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CONFORMAL ISOPARAMETRIC SPACELIKE HYPERSURFACES
IN CONFORMAL SPACES Q* and Q3"

KOH®OPMHI I3OITAPAMETPUYHI TPOCTOPOIIOAIBHI I'NITEPIIOBEPXHI
Y KOH®OPMHHUX IMMPOCTOPAX Qf I Q?

We study the conformal geometry of conformal spacelike hypersurfaces in the conformal spaces Q} and Qf. We obtain a
complete classification of conformal isoparametric spacelike hypersurfaces in Q7 and Q3.

BuBYEHO KOHDOPMHY reoMeTpilo KOH(GOPMHHMX MPOCTOPONOIGHUX TimeproBepXxoHb y KoudopMuux mpoctopax Qf i QF.
OtpuMano MoBHY Kiacu(ikamio KOHGOPMHIX i30MapaMeTpHYHAX IPOCTOPONomiGHuX Timeprosepxonb y QF ta QF.

1. Introduction. Let (,), be the Lorentzian inner product with s negative index of the (n + s)-di-
mensional Euclidean space R™5. Denoted by

n n—+s
(X,Y)s = szyz — Z Y, X = (z3), Y = (y;) e R™.
i—1 i=nt1

Let RP"*2 be (n + 2)-dimensional real projective space. The quadric surface

Q! = {[¢] € RP"2|(¢,£)2 = 0},

is called conformal space. We define the Lorentzian space ]R?'H, de Sitter sphere S’f“ and anti-de
Sitter sphere H ! by

Ry = (R™L (), SPH = fu e R™|(u,u) = 1},

HH = {u € R"™|(u, u)e = —1}.

We call Lorentzian space R, de Sitter sphere ST and anti-de Sitter sphere H"™ Lorentzian
space forms.

Denote 7 = {[z] € QI a1 = 2pis), 70 = {[z] € Q' zpyz = 0} and 7_ = {[2] €
€ Qi xy = 0}. Observe the conformal diffeomorphisms

oo: RY = QP N\m, wis [<<u’u>_1 u <u’u>+1>},

2 T 2
o1 ST = QU I\, we [(u, 1)),

o1 M 5 QU1 wes [(1,u)].

From [13], we may regard Q7" as the common compactified space of R" ™' S+ and HI
while R7 ST and H} ™ are regarded as the subsets of Q7.
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Suppose that z: M — Q?H is a nondegenerated hypersurface, that is, (7T M) is nondegen-
erated subbundle of TQ7 ™. Let y: U — RY™ be a lift of 2: M — Q™! defined in an open
subset U of M. We denote by A and « Laplacian and the normalized scalar curvature of the local
nondegerated metric (dy, dy). Then know that on M the 2-form g = e((Ay, Ay) — n%k)(dy, dy) is
a globally defined invariant of x: M — Q?H under the conformal group transformations of Q?H.
When the 2-form g = £((Ay, Ay) — n’k)(dy, dy) is nondegenerated, we call z: M — Q7 a
conformal regular hypersurface and g = £((Ay, Ay) — n’k)(dy, dy) the conformal metric of z,
where ¢ = —1 (spacelike) or ¢ = 1 (timelike). From [13], we know that there exists a unique lift
Y: U — Ry such that g = (dY,dY’) up to a signature and we call Y the canonical lift of . It is
obvious that g = 0 if and only if x: M — Q?H is a umbilical hypersurface.

Let x: M — Q?H be an n-dimensional immersed conformal regular spacelike hypersurface
in conformal space Q’f“. We choose a local orthonormal basis {e;} for the induced metric I =
= (dz,dz) with dual basis {0;}. Let I] = Z _h;j6; ® 0; be the second fundamental form and

Z7J

1 . . .
H=-— E _h;; the mean curvature of the immersion x. From [7], we know that the conformal metric
n 7

of the immersion x can be defined by g = Ll {Z hZ — nHQ} (dz,dx) = €*"(dz,dx), which
n— i,

ij
1s a conformal invariant. Denote

n n n
b = Z e’ C;6;, A= Z 627Aij0i X Hj, B = Z €2TBZ‘j9Z' X 9j, (1.1)
=1 ij=1 ij=1

where C;, A;; and B;; are defined by formulas (2.1)—(2.3) in Section 2. We call ®, A and B
conformal form, conformal Blaschke tensor and conformal second fundamental form of the immersion
x, respectively. It is easy to prove that &, A and B are conformal invariants.

The conformal geometry of regular hypersurfaces in the conformal space is determined by confor-
mal metric. The negative index of conformal space Q?H is 1. If the negative index is degenerate, we
obtain the Mdbius geometry in the unit sphere which had been studied by many authors (see [1-7,
9, 10, 16— 18]). We call the eigenvalues of B the conformal principal curvatures of the immersion x,
while the eigenvalues of A are called the conformal Blaschke eigenvalues of x. A regular spacelike
hypersurface z: M — Q?H is called a conformal isoparametric spacelike hypersurface, if ® = 0
and the conformal principal curvatures of the immersion z are constant.

Let S¥(a) and H*(a) denote k-dimensional sphere and k-dimensional hyperbolic surface with

radius —, S¥(a) and H¥(a) denote k-dimensional de Sitter sphere and k-dimensional anti-de Sitter
a

1
sphere with radius —, where a is a constant parametric. Recently, C. X. Nie et al. [11 — 14] studied the
a

conformal geometry of regular spacelike hypersurfaces in the conformal space Q?H and obtained
the following results:

Theorem 1.1 [12]. Ifx: M — Q?H is a conformal regular spacelike hypersurface in Q?H
with parallel conformal second fundamental form, then M is conformal equivalent to an open part
of these standard embeddings:
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—1 —1
(i) the Riemannian product S™(a) x H" ™™ — (\/a2 — n> in S’f‘H( _n= )7
m ) m

(n—m (n—m)
a>1/mgjl_1m);

-1
(ii) the Riemannian product R™ x H”_m< L > in R
m(n —m)

-1 -1
(iii) the Riemannian product H™ (a) x H"~™ L AT (S (N S ,
) ! m

m(n —m (n—m)
n—1
PN = m)

(iv) the spacelike hypersurface x = oo o u: SP(a) x Rt x R*P=4=1 x HI(b) — QU with
b=+vVa2—1,p>1,q¢>1,p+q<n,whereu: SP(a) x RT x R""P=9~1 x H4(b) — RZH'Q C R?H:
u(u,t,u” u") = (tu,u”, td"), W €SP(a), teRT, o eRVPTI /" c HI(O).

Theorem 1.2 [13]. I[fx: M — Q?H is a conformal isoparametric spacelike hypersurface with

two distinct principle curvatures, then M is conformal equivalent to an open part of these standard
embeddings:

—1 —1
(i) the Riemannian product S™(a) X H”_m<\/a2 — n) in S?H( mni >7

m(n —m) (n—m)
a>,/m(nn__1m);

-1
(ii) the Riemannian product R™ X Hnm< L ) in R?H;
m(n —m)

-1 -1
(iii) the Riemannian product H™(a) x H" ™™ T @2 in H L ,
m(n —m) m(n —m)
n—1

O<a</————.
m(n —m)

We notice that in [4] and [5], the authors classified the Mobius isoparametric hypersurfaces in
the unit spheres S* and S°. In this paper, we obtain the complete classification of conformal isopara-

metric spacelike hypersurfaces in Q and Q3.

Theorem 1.3. Let x: M — Q} be a conformal isoparametric spacelike hypersurface in Qf.
Then M is conformal equivalent to an open part of these standard embeddings:

(i) the Riemannian product S™(a) x H3~™ (\/a2 - m(32—m)) in S‘f( m(2) >, a >

3—m
N
m(3 —m)

2
1) the Riemannian product X - —— ) in m = :
(ii) the R product R™ x H3—™ R$, 1,2;
m(3 —m)
2 2
(111) the Riemannian product Hm(a) X H3—m( m — a2> in Hﬁll< m > y 0<
2
<a<,/—— m=1,2;
m(3 —m)

(iv) the spacelike hypersurface x = ogou: S*(a) x RT x H(b) — Qf with b = Va% — 1, where
u: St(a) x RT x HY(b) — R} C R} :
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560 SHICHANG SHU, BIANPING SU

uw(u t,u") = (td, td"), u' € Sl(a), teR", " eH(b).

Theorem 1.4. Let x: M — Q3} be a conformal isoparametric spacelike hypersurface in Q3.
Then M is conformal equivalent to an open part of these standard embeddings:

3 3
(i) the Riemannian product S™(a) x HA=™ (\/a2 - m(4—m)> in Sg’( m(4—m) )’ @ =
- =1,2,3;
” m(4—m)’ eSS
(ii) the Riemannian product R™ x H4m< 3) inR}, m=1,2,3;
m(4 —m)
(iii) the Riemannian product H™ (a) x H4_m( m(43—m) - a2> in H?< m(43_m) > 0 <

ca<,— m=123
m(4 —m)

(iv) the spacelike hypersurface © = oy o u: SP(a) x RY x R¥P=4=1 x H9(h) — Q) with
b=Va2—-1,p>1,q>1,p+q<4, where u: SP(a) x RT x R*P=4=1 x H4(b) — RS C R} :

w(u t,u” ") = (td u" "), u e SP(a), teRT, W e RYPTITL " e HY(b).

2. Fundamental formulas on conformal geometry. In this section, we review the conformal
invariants and fundamental formulas on conformal geometry of spacelike hypersurfaces in Q’f“, for
more details (see [14]).

Letx: M — Q?H be an n-dimensional conformal regular spacelike hypersurface with ® = 0
in Q’f“. We have (see [13])

(AY,AY) = (n’k — 1),

where Y is the canonical lift of z defined in Section 1 and n(n—1)x is the conformal scalar curvature
of x. Let {E1, ..., E,} denote a local orthonormal frame on (M, g) with dual frame {wi,...,wp}.
Putting Y; = E;(Y), then we have

1

1
N=_-Ay -
n 2n?2

(AY, AY)Y,

<N7Y>:17 <N?N>:07 <Y;7N>:07 <Y;7Y3>:6Uv IS% jSTL

Let V be the orthogonal complement to the subspace Span{Y, N,Y7,...,Y,} in ]R?“. Along M,
we have the following orthogonal decomposition:

R’f+2 = Span{Y, N} ® Span{Y1,...,Y,} &V,

where V is called conformal normal bundle of the immersion x. Let £ be a unit basis of V and
(€,6) = —1. Then {Y,N,Y1,...,Y,, & } forms a moving frame in R?H along M. We use the
following range of indices throughout this paper:

1<4,5,k1,m<n.
The structure equations on M with respect to the conformal metric g can be written as
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dY =) wYi,
7
AN = Y + ¢,
)

dY; = =Y —wiN + Y wij¥j + wint1€,

J
dé = ¢Y + ) win1Vi,

where {1, wij, Winy1, @} are 1-forms on M with
Wij + Wy = 0.

By exterior differentiation of these equations, we get

Zwi/\l/lizo, Zwm+1/\wi:0,
i i
dw; = Zwij AN wj,
J
dipi =Y wij Ay + Wing1 A &,
J
dp = wing1 A i,
i

dwi; = Zwik A Wgj + Wing1 A Wing1 — wi APy — Py Awy,
2

dwin+1 = sz‘j AN Wjng1 +w; A @,
J

where

Yy = E Aijwj, Aij = Ay, Win41 = g Bijwj, Bi;j = Bji,
J J

561

o= Ciw;.

Let the conformal metric g = €27 1. Then the local orthonormal frame {E1, ..., E,} on (M, g) and
the dual frame {w;,...,wy} satisfy E; = e”"e; and w; = €76;. A;;, B;j and C; are locally defined

functions and satisfy

62701' = HTZ' — Hz‘ — Zhij’rj,
J

1
GZTAZ']' =TiTj — Tij —Hhij — 5 <ZTka — H2 — 6> Iz'j,
k

ISSN 1027-3190. Yxp. mam. xcyphu., 2012, m. 64, Ne 4
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eTBij = hij - HIZ‘J‘, (23)

where 7; ; is Hessian of 7 with respect to the first fundamental form I, 7 = Z T, (1Y) =
j

= (I;;)"', H; = ¢;(H) and € = 0 for R} e =1 for ST and e = —1 for H"™ (see [14])

. 9 N — 1 B 1 5
DS Bi=0. Y. By="— A= -(nk-1) (2.4)
7 2,
Defining the covariant derivative of C;, A;;, B;; by
Z Cijwj = dCi + Z Cjwji, (2.5)
J J
Z Agjpwr = dAij + Z Aigwrj + Z AkjWri, (2.6)
k k k
> Bijiwp = dBij + Y Biwrj + »_ Brjwii, (2.7)
k k k
1
dw; = zk:wz‘k AWkj — 5 %: Rijriwi N wi, Rijki = —Rjiki, (2.8)
we have
Aijk — Air,j = BijCr — BirCj, (2.9)
Cij— Cji=Y (BirArj — BrjAri), (2.10)
k
Bije — Bik,; = 0i;Cr — 0irCj, 2.11)
Rijiy = —(BaBji — BaBji) + 6 Aji + 61 Ak — 0iAjr — 0 Aq, (2.12)

where R;jr; denotes the curvature tensor with respect to the conformal metric g on M. Since the
conformal form ® = 0, we have for all indices i, j, k

Aijk = A, Bijk=DBij, Y BixArj =) BijAp. (2.13)
K K
Defining the second covariant derivative of B;; by
> Bijmwi = dBijr+ Y Biswi + Y Bugwy + > Bijiwik, 2.14)
I I ! I

we have the following Ricci identities:

Bijx — Bijak = Z B Rkt + Z Bim Ry jit - (2.15)
m m

3. Some examples and propositions. We cite some examples of conformal regular spacelike
hypersurfaces in Q) *:
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Example 3.1. Spacelike hypersurface z: S™(a) x H* ™ (Va2 — r2) — STT(r), 7 < a. Let
x = (x1,x2) € S"(a) x H"™™ (\/ a? — 7“2) C R x Ro—mHL

2 2 2
(z1,21) = a®, (x2,2) = — (a® —71%),
and
va?z —r2x a 9
ept1 = |~
a T Vai —r2r
be the unit normal vector of z such that (e,,11,e,+1) = —1. By a direct calculation, we know

that « has two distinct conformal principal curvatures — and — with multiplicities m and n — m,
r rc

2 _ 2
respectively, where ¢ = veem The conformal second fundamental form of x is parallel.

a
Example 3.2. Spacelike hypersurface z: R™ x H" ™™ (r) — R,

T
Let x = (x1,x2), 71 € R™, 29 € H" ™ (r) C R?*m“, (w9, 29) = —r% and e,41 = (O, :)

be the unit normal vector of z such that (e,,11,e,+1) = —1. By a direct calculation, we know

that « has two distinct conformal principal curvatures 0 and —— with multiplicities m and n — m,

r
respectively. The conformal second fundamental form of x is parallel.

Example 3.3. Spacelike hypersurface z: H™ (a) x H" ™ (v/r2 —a?) — HT(r), 0 < a < r.
Let

v = (a1,72) € H™(a) x H" ™ (V2 —a? ) C Ry x R,

2 2 2
<x17x1>:_a 3 <.’L’2,.’L’2>:—(’F —a )7
and
VT2 —a? a o
€n+1 = | — ) -
a roAr2—a2r
be the unit normal vector of = such that (e, +1,e,4+1) = —1. By a direct calculation, we know that
2 has two distinct conformal principal curvatures — and —— with multiplicities m and n — m,
T rc
2 _ 42
respectively, where c = ———. The conformal second fundamental form of x is parallel.

a
Example 3.4 [12]. For any natural number p, ¢, p + ¢ < n and real number a € (1, +00) and
b = +/a® — 1, consider the immersed hypersurface u: SP(a) x RT x R*P=4=1 x HI(b) — R} C
C ]R?H :
u(u t,u” ") = (k" td"), W €SP(a), teRF, W eRVPIL " e HI®D).

Then z = g o u: SP(a) x Rt x R"P=9=1 x HI(b) — Q"' is a conformal regular spacelike
hypersurface in Q’f“, it is denoted by W P(p, ¢, a) = z(SP(a)x RT x R*"P=4~1 xH4(b)). From [12],
by a direct calculation, we know that W P(p, ¢, a) has three distinct conformal principal curvatures
and the conformal second fundamental form is parallel.

From Nomizu [15], Li and Xie [8], we know that the following:
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Proposition 3.1 [15, 8]. Let x be Euclidean isoparametric spacelike hypersurfaces in Lorentzian
space forms. Then x can have at most two distinct Euclidean principal curvatures.

Proposition 3.2. Letxz: M — Q?H be an n-dimensional conformal isoparametric spacelike
hypersurfaces in Q?Jrl with constant normalized conformal scalar curvature . and k # 1. Then x is
an n-dimensional Euclidean isoparametric spacelike hypersurfaces.

Proof. Let k and R be the normalized conformal scalar curvature and the normalized Euclidean
scalar curvature. From [14], we know that k = R. Let B; and \; be the conformal principal curvatures
and the Euclidean principal curvatures of . Since (2.3) implies that the matrix (B;;) and (h;;) are
commutative, we can choose a local orthonormal basis such that B;; = B;d;; and h;; = \;0;;. From
(2.3), we have

e"B; =\ — H. (3.1)
From (2.1), we have
O:HTZ—Hl—)\ZTZ: (H—)\z)’TZ—Hz (32)

From the Gaussian equation of x, we have n(n — 1)(R — 1) = Z , h?j —n?H?. Thus
Z7]

2r 1 2 2| _ 2 2
= — Zhij—nH =n?(R—1+ H?). (3.3)
Z?]
Since « is constant, we know that R is constant. From (3.3), 7; = R+ From (3.2),
R—-1+XNH
=———H;. 34
R—1+H?"" S

If H is not constant, then there is some ¢ such that H; # 0. Thus R — 1+ A\, = 0 for such 7. From
(3.1), we have that R — 1 + (¢"B; + H)H = 0 for such i. Combining with (3.3), we see that for
such ¢

R—1+ (nV/R—1+ H?B;+ H)H = 0.

Thus, we see that for such ¢
(n*B? —1)H* + (n’B? —2)(R—1)H* - (R—-1)*=0. (3.5)

Since B; is constant, if nzBi2 —1 = 0, from (3.5) and R # 1, we infer that H?> = 1 — R is
constant, this is a contradiction. If n?BZ — 1 # 0, by (3.5) and R # 1, we see that H2 =1 — R or
o R-1

- n2B? -1’
that \; are constant for all 7 .

also a contradiction. We conclude that H must be constant. From (3.1), we know

Proposition 3.2 is proved.

4. Proofs of theorems. Proof of Theorem 1.3. From (2.4), we know that the number ~ of distinct
conformal principal curvatures can only take the values v = 2, 3. From (2.13), we know that we can
choose the local orthonormal basis F; to diagonalize the matrix (B;;) and (A;;), that is, B;; = B;6;;
and Ai]’ = A’Lélj
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Let By, Bo, B3 be the constant conformal principal curvatures of x. From (2.7), we have

Z Bijpwr = (Bi — Bj)w;j. 4.1
k
We consider the following cases:
(1) If vy = 2, from Theorem 1.2, we know that Theorem 1.3 is true.
(2) If v = 3 and the conformal second fundamental form is parallel. From Theorem 1.1, we know
that Theorem 1.3 is true. If v = 3 and the conformal second fundamental form is not parallel. We
can prove that this case does not occur. In fact, since By # By # Bjs, from (4.1), we have

B =0, forall ik, 4.2)
and
Bij i L,
wij = Z ?‘%ijk, for i #j. 4.3)
k

Since the conformal second fundamental form is not parallel, combining with (4.2), we know that
B3 # 0. We may prove that By 3 is constant. In fact, from (2.14), (4.2) and (4.3), we have

> Biaskwi = dBiag, (4.4)

Z Bu JEWE = 2 Z Blz JWli = 2 Z Z Bll’]Blz k (45)

l#1,5 k 1#ij
Thus,
Bivjp =2 Z Blz,]Blz 3 (4.6)
l#i,j
From (4.2) and (4.6), we know that
Biiji = B =0, for distinct i, , . 4.7)

From (2.15), we have
Bij ki — Bijik = (Bi — Bj) Rij-
From (2.12), we know that if three of {4, j, k, [} are either the same or distinct, then Rijr = 0. Thus,
if three of {4, j, k, [} are either the same or distinct, then

Bij ki = Bijk- (4.8)

From (4.7), (4.8) and (2.13), we have B1231 = B1123 = 0, B1232 = B22.13 = 0, B1233 = B33,12 =
= 0. Thus, (4.4) implies that dB123 = 0. Therefore, we know that Bjs 3 is constant. From (4.3)
and (2.8),

2B 3
(B1 — B3)(B2 — B3)

1
—5 > Rigpwr Awy = dwig — wig Awsy = — w1 A wa,

k.l
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1 2B 3
—— Rispiwi A wp = dwig — wio A wag = — . w1 N ws,
2 ; 13 ' (B1 — Bs)(B; — Ba)
1 Z R d 2B 3
—— LIWE N\ W] = w23 — wo1 A W13 = — - wo A w3.
24 v ' (B2 — B1)(B3 — By)
Thus,
R 23%2,3
212 = )
' (B1 — B3)(B2 — Bs)
R 283,
1313 — ’
(B1 — Bg)(Bs — Ba)
. 28,
2323 = .
(B2 — B1)(Bs — B1)
We have

K= é Z R;jij = Ri212 + R1313 + Ragaz = 0.
i#]

From (3.1) and Proposition 3.2, we know that x is a 3-dimensional Euclidean isoparametric
spacelike hypersurfaces with three distinct Euclidean principal curvatures. This is in contradiction
with Proposition 3.1.

Theorem 1.3 is proved.

Proof of Theorem 1.4. From (2.4), we know that the number ~ of distinct conformal principal
curvatures can only take the values v = 2, 3, 4. From (2.13), we know that we can choose the local
orthonormal basis £; to diagonalize the matrix (B;;) and (A;;), that is, B;; = B;d;; and A;; = A; ;.

Let By, Ba, B3, B, be the constant conformal principal curvatures of . We consider the follow-
ing cases:

(1) If vy = 2, from Theorem 1.2, we know that Theorem 1.4 is true.

(2) If v = 3 and the conformal second fundamental form is parallel. From Theorem 1.1, we
know that Theorem 1.4 is true. If v = 3 and the conformal second fundamental form is not parallel.
We can prove that this case does not occur. In fact, without loss of generality, we may assume that
By # By # B3 = By. From (4.1), we have

By =0, Bsyp =0, forall ik, 4.9)
and
Bii g
Wij = Z Bi%j’ijk, for B; # Bj. (4.10)
k

From (4.9), (4.10) and (2.14), we have

2B123B12,4

4.11
By B, “ (4.11)

E B3 qw; = Bi24we3 + B2 3was =
]
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23123 2B12,3B12,4
B =2B ! : 4.12
Ez 11,31W] 123021 = B W B, B, Y 4.12)
Comparing two side of (4.11) and (4.12), we have
2B12 3B
B3 41 = e B13,42 = B13.43 = B1344 = 0, (4.13)
By — Bs
2B, 3 2B123B124
Bijag = 123 g 2PR3BRa . p 4.14
B8 = g g 11,34 By B, 11,32 4.14)

From (4.8), (2.13), (4.13) and (4.14), we have B2 38124 = 0. Since the conformal second funda-
mental form is not parallel, without loss of generality, we may assume that B2 3 # 0 and Bya 4 = 0.
We may also prove that By 3 is constant. In fact, from (2.14), (4.9) and (4.10), we have

> Biggkwi = dBiag, (4.15)
k
Blz,]Blz k
ZBWM =2 Bijwi=2) Z w, for B+ B;. (4.16)
I#1,5 k 1#ij
Thus,
B B
Biijk =2 Z gk gy By 4 B 4.17)
l#i,j

From (4.9) and (4.17), we know that
Bi; ji = Bji ;1 =0, for distinct 1, j, [. (4.18)
From (4.18), (4.8) and (2.13), we have
Bi231 = Bi123 =0, Bi232 = Bg 13 = 0, Bi2,33 = B3z, 12 = 0. (4.19)

On the other hand, from (4.9), (4.10) and By 4 = 0, we have

Bi2,3Bay, B
Z Bsgikwi = Bizzwzs = Z

By — B4
Thus,
Bi2,3Bask
B — 9 )
34,1k BQ — B4 )
and we have B34 12 = 0. From (4.8) and (2.13), we have
Bi2.34 = B3s412 = 0. (4.20)

(4.19) and (4.20) imply that dB12 3 = 0. Therefore, we know that B2 3 is constant.
From (4.9) and (4.10), we have

wig =woy = 0. (4.21)
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From (4.21) and (2.8), by a simple calculation, we have

1
—5 > Riggwp Aw = dwig — wiz Awsy =

kil
= — 2B%2’3 w1 A\ wg — 7312’3 wa N\ w
(By — B3)(By—Bs) " ? T By =By TP
1 2B%, ,
—= ) Rizgwi Awp = dwiz — w12 Aweg = — : w1 A ws,
2 ; (B1 — B2)(B3 — B2)
1 Bia3
—z ) Rupwp Awp = —wi3 Awgg = ——5—"5-wa N\ w34,
2 %z: B1 — Bs
1 2B%, ,
—= R A wyp = dwaz — A =— : A ws,
9 Z 23kIWE /A Wi W23 — W21 A W13 (Ba — B1)(Bs — Bl)wg w3
kl
1 Bio3
—= ¥ Rogpwi ANwp = dway — w3 Awsy = ———"—=w1 A wa4.
2 Z 32 _ Bg

k.l
Let wsgy = Zk F24wk, F%zl = —Fi3. Comparing two side of (4.22)—(4.26), we have

2B 3
By — B3)(B2 — B3)’

Ri212 = (

2B 3
By — By)(B3s — By)’

Ri313 = (

. 28,
From (4.22), (4.24) and (4.26), we know that

1 Bias 1 , 1
“Rigpy = T3 “Rygor = - T3, ~Rosp1 =
2 9 — 2 — B3 2

Ri414 = Rag24 = 0.

Bio3
B3 — By

3
r3,.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)

Since we know that the Bianchi identities of curvature tensors R;jx; are Rjp + Rigj + Rijr = 0
and Rijkl = Rklij, Rijlk = Rjiklv we have Rigor + Rioka + Rosp1 = 0. Thus, from (4.27), we have

Fi4 = 0 for all k. Thus w34 = 0. From (4.21) and (2.8)

1
—= Y Raggwip Awp = dwzg — Y wap Awpg = 0.
24 %

This implies that R3434 = 0. We have

1
k=15 Z Rijij = Ri212 + Ri313 + R1414 + Ra323 + Rogoq + R3434 = 0.

i#]
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From (3.1) and Proposition 3.2, we know that x is a 4-dimensional Euclidean isoparametric

spacelike hypersurfaces with three distinct Euclidean principal curvatures. This is in contradiction

with Proposition 3.1. Thus, we know that Theorem 1.4 is true.

(3) If v = 4, from [12], we know that the conformal second fundamental form is not parallel. We
can prove that this case does not occur. In fact, we may assume that By # By # B3 # B4. Denote
by i, j, k, [ the four distinct elements of {1, 2, 3,4} with order arbitrarily given, then from (2.7), we

have

B;j rwi + Bijiw

for i+ j.
B,—B, or i#j

Wij =

From (4.28) and (2.8), by a simple calculation (see [5]), we have

1
—5 Z Rijsiws N wp = dwij — wig N wij — wig Awyj =

s,t

2B2 2B2
= _ ( ij,k + ij,l ) wi A w,j

(Bi — Bg)(B; — By)  (Bi — B)(B; — Bi)

mod (ws N W, (S,t) 7é (i7j)7 (372)) .

Comparing two side of the above equation, we have

" QB% . 2B§j .
. — ) _|_ ) .
YUY (Bi = Bi)(Bj — By)  (Bi — Bi)(B; — By)
Thus,
B 2B7, 3 2B%, 4
Ri212 = + ;
(B1 — B3)(B2 — B3)  (B1 — By)(B2 — By)
B 2B7, 3 2B%3 4
Ri313 = + ,
(B1 — B2)(Bs — B2)  (B1 — B4)(Bs — By)
B 2B73 4 2B, 4
Rig14 = + ;
(B1 — B3)(Bs — B3) (B1 — B2)(Bs — Ba)
B 2B%, 3 2B33 4
Rogzo3 = + ;
(Ba — B1)(Bs — B1) (B2 — B4)(B3 — By)
2B, 4 2B33 4
Rogoq = + ;
(Ba — B1)(Bs — B1) (B2 — Bs3)(By — B3)
2B73 4 2B33 4
R3g34 = + .
(Bs — B1)(Bs — B1) (B3 — B2)(Bs — B2)
We have
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K= % Z Rijij = Ri212 + R1313 + R1414 + Ro323 + Rogoq + R3434 = 0.
i#]

From (3.1) and Proposition 3.2, we know that x is a 4-dimensional Euclidean isoparametric
spacelike hypersurfaces with four distinct Euclidean principal curvatures. This is in contradiction
with Proposition 3.1.

Theorem 1.4 is proved.
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