P. Zakrzewski (Inst. Math., Univ. Warsaw, Poland)

ON THE COMPLEXITY OF THE IDEAL OF ABSOLUTE NULL SETS * ПРО КОМПЛЕКСНІСТЬ ІДЕАЛУ АБСОЛЮТНИХ НУЛЬ-МНОЖИН

Answering a question of Banakh and Lyaskovska, we prove that for an arbitrary countable infinite amenable group G the ideal of sets having μ -measure zero for every Banach measure μ on G is an $F_{\sigma\delta}$ subset of $\{0,1\}^G$.

У відповідь на питання, поставлене Банахом і Лясківською, доведено, що для будь-якої зліченної аменабельної групи G ідеал множин, що мають нульову μ -міру для будь-якої міри Банаха μ на G, є $F_{\sigma\delta}$ -підмножиною $\{0,1\}^G$.

- 1. Introduction. This note is related to a paper by T. Banakh and N. Lyaskovska [1]. Given an amenable group G, Banakh and Lyaskovska considered the ideal $\mathcal N$ of absolute null subsets of G, i.e., sets having μ -measure zero for every Banach measure μ on G (a finitely-additive, probability, left-invariant measure $\mu \colon \mathcal P(G) \to [0,1]$ defined on the family of all subsets of G; see [3]). Since each ideal on a countable infinite group G can be considered as a subspace of the Cantor set $\{0,1\}^G$ it makes sense to consider its descriptive properties. Banach and Lyaskovska asked ([1], Problem 4) whether the ideal of absolute null subsets of the group $\mathbb Z$ is co-analytic. In this note we prove (see Corollary 3.1) that for an arbitrary countable infinite amenable group G the ideal $\mathcal N$ is in fact $F_{\sigma\delta}$. This follows from a characterisation of absolute null subsets of an arbitrary amenable group (see Proposition 2.1) based on the notion of the intersection number of Kelly [2].
- **2.** A characterisation of absolute null sets. Following Kelly [2] we define the intersection number $I(\mathcal{B})$ of a family \mathcal{B} of subsets of a set X to be $\inf\{i(S)/n(S)\}$ where the infimum is taken over all finite sequences $S=(S_1,\ldots,S_n)$ of (not necessary distinct) elements of \mathcal{B} , n=n(S) is the length of S and

$$i(S) = \sup \left\{ \sum_{i=1}^{n} \chi_{S_i}(x) \colon x \in X \right\}.$$

Proposition 2.1. Let G be an amenable group and $A \subseteq G$. Then the following are equivalent:

- (1) A is absolute null.
- (2) The intersection number of the family $\{gA: g \in G\}$ is zero.

Proof. (1) \Rightarrow (2). Assume that $I(\{gA\colon g\in G\})=\delta>0$. By a theorem of Kelly (see [2], Theorem 2), there is a finitely additive probability measure m defined on $\mathcal{P}(G)$ such that $m(gA)\geq \delta$ for each $g\in G$.

Let θ be a Banach measure on G. Following the proof of Invariant Extension Theorem (see [4], Theorem 10.8) define a function $\mu \colon \mathcal{P}(G) \to [0,1]$ by letting

$$\mu(B) = \int_G m(g^{-1}B)d\theta(g), \text{ for } B \subseteq G.$$

It is easy to see that μ is a Banach measure on G. Moreover, we have

$$\mu(A) = \int_{G} m(g^{-1}A)d\theta(g) \ge \inf\{m(g^{-1}A): g \in G\} \ge \delta > 0,$$

which shows that $A \notin \mathcal{N}$.

^{*}This research was partially supported by MNiSW Grant Nr N N201 543638.

276 P. ZAKRZEWSKI

 $(2)\Rightarrow (1)$. Let μ be an arbitrary Banach measure on G. Suppose that $\mu(A)=\epsilon>0$. Then, since μ is left-invariant, we also have $\mu(gA)=\epsilon$ for every $g\in G$. Consequently, by [2] (Proposition 1), $I(\{gA\colon g\in G\})\geq \epsilon>0$.

Proposition 2.1 is proved.

3. The Borel complexity of the ideal \mathcal{N} . The following corollary of Proposition 2.1 gives an answer to a question of Banakh and Lyaskovska (see [1], Problem 4).

Corollary 3.1. Let G be an amenable group and $A \subseteq G$. Then the following are equivalent:

- (1) A is absolute null.
- (2) $\forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ \exists \bar{q} \in G^{n+1} \ \forall S \subseteq \{1, \dots, n+1\}:$

$$\frac{|S|}{n+1} > \frac{1}{k+1} \implies \bigcap_{i \in S} g_i A = \varnothing.$$

In particular, if G is countably infinity, then formula (2) gives a $F_{\sigma\delta}$ definition of the ideal N.

Proof. It is easy to see that formula (2) simply states that $I(\{gA: g \in G\}) = 0$ so its equivalence with condition (1) was established in Proposition 2.1.

To prove the remaining part of the corollary, assume that G is countably infinity. Then it is enough to show that for fixed $n \in \mathbb{N}, \ \bar{g} \in G^{n+1}$ and $S \subseteq \{1, \ldots, n+1\}$ the family $\{A \subseteq G \colon \bigcap_{i \in S} g_i A = \varnothing\}$ is closed in $\mathcal{P}(G)$.

But this follows from the fact that for $A \subseteq G$ we have

$$\bigcap_{i \in S} g_i A = \varnothing \iff \forall g \in G \ \exists i \in S \colon \ g_i^{-1} g \not\in A.$$

Corollary 3.1 is proved.

4. Some open problems. Let G be an arbitrary infinite group. Following a suggestion by Taras Banakh (personal communication) let us call a set $A \subseteq G$ Kelly null if the intersection number of the family $\{gA\colon g\in G\}$ is zero; denote by $\mathcal K$ the collection of all Kelly null subsets of G. In view of Proposition 2.1, $\mathcal K$ is an ideal of subsets of G provided the group G is amenable. On the other hand, Proposition 5.1 of [1] implies that if G has a free subgroup of rank 2, then $\mathcal K$ is not an ideal; in fact G is then the union of two Kelly null sets. In any case, however, $\mathcal K$ contains a (possibly proper) subfamily $\mathcal A_{\mathcal K}=\{A\subseteq G\colon \forall K\in \mathcal K\ K\cup A\in \mathcal K\}$ which already forms an ideal.

The remarks above lead to the following problems suggested by Banakh.

Problem 1. Characterise groups G for which $\mathcal K$ is an ideal.

Problem 2. Characterise groups G which are finite unions of elements of \mathcal{K} .

Problem 3. Given a countably infinite group G find a combinatorial description of elements of the ideal $A_{\mathcal{K}}$. What is its descriptive complexity? In particular, is it Borel?

Acknowledgements. The author would like to thank Taras Banakh for his valuable comments and the suggestions above.

- Banakh T., Lyaskovska N. Completeness of translation-invariant ideals on groups // Ukr. Mat. Zh. 2010. 62,
 № 8. P. 1022-1031.
- 2. Kelley J. L. Measures on Boolean algebras // Pacif. J. Math. 1959. 9. 9. 1165 1177.
- 3. Paterson A. Amenability. Amer. Math. Soc., 1988.
- 4. Wagon S. The Banach Tarski paradox // Encyclopedia Math. and Its Appl. Cambridge Univ. Press, 1986.

Received 13.05.11