyclic-symmetric, also A # 1.

(5) The following strings are said to be equivalent:

w and w*;

(w,d) and (w*,0);

(w, m, by, 1) and (w*, m,d1,do).

(6) Two bands are said to be equivalent if they can be obtained from one another by a sequence
of the following transformations:

replacing (w, m, \) by (w[k],m, Ae(w’k));

replacing (w,m, \) by (w*,m, \~1).

Note that if w* = wl¥, then k = 2 (mod 4), so e(w, k) = —1.

Now the results of [4] imply the following theorem.

Theorem 3.1. The isomorphism classes of indecomposable vector bundles over a noncommu-
tative nodal curve curve of string type (X, A) are in one-to-one correspondence with the equivalence
classes of strings and bands for the bunch of chains B(A). The rank of the vector bundle corre-
sponding to a string or a band equals /4, where | is the length of the word w entering into this

string or band.
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We refer to [4] for an explicit construction of representations corresponding to strings and bands,
hence of vector bundles over noncommutative nodal curves of string type.

Note that it can so happen that there are no strings or no bands. For instance, if all localizations
A, are hereditary, there are no bands as well as no special and bispecial strings. Then there are only
finitely many isomorphism classes of indecomposable vector bundles up to twist, i.e., up to change
of degrees d in the pairs (d,y) occurring in a word. On the other hand, if each sg; A consists of 2
points and for every pair (y, i) there is another pair (z, j) # (y, ) such that (z,j) ~ (y, ¢), then there
are no terminating strings.

Actually, one can easily deduce the following criterion of finiteness.

Corollary 3.1. The following conditions for a noncommutative nodal curve of string type (X, A)
are equivalent:

1. There are only finitely many isomorphism classes of indecomposable vector bundles over A up
fo twist.

2. There are no cycles for the bunch of chains B(A).

3. There are no sequences of points yi,Y2, - - -, Yn, Ynt1 = y1 from sg A such that, for 1 < k < n,

if k is odd, then the points yi, and yj,1 are different and belong to the same component of X;

if k is even, there are indices i, j such that (y,i) ~ (Yx+1,7) (possibly yr = Yr+1)-

4. Almost string case. We consider one more case when there is a good description of vector
bundles.

Definition 4.1. A noncommutative nodal curve (X, A) is said to be of almost string type if
every set sg;. A contains at most 3 point, and if it contains three points then for 2 of them the algebra
Axr(y) is hereditary and Morita equivalent to the algebra R(1;2) from Theorem 2.1 (with the empty
relation ~).

Note that if A,y is hereditary, y is the unique point of sg.A with the image 7(y). Hence, if X
is connected, either X consists of a unique component or there must be another point z on the same
component of X such that A () is not hereditary.

Let sgx A = {yo0,y1,v2 } so that A, ) and A(,,) are Morita equivalent to R(1;2). In this
case we call y1,yo extra points and yo a marked point. Then the horizontal stripes of the matrices
©y,, 0y, corresponding to the vector bundle L (d) can be reduced to the form

y1,1 Y1,2 y2,2
@kd = @kd = @kd =

4.1)

0 I 0 I

I 0 0 1 0
(,_.)y27 _

0 0 I kd 0

0 0 0 0

S O N O

0 0 0
0 0 0
ol I 0f
I 0 I
where I denote identity matrices of some sizes (equal if they are in the same row). From now on
we only consider the objects from 7 (A) such that these matrices have the form (4.1), calling them

precanonical. If (P, ¢) is a morphism between precanonical objects, then the matrix @ﬁz must be of
the 4 x 4 block form

kd
Qg =

EE SR
* O % O
* *x O O
* O O O

ISSN 1027-3190. Ykp. mam. xcypn., 2012, m. 64, Ne 2



VECTOR BUNDLES OVER NONCOMMUTATIVE NODAL CURVES 195

where stars denote arbitrary matrices of appropriate sizes. Moreover, if we consider <I>]Z’dd71 also as
a 4 x 4 block matrix (fup) (a,b € {1,2,3,4}), where the blocks f,; consist of linear polynomials,
then fi14(y1) = fia(y2) = 0, so fi4 = 0. Note that the values f,,(y0) can be chosen arbitrary for
(ab) # (14), as well as the values of ®F4 for d’ < d — 1. Therefore, the full subcategory of 7 (.A)
consisting of precanonical objects can again be treated as the category of representations of a bunch
of chains B’ = B’(A). Namely, let ex A be the set of all extra points. The index set for the bunch
B’ is sg. A\ ex A. If a point y is not marked, the sets &, and §, are defined just as in Section 3
(p- 191). If y is marked, the set §, is also defined as in Section 3, but the set €, consists of the triples
(d,y,a), where o € { 0,1}, such that

(d,y,a’) < (d,y, ) if and only if either ' < d or d' = d and o/ < «;

(d,y,a) ~ (d,y,a) for all d, a.

Actually the element (d, y,0) represents in this bunch the first horizontal row of the stripe (d, y)
and the fourth horizontal row of the stripe (d— 1, y) in the precanonical form (4.1), while the element
(d,y, 1) represents the second and the third horizontal rows of the stripe (d, y).

The preceding observations imply the following theorem.

Theorem 4.1. Let (X, A) be a noncommutative nodal curve of almost string type. The category
T (A) is equivalent to the full subcategory of the category of representations of the bunch of chains
B'(A) consisting of such representations M that all matrices M, are invertible.

Just as in Section 3, these representations (hence, vector bundles over 4) correspond to termi-
nating strings and bands. In particular, the category of vector bundles over a noncommutative nodal
curve of almost string type is also tame.

Corollary 4.1. The following conditions for a noncommutative nodal curve of almost string type
(X, .A) are equivalent:

(1) There are only finitely many isomorphism classes of indecomposable vector bundles over A
up to twist.
(2) There are no cycles for the bunch of chains B'(A).
(3) There are no sequences of points yi,y2, ..., Yn,Ynt+1 = y1 from sg A\ ex A such that, for
1<k<n,
if k is odd, then either the points yy, and yi41 are different and belong to the same component
off( OF Y = Yk+1 Is a marked point;
if k is even, there are indices i, j such that (yg,1) ~ (Yx+1,J) (possibly yi = yYr+1).

5. Wild cases. If a noncommutative curve (X, .A) is rational and connected and all localizations
A, are hereditary, then X ~ P! and the category Coh(.A) is equivalent to the category of coherent
sheaves over a weighted projective line C'(p, A) in the sense of [10]. Here A = { A1, Ao, ..., As } =
=sg.Aand p = (p1,p2,...,Dps) are the integers such that Ay, is Morita equivalent to the hereditary
algebra R(1;p). Then it is known that VB(A) is of finite type if and only if ZZ—l 1/pp > 1

and is tame if ZZ—l /pr = 1. If ZZ—l 1/pr < 1, it is wild. It means that the classification of
vector bundles over such noncommutative curve contains the classification of representations of every
finitely generated k-algebra (see [9] for formal definitions). Note also that if (X, .4) is normal, then,
just as X itself, it is of finite type if X ~ P!, tame if X is an elliptic curve and wild otherwise [9].
So the next theorem completes the answer to the question about the representation type of VB(.A).
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Theorem 5.1. [In the following cases the category VB(A) is wild:

(1) (X, .A) is neither rational nor normal.

(2) At least one of the localizations A, is not nodal.

(3) (X, A) is nodal, at least one of the localizations A, is not hereditary and (X, A) is neither
of string nor of almost string type.

Proof. The cases (1) and (2) are considered quite analogously to the commutative case [9]
(Proposition 2.5), so we omit their proofs. The proof of (3) we shall give in two cases:

(3a) X =P, sg A= {z, 29,23}, Ay, is Morita equivalent to R(1;k) for k = 2,3, while, A, is
Morita equivalent to R(1;2; ~), where either (1,1) ~ (1,2) or (1,1) ~ (1,1).

(3b) X = X; U X3 so that X7 ~ Xy ~ P!, X1 N Xy = {2} and this intersection is transversal
(i.e. O, is nodal), there are two more singular points z9,z3 € X; and A,, is Morita equivalent to
R(1;k) for k = 2,3, while A, is Morita equivalent to R(2;1, 1;~), where (1,1) ~ (2,1).

All other cases easily reduce to these ones.
In both cases 7! (x;) = {yx} for k = 2, 3 and the d-th horizontal stripe of the matrices ©,, can
be reduced to the form:

0O 0|0 O I O o 0 oI 0 0
0O 0|1 0]0 O o 0 0|0 I O
Oy — I 00 O0]0 O Oy — o o0 0,0 0 I
0O 0|0 0|0 I | I 0 0|0 O O |’
0o 0|0 I]0 O O I 010 0 O
0O 1|0 0]0 O 0o 0 1|10 0 O

where the vertical lines divide these matrices into the stripes corresponding to the projective modules
Py;. In the case (3a) we only consider such triples that the 1st, 5th and 6th horizontal rows of these
matrices are empty. Then the matrix ©,, where y € sg; A and 7(y) = x, is divided into 3 horizontal
stripes and if (®, ¢) is a morphism of such representations, then

* 0 0
@%g: * *x 0
0 0 =«

The classification of such triples can be considered as a bimodule problem (see [8, 9] for definitions
and details) so that the corresponding Tits form is either

Q= Qt% +zf + z% + 2129 +z§ —2t1(21 + 22 + 23)
or
Qo =13+ t2 4 22 + 25 + 2120 + 25 — (t1 + t2)(21 + 22 + 23),

where ¢; are the sizes of vertical stripes and z; are the sizes of horizontal stripes (if (1,1) ~ (1,2),
then ¢; = t3). Since Q1(2,1,1,1) = @2(2,2,1,1,1) = —1, this bimodule is wild, hence so is the
category VB(.A). Note that we need to check that t; + to = 21 + 22 + 23, since the matrix ©, must
be invertible.

In the case (3b) we only omit the Ist and the 6th row of the matrices ©,, . Then the matrix @%g
will be of the form
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S O % O
* ¥ O O
* O O O

* O ¥ %

We have one more matrix ©,, where z € sgy.A and 7(z) = x. We consider the triples such that
Gly, = @3:1 r4Goq. The matrix O, reduces to the form

1

O OO O O ~NOO

O NO O O O O O
N O OO O O o o

O O ~NO O O OO

O OO NO O OO

O O OO NO OO

O O OO OO ~NO

O OO O O oo

Then the matrix ¢>§:1 = ¢ji from a morphism (®, ¢) of such triples must be triangular and we obtain
a matrix problem with the Tits form

Q=1 +15+ 15+ 1] + trta + tits + sty + Zrﬂ“j - Ztﬁj-
1<j i,J
Now @(1,3,3,1,1,1,1,1,1,1,1,1) = —1, so we again obtain a wild problem.
Theorem 5.1 is proved.
6. Example. We consider a simple but typical example. Let (X, .A) be defined as follows.
X =X1UXy, where X1 ~ Xo ~ Pl XN Xy = {z} and the intersection is transversal;
sgA={x,x1,22}, where 1 € X1, z2 € Xo;
K(A) = Mat(2, K1) x Mat(2, Ks);
The singular localizations are:

A, = R(2;2,2;~), where (1,1) ~ (2,1),
Ay, = R(1;2;~), where (1,1) ~ (1,1),
Az, = R(1;2;~), where (1,1) ~ (1,2).
Then
X:Xlqu, where )N(l 25(2:1?1, Xlﬂngg,
s8A={y1,y2,y3,0a }, where y1,y3 € X1, ya,ys € Xy,

m(ys) = m(ya) =z, 7(y1) = 21, 7(y2) = 22.

Therefore the corresponding bunch of chains is
¢ ={{d)[deZ}, 5 ={11)},
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& ={(d2)]|deZ}, F2=1{(21)<(2,2)},
€ ={(d3)|deZ}, F3=1{(31) < (32},
Ci={(d4)|deZ}, Fa={(41) <42},
(1,1) ~ (1,1), (2,2) ~ (2,1), (3,1) ~ (4,1), (d1) ~ (d3), (d2) ~ (d4).

(We write (dk) and (k, i) instead of (d,y;) and (yx,7).) We fix a basic vector bundle £ over Ay,
k = 1,2. Then £1(d)/JL1(d) has a k-basis ezl(d),e?(d), 1 <4,5 <2, and Lo(d)/TL2(d) has a
k-basis e?(d), e?(d), 1 <i,j7 < 2, the upper index showing the point y; where the corresponding
element is supported.

An example of a usual string is given by the word
(4.2) - (d14) ~ (d12) — (2,2) ~ (2.1) — (ds2) ~ (do) — (4,2)

with d; # do in order that the word be not symmetric. The corresponding vector bundle F is the
A-submodule in G = La(d1) & L2(d2) such that F, = G, for x ¢ sg. A, Fy, is generated by the
preimages of €3(d;) and e?(ds), and F, is generated by the preimages of e3(d;) and e5(ds). Since
suppG = Xo, Fz, =0.

An example of a special string is (w, 1), where

w=(1,1) — (d1) ~ (d3) — (3,2).

Here G = L1(d), F, is generated by the preimage of e} and F, is generated by the preimage of e3.
An example of a bispecial string is (w, m, 1,0), where

w=(1,1) — (1) ~ (d13) — (3, 1) ~ (4, 1) — (dad) ~ (da2) — (2,1) ~
~ (232) - (d32) ~ (d34) - (4’ 1) ~ (37 1) - (d43) ~ (d41) - (17 1)'

The degrees d; can be arbitrary with the only restriction that do # d3 or dy # dy.

G =m(L1(dy) ® Lao(d2) B Lo(d3) © L1(dy));

F, is generated by the preimages of the columns of the matrices I,,e3(d1), Ine$(ds), Imei(dz)
and I,,,e}(d3), where I,,, denotes the identity m x m matrix;

F, is generated by the preimages of the columns of the matrices I,,,¢?(ds) and I,,,e3(d3);

Fz, 1s generated by the preimages of the columns of the matrices

<I(;1>e%(d1), (In?q>e%(d1), (fﬁ})e%(d@ and (Iqu>€%(d4)’

where ¢ = [(m +1)/2] and
if m = 2q, then A, = I,, B, = J4(0), the Jordan g x ¢ matrix with eigenvalue 0;
if m = 2¢q — 1, then A, is of size (¢ — 1) x g and By is of size ¢ x (¢ — 1), namely,
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1 0 0 0 0 ? 8 8
il IR LBl LR
0 0 0 1 0 - :

Finally, an example of a band is (w, m, \), where
w=1(2,2) ~(2,1) = (d12) ~ (d14) — (4,1) ~ (3,1) — (d23) ~ (d21)—

— (1 1) ~ (1,1) = (ds1) ~ (d33) — (3,1) ~ (4,1) — (ds4) ~ (ds2).

We suppose that d3 < ds or d3 = da, dy < d;. Then

G =m(L1(d1) ® La(d2) ® La(d3) ® L1(ds));
Fz, 1s generated by the preimages of the columns of the matrices

() = (i)

F, is generated by the preimages of the columns of the matrices I,,e1(d1), Ine$(da), Imes(ds)

and Ime‘ll(d4);

Fo, is generated by the preimages of the columns of the matrices I,,,e2(dy) and J,,(\)e3(dy)

(the Jordan m x m matrix with eigenvalue \). If do < d3 or dy = d3, di < d4, one has to permute
do and d3 in the generators of F,,, also permuting the rows.
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