UDC 512.5

O. V. Petrenko, I. V. Protasov (Kyiv. Nat. Taras Shevchenko Univ.)

BALLEANS AND G-SPACES

БОЛЕАНИ ТА G-ПРОСТОРИ

We show that every ballean (equivalently, coarse structure) on a set X can be determined by some group G of permutations of X and some group ideal \mathcal{I} on G. We refine this characterization for some basic classes of balleans: metrizable, cellular, graph, locally finite, and uniformly locally finite. Then we show that a free ultrafilter \mathcal{U} on ω is a T-point with respect to the class of all metrizable locally finite balleans on ω if and only if \mathcal{U} is a Q-point. The paper is concluded with a list of open questions.

Доведено, що кожен болеан (еквівалентно, груба структура) на множині X може бути визначений деякою групою підстановок G множини X та деяким груповим ідеалом \mathcal{I} на G. Цю характеризацію уточнено для деяких основних класів болеанів: метризовних, стільникових, графових, локально скінченних, рівномірно локально скінченних. Далі ми доводимо, що вільний ультрафільтр \mathcal{U} на $\omega \in T$ -точкою відносно класу метризовних локально скінченних болеанів на ω тоді і тільки тоді, коли $\mathcal{U} \in Q$ -точкою. Насамкінець наведено список відкритих проблем.

Following [5, 6], we say that a *ball structure* is a triple $\mathcal{B} = (X, P, B)$, where X, P are non-empty sets and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a *ball of radius* α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$ and $\alpha \in P$. The set X is called the *support* of \mathcal{B} , P is called the set of *radii*.

Given any $x \in X, A \subseteq X, \alpha \in P$ we put

$$B^*(x,\alpha) = \{ y \in X \colon x \in B(y,\alpha) \}, \qquad B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure $\mathcal{B} = (X, P, B)$ is called a *ballean* if for any $\alpha, \beta \in P$, there exist α', β' such that, for every $x \in X$,

$$B(x,\alpha) \subseteq B^*(x,\alpha'), \qquad B^*(x,\beta) \subseteq B(x,\beta');$$

for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma).$$

A ballean \mathcal{B} on X can also be determined in terms of entourages of the diagonal Δ_X of $X \times X$, in this case it is called a coarse structure [7] (Definition 2.3). Let \mathcal{E} be a family of subsets of $X \times X$. The pair (X, \mathcal{E}) is a *coarse structure* if

 $\begin{array}{l} \Delta_X \subset E \text{ for each } E \in \mathcal{E};\\ \text{ if } E \in \mathcal{E} \text{ and } \Delta_X \subseteq E' \subseteq E \text{ then } E' \in \mathcal{E};\\ \text{ if } E_1, E_2 \in \mathcal{E} \text{ then } E_1 \cup E_2 \in \mathcal{E};\\ \text{ if } E \in \mathcal{E} \text{ then } E^{-1} \in \mathcal{E} \text{ where } E^{-1} = \{(y, x) \colon (x, y) \in \mathcal{E}\};\\ \text{ if } E_1, E_2 \in \mathcal{E} \text{ then } E_1 \circ E_2 \in \mathcal{E} \text{ where } E_1 \circ E_2 = \{(x, y) \colon (x, z) \in E_1, (z, y) \in E_2 \text{ for some } z \in X\}. \end{array}$

Each ballean $\mathcal{B} = (X, P, B)$ defines a coarse structure (X, \mathcal{E}) where the family \mathcal{E} of entourages is defined by the rule:

© O. V. PETRENKO, I. V. PROTASOV, 2012 344

$$E \in \mathcal{E} \Leftrightarrow \exists \alpha \in P \quad \forall x \in X \quad \forall y \in X : y \in B(x, \alpha) \Rightarrow (x, y) \in E.$$

On the other hand, each coarse structure (X, \mathcal{E}) determines the ballean (X, \mathcal{E}, B) , where $B(x, E) = \{y \in X : (x, y) \in E\}$.

Let $\mathcal{B}_1 = (X_1, P_1, B_1)$, $\mathcal{B}_2 = (X_2, P_2, B_2)$ be balleans. A mapping $f: X_1 \to X_2$ is called a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that, for every $x \in X_1$, $f(B_1(x, \alpha)) \subseteq \subseteq B_2(f(x), \beta)$. If there exists a bijection $f: X_1 \to X_2$ such that f and f^{-1} are \prec -mappings, then \mathcal{B}_1 and \mathcal{B}_2 are called *asymorphic*.

Let G be a group, \mathcal{I} be an ideal in the Boolean algebra \mathcal{P}_G of all subsets of G, i.e., if $A, B \in \mathcal{I}$ and $A' \subseteq A$ then $A \cup B \in \mathcal{I}$ and $A' \in \mathcal{I}$. An ideal \mathcal{I} is called a *group ideal* if, for all $A, B \in \mathcal{I}$, we have $AB \in \mathcal{I}$ and $A^{-1} \in \mathcal{I}$.

Now let X be a G-space with the action $G \times X \to X$, $(g, x) \mapsto gx$, and let \mathcal{I} be a group ideal on G. We define a ballean $\mathcal{B}(G, X, \mathcal{I})$ as triple (X, \mathcal{I}, B) where $B(x, A) = Ax \cup \{x\}$ for all $x \in X$, $A \in \mathcal{I}$.

In Section 1 we show that every ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some group G of permutations of X and some group ideal \mathcal{I} on G. Then we refine this statement to some basic classes of balleans: metrizable, cellular, graph, locally finite and uniformly locally finite.

Let $\mathcal{B} = (X, P, B)$ be a ballean. A subset $F \subseteq X$ is called *bounded* if there exist $x \in X$ and $\alpha \in P$ such that $F \subseteq B(x, \alpha)$. A subset $T \subseteq X$ is *thin* if, for every $\alpha \in P$, there exists a bounded subset F such that $|B(x, \alpha) \cap T| \leq 1$ for each $x \in X \setminus F$.

Given a class \mathcal{K} of balleans on $\omega = \{0, 1, \ldots\}$, a free ultrafilter \mathcal{U} on ω is said to be a *T*point with respect to \mathcal{K} if, for every ballean $\mathcal{B} \in \mathcal{K}$, there exists $U \in \mathcal{U}$ such that U is thin in \mathcal{B} . By Theorem 6, a *T*-point in ω^* defined in [3] is exactly a *T*-point with respect to the class of all metrizable uniformly locally finite balleans on ω . By [3] (Theorem 3), an ultrafilter $\mathcal{U} \in \omega^*$ is a *T*-point with respect to the class of all metrizable balleans on ω if and only if \mathcal{U} is selective.

In Section 2 we prove that an ultrafilter $\mathcal{U} \in \omega^*$ is a *T*-point with respect to the class of all metrizable uniformly locally finite balleans on ω if and only if \mathcal{U} is a *Q*-point. We give also some "sequential" characterization of *T*-points with respect to the class of all metrizable uniformly locally finite balleans on ω .

We conclude the paper with some comments and open questions in Section 3.

1. Balleans and G-spaces.

Theorem 1. Every ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of the group S_X of all permutations of X and some group ideal \mathcal{I} of G.

Proof. Let \mathcal{E} be a family of entourages of the diagonal Δ_X of $X \times X$ which determines \mathcal{B} . For each pair $(x, y) \in X \times X$, let $\pi(x, y)$ denote the permutation of X swapping x, y and acting identically on $X \setminus \{x, y\}$. Given any $E \subseteq X \times X$, we put

$$A_E = \{e, \pi(x, y) \colon (x, y) \in E\},\$$

where e is the identity permutation. We denote by G the subgroup of S_X generated by $\cup \{A_E \colon E \in \mathcal{E}\}$. To construct the ideal \mathcal{I} , we put $\mathcal{F}_0 = \{A_E \colon E \in \mathcal{E}\}$ and, for each $n \in \omega$,

$$\mathcal{F}_{n+1} = \mathcal{F}_n \cup \mathcal{F}_n^{-1} \cup \{FF' \colon F, F' \in \mathcal{F}_n\}.$$

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

Then $\cup_{n\in\omega}\mathcal{F}_n$ is a base for \mathcal{I} , i.e., $\mathcal{I} = \{A \subseteq G \colon \exists F \in \bigcup_{n\in\omega}\mathcal{F}_n \text{ such that } A \subseteq F\}.$

Given any $E, E' \in \mathcal{E}$, we have

(1) $E = \{(x, y) : x \in X, y \in A_E x\};$

(2) $E \circ E' = \{(x, y) \colon x \in X, y \in A_{E \circ E'} x\}.$

By (1), the identity mapping $id: X \to X$ is a \prec -mapping from \mathcal{B} to $\mathcal{B}(G, X, \mathcal{I})$. Using (2) and inductive argument, we see that, for each $A \in \mathcal{F}_n$, $\{(x, y): x \in X, y \in Ax\} \in \mathcal{E}$. Hence, *id* is a \prec -mapping from $\mathcal{B}(G, X, \mathcal{I})$ to \mathcal{B} , so \mathcal{B} and $\mathcal{B}(G, X, \mathcal{I})$ are asymorphic.

Theorem 1 is proved.

A ballean $\mathcal{B} = (X, P, B)$ is called *connected* if, for all $x, y \in X$, there is $\alpha \in P$ such that $y \in B(x, \alpha)$. We observe that a ballean $\mathcal{B}(G, X, \mathcal{I})$ is connected if and only if, for all $x, y \in X$ there is $A \in \mathcal{I}$ such that $x \in Ay$. In particular, if $\mathcal{B}(G, X, \mathcal{I})$ is connected then G acts transitively on X.

Each metric space (X, d) determines the ballean $\mathcal{B}(X, d) = (X, \mathbb{R}^+, B_d)$ where $\mathbb{R}^+ = \{r \in \mathbb{R} : r \ge 0\}$, $B_d(x, r) = \{y \in XG : d(x, y) \le r\}$. A ballean \mathcal{B} is called *metrizable* if \mathcal{B} is asymorphic to $\mathcal{B}(X, d)$ for an appropriate metric space (X, d). By [6] (Theorem 2.1.1), a ballean \mathcal{B} is metrizable if and only if \mathcal{B} is connected and its set of radii P has a countable subset cofinal in the natural preordering of P.

Repeating arguments proving Theorem 1, we get the following theorem.

Theorem 2. Every metrizable ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some group ideal \mathcal{I} with countable base such that, for all $x, y \in X$, there is $A \in \mathcal{I}$ such that $y \in Ax$.

A ballean $\mathcal{B} = (X, \mathcal{E})$ is called *cellular* [6, p. 42] if, for each entourage $E' \in \mathcal{E}$ there is an entourage E such that $E' \subset E$, $E = E^{-1}$ and $E \circ E = E$. By [6] (Theorem 3.1.3), \mathcal{B} is cellular if and only if asdim $\mathcal{B} = 0$.

Theorem 3. Every cellular ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some group ideal \mathcal{I} on G which has a base consisting of subgroups.

Proof. To apply arguments proving Theorem 1, it suffices to note that if $E \in \mathcal{E}$, $E = E^{-1}$ and $E \circ E = E$ then

$$\{(x,y)G\colon x\in X, y\in A_Ex\}=\{(x,y)G\colon x\in X, y\in \langle A_E\rangle x\},\$$

where $\langle A_E \rangle$ is a subgroup of S_X generated by A_E .

Theorem 3 is proved.

Every connected graph Γ can be considered as a metric space (V_{Γ}, d_{Γ}) where V_{Γ} is the set of vertices of Γ , d_{Γ} is the path metric on V_{Γ} . A ballean \mathcal{B} is called a graph ballean [6, p. 79] if \mathcal{B} is asymorphic to the ballean $\mathcal{B}(V_{\Gamma}, d_{\Gamma})$ for an appropriate connected graph Γ . By [6] (Theorem 5.1.1), a ballean $\mathcal{B} = (X, \mathcal{E})$ is a graph ballean if and only if \mathcal{B} is connected and there exists $E \in \mathcal{E}$ such that $E = E^{-1}$ and, for every $E' \in \mathcal{E}$, there is $n \in \omega$ such that $E' = E^n$ where E^n is a product of n copies of E.

Theorem 4. Every graph ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some group ideal \mathcal{I} having a member $A \in \mathcal{I}$ such that $\{A^nG : n \in \in \omega\}$ is a base for \mathcal{I} and, for all $x, y \in X$, there is $n \in \omega$ such that $y \in A^n x$.

BALLEANS AND G-SPACES

A ballean $\mathcal{B} = (X, P, B)$ is called *locally finite* if each ball $B(x, \alpha), x \in X, \alpha \in P$ is finite. The next theorem was suggested by Taras Banakh.

Theorem 5. Every locally finite ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some group ideal \mathcal{I} on G with a base consisting of subsets compact in the topology of pointwise convergence on S_X .

Proof. It suffices to observe that a subset $F \subset S_X$ is compact if and only if F is closed and the orbit Fx of each point $x \in X$ is finite, and the subset A_E defined in the proof of Theorem 1 is compact.

A ballean $\mathcal{B} = (X, P, B)$ is called *uniformly locally finite* if, for each $\alpha \in P$, there exists $n \in \omega$ such that $|B(x, \alpha)| \leq n$ for every $x \in X$.

Theorem 6. Every uniformly locally finite ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{F}_G)$ for some subgroup G of S_X , \mathcal{F}_G is the ideal of all finite subsets of G.

Proof. [4] (Theorem 1).

2. Around T-points. Let \mathcal{K} be a class of balleans with the support $\omega = \{0, 1, \ldots\}, \omega^*$ be the space of all ultrafilters on ω . We say that an ultrafilter $\mathcal{U} \in \omega^*$ is a *T-point with respect to* \mathcal{K} if, for every ballean $\mathcal{B} = (\omega, P, B)$ from \mathcal{K}, \mathcal{U} has a member $U \in \mathcal{U}$ which is thin in \mathcal{B} , i.e., for every $\alpha \in P$, there exists a bounded subset $V \subset \omega$ such that $|B(x, \alpha) \cap U| \leq 1$ for each $x \in U \setminus V$.

We recall that an ultrafilter $\mathcal{U} \in \omega^*$ is

selective if, for every partition \mathcal{P} of ω , either some block of \mathcal{P} is a member of \mathcal{U} , or there is $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$;

P-point if, for every partition \mathcal{P} of ω , either some block of \mathcal{P} is a member of \mathcal{U} , or there is $U \in \mathcal{U}$ such that $U \cap P$ is finite for each $P \in \mathcal{P}$;

Q-point if, for every partition \mathcal{P} of ω into finite subsets, there is $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$.

Theorem 7. An ultrafilter $\mathcal{U} \in \omega^*$ is a T-point with respect to the class of all metrizable balleans on ω if and only if \mathcal{U} is selective.

Proof. [3] (Theorem 3).

Theorem 8. An ultrafilter $\mathcal{U} \in \omega^*$ is a *T*-point with respect to the class of all metrizable locally finite balleans on ω if and only if \mathcal{U} is a *Q*-point.

Proof. Let \mathcal{U} be a Q-point, d be a locally finite metric on ω . We fix $x_0 \in \omega$, and put

$$X_0 = \{x_0\}, \qquad X_{n+1} = B_d(x_0, (n+1)^2) \setminus B_d(x_0, n^2), \quad n \in \omega,$$
$$Y_0 = \bigcup_{n \in \omega} X_{2n}, \qquad Y_1 = \bigcup_{n \in \omega} X_{2n+1}.$$

Since \mathcal{U} is a Q-point and each subset X_n is finite, there exist $U \in \mathcal{U}$ and $i \in \{0, 1\}$ such that $U \subseteq Y_i$ and $|U \cap X_n| \leq 1$ for each $n \in \omega$. Then for each r > 0, the set $\{x \in \mathcal{U}G \colon |B_\alpha(x, r) \cap \mathcal{U}| > 1\}$ is finite, so U is thin in $\mathcal{B}(\omega, d)$.

Now let \mathcal{U} be a *T*-point in the class of all metrizable locally finite balleans on ω , $\{P_n G : n \in \omega\}$ be a partition of ω into finite subsets. We define a metric *d* on ω by the rule:

$$d(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{if } x \neq y, \ x, y \in P_n; \\ \max\{n, m\}, & \text{if } x \in P_n, \ y \in P_m, \ n \neq m \end{cases}$$

Since (ω, d) is locally finite, we can choose a subset $U \in \mathcal{U}$ which is thin in (ω, d) . By the definition of thin subset, there exists a bounded subset Y of (ω, d) such that $B_d(x, 1) \cap B_d(x', 1) = \emptyset$ for all distinct $x, x' \in U \setminus Y$. Since Y is finite, we conclude that \mathcal{U} is a Q-point.

Theorem 8 is proved.

A situation with T-points with respect to the class of all metrizable uniformly locally finite balleans on ω is much more delicate. It is proved in [3] that all P-points and all Q-points are Tpoints, but it is unknown whether there exists a T-point in ZFC without additional set-theoretical assumptions. Now we give some characterization of T-points based on sequences of coverings of ω .

Let us say that a covering \mathcal{F} of ω is *uniformly bounded* if there exists a natural number n such that, for each $x \in \omega$,

$$|st(x,\mathcal{F})| \leqslant n,$$

where $st(x, \mathcal{F}) = \bigcup \{F \in \mathcal{F}G \colon x \in F\}.$

Theorem 9. An ultrafilter $\mathcal{U} \in \omega^*$ is a *T*-point with respect to the class \mathcal{K} of all metrizable uniformly locally finite balleans on ω if and only if, for every sequence $(\mathcal{F}_n)_{n \in \omega}$ of uniformly bounded coverings of ω , there exists $U \in \mathcal{U}$ such that, for each $n \in \omega$, $|F \cap U| \leq 1$ for all but finitely many $F \in \mathcal{F}_n$.

Proof. We assume that \mathcal{U} is a T-point with respect to \mathcal{K} and fix a sequence $(\mathcal{F}_n)_{n\in\omega}$ of uniformly bounded coverings of ω . We consider a ball structure $\mathcal{B} = (\omega, \omega, B)$, where $B(x, n) = st(x, \mathcal{F}_n)$, and take the ballean envelope env $\mathcal{B} = (\omega, P, B')$ of \mathcal{B} , the smallest ballean on ω such that $\mathcal{B} \prec \text{env } \mathcal{B}$ (see [6, p. 191]). By the description, env \mathcal{B} is uniformly locally finite and P is countable. Joining the elements 0, n to the first member of \mathcal{F}_n , we may suppose that env \mathcal{B} is connected. By [6] (Theorem 2.1.1), env \mathcal{B} is metrizable. Since \mathcal{U} is a T-point with respect to \mathcal{K} and env $\mathcal{B} \in \mathcal{K}$, there is a subset $U \in \mathcal{U}$ which is thin in env \mathcal{B} . We note that $\omega \subseteq P$ and B(x, n) = B'(x, n). Hence, for each $n \in \omega$, there exists a finite subset V of ω such that $|U \cap st(x, \mathcal{F}_n)| \leq 1$ for each $x \in U \setminus V$. It follows that $|U \cap F| \leq 1$ for all but finitely many $F \in \mathcal{F}_n$.

To prove the converse statement, we take an arbitrary uniformly locally finite metric d on ω , and put

$$\mathcal{F}_n = (B_d(m, n))_{m \in \omega}, \quad n \in \omega.$$

Since each covering \mathcal{F}_n is uniformly bounded, there is $U \in \mathcal{U}$ such that, for each $n \in \omega$, $|U \cap \cap B_d(m,n)| \leq 1$ for all but finitely many $m \in \omega$. This means that U is thin in $\mathcal{B}(\omega, d)$.

Theorem 9 is proved.

We conclude this section with the following observation suggested by Sergiy Slobodianiuk.

Theorem 10. An ultrafilter \mathcal{U} on ω is a *P*-point if and only if, for every metric *d* on ω , either some member of \mathcal{U} is bounded in (X, d) or there is $U \in \mathcal{U}$ such that (U, d) is locally finite.

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

348

BALLEANS AND G-SPACES

Proof. Assume that \mathcal{U} is a *P*-point, fix $x_0 \in \omega$ and write ω as a union $\omega = \bigcup_{n \in \omega} B_d(x_0, n)$. It follows from a definition of a *P*-point that there is $U \in \mathcal{U}$ such that *U* is contained in some ball $B_d(x_0, n)$ or *U* meets each ball in finite number of points. Thus, *U* is bounded in the first case and (U, d) is locally finite in the second case.

To prove the converse statement, we use the metric d defined by the partition $\{P_nG: n \in \omega\}$ of ω in Theorem 8. Let U be a subset of X. If U is bounded in (X, d) then U is contained in the union of finitely many blocks. If (U, d) is locally finite then U meets each block in finite number of points.

Theorem 10 is proved.

3. Comments and open questions. We say that an ideal \mathcal{I} on a group G is *invariant* if, for each $A \in \mathcal{I} \bigcup_{g \in G} g^{-1}Ag \in \mathcal{I}$. If X is a left-regular G-space and \mathcal{I} is an invariant group ideal on G then, the mapping

$$\mathcal{B}(G, X, \mathcal{I}) \times \mathcal{B}(G, X, \mathcal{I}) \to \mathcal{B}(G, X, \mathcal{I}),$$

 $(g, x) \mapsto gx$ is a \prec -mapping.

Question 1. Given a ballean \mathcal{B} on the set X, how to detect whether \mathcal{B} is asymorphic to $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some invariant group ideal \mathcal{I} on G?

A subset A of a topological group G is called bounded if, for every neighbourhood \mathcal{U} of the identity, there exists a finite subset F of G such that $A \subseteq FU$, $A \subseteq UF$. The family \mathcal{I} of all bounded subsets of G forms an invariant group ideal. For balleans on topological groups determined by these ideals see [1].

Question 2. Given an invariant group ideal \mathcal{I} on a group G, how to detect whether there is a group topology τ on G such that \mathcal{I} is an ideal of bounded subsets of the topological group (G, τ) ?

We say that a filter φ on a group G is a group filter if, for any $B \in \varphi$, there exists $A \in \varphi$ such that $A = A^{-1}$ and $AA \subseteq B$. A filter φ is *invariant* if, for any $B \in \varphi$ and $g \in G$, there is $A \in \varphi$ such that $g^{-1}Ag \subseteq B$. Clearly, each invariant group filter is a base at identity for some group topology on G.

Let X be a G-space, φ be a group filter on G. The triple (G, X, φ) determines a uniformity \mathcal{U} on X with a base of entourages of the diagonal Δ_X consisting of all subsets of the form $\{(x, y)G : y \in Ax\}, A \in \varphi$. If φ is invariant then, for each $g \in G$, the mapping $X \to X, x \mapsto gx$ is uniformly continuous in \mathcal{U} .

Question 3. Given a uniform space (X, U), how to detect whether there exist a subgroup G of S_X and a group ideal (an invariant group ideal) \mathcal{I} such that the triple (G, X, φ) determines (X, U)?

In the following questions "T-point" means "T-point in the class of all metrizable uniformly locally finite balleans on ω ".

An ultrafilter $\mathcal{U} \in \omega^*$ is a *P*-point if and only if, for every Hausdorff topology τ on ω , some member $U \in \mathcal{U}$ has at most one limit point in (ω, τ) , in particular, some member of \mathcal{U} is discrete in (ω, τ) .

Question 4 (T. Banakh). Let U be a free ultrafilter on ω such that, for each metrizable topology τ on ω , some member of U is discrete. Is U a T-point?

We say that an ultrafilter $\mathcal{U} \in \omega^*$ is sequentially selective if, for any sequence $(\mathcal{P}_n)_{n \in \omega}$ of uniformly bounded partitions of ω , there is $U \in \mathcal{U}$ such that, for each $n \in \omega$, $|P \cap U| \leq 1$ for all but finitely many $P \in \mathcal{P}_n$. By Theorem 9, each T-point is sequentially selective.

Question 5. Is every sequentially selective ultrafilter $U \in \omega^*$ a T-point? Does there exist a sequentially cell selective ultrafilter in ZFC?

An ultrafilter $\mathcal{U} \in \omega^*$ is called *rapid* if, for any partition $\{P_n G \colon n \in \omega\}$ of ω into finite subsets, there exists $U \in \mathcal{U}$ such that $|U \cap P_n| \leq n$ for each $n \in \omega$.

Jana Flašková noticed that a rapid ultrafilter needs not to be a *T*-point. Her arguments: a square of rapid ultrafilters is rapid but a product of two free ultrafilters could not be a *T*-point. If \mathcal{U} , \mathcal{V} are ultrafilters on ω then $\mathcal{U}\mathcal{V}$ is an ultrafilter on $\omega \times \omega$ with the base of subsets of the form $\bigcup_{x \in U} (x, V_x)$, $V_x \in \mathcal{V}, U \in \mathcal{U}$. To see that $\mathcal{U}\mathcal{V}$ is not a *T*-point, we can either apply Theorem 8 or endow ω with the structure of an arbitrary group and use the definition of a *T*-point.

Each countable group G of permutations of ω is contained in some 2-generated subgroup of S_{ω} (see [2]), so in the definition of a T-point given in [3] we can use only 2-generated subgroup of S_{ω} . We say that an ultrafilter $\mathcal{U} \in \omega^*$ is a *cyclic T-point* if, for each infinite cyclic subgroup G of S_{ω} , there exists $U \in \mathcal{U}$ thin in the ballean $\mathcal{B}(G, \omega, \mathcal{F}_q)$.

Question 6. Is every cyclic *T*-point a *T*-point?

Let $\mathcal{B} = (X, P, B)$ be a ballean. A subset L of X is called *large* if there exists $\alpha \in P$ such that $X = B(x, \alpha)$. A subset S of X is called *small* if $(X \setminus S) \cap L$ is large for each large subset L.

Let G be a group of all permutations of ω with finite support (supp $g = \{x \in \omega G : gx \neq x\}$). A subset A of ω is small in $\mathcal{B}(G, \omega, \mathcal{F}_G)$ if and only if A is finite, but each subset of ω is thin. On the other hand, if X is left regular G-space then each thin subset is small.

Question 7. Does there exist a ZFC-example of a free ultrafilter on ω such that, for every countable group G and every left regular action of G on ω , there is a member of U small in the ballean $\mathcal{B}(G, \omega, \mathcal{F}_G)$? Is a weak P-point such an ultrafilter?

- 1. Hernandez S., Protasov I. V. Balleans on topological groups // Ukr. Math. Bull. 2011. 8. P. 87-100.
- Higman G., Neumann B. H., Neumann H. Embedding theorems for groups // J. London Math. Soc. 1949. 24. P. 247–254.
- 3. Petrenko O., Protasov I. V. Thin ultrafilters // Notre Dame J. Formal Logic. 2012. 53, Issue 1.
- 4. Protasov I. V. Balleans of bounded geometry and G-spaces // Math. Stud. 2008. 30. P. 61-66.
- Protasov I., Banakh T. Ball structures and colorings of groups and graphs // Math. Stud. Monogr. Ser. Lviv: VNTL Publ., 2003. – Vol. 11.
- 6. Protasov I., Zarichnyi M. General asymptology // Math. Stud. Monogr. Ser. Lviv: VNTL Publ., 2007. Vol. 12.
- 7. Roe J. Lectures on coarse geometry // Univ. Lect. Ser. Providence, RI: Amer. Math. Soc., 2003. Vol. 31.

Received 31.08.11