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ON THE IMPROVEMENT OF THE RATE OF CONVERGENCE
OF THE GENERALIZED BIEBERBACH POLYNOMIALS
IN DOMAINS WITH ZERO ANGLES

ITPO NOKPAINEHHS BUAKOCTI 3BI’KHOCTI
Y3ATAJIBHEHUX ITOJIHOMIB BIBEPBAXA
B OBJIACTSAX 3 HYJIbLOBUMU KYTAMM

Let C be the complex plane, let C = C U {oc}, let G C C be a finite Jordan domain with 0 € G, let L := 9G, let  :=
:= C\G, and let w = ¢(z) be the conformal mapping of G onto a disk B(0, po) := {w: |w| < po} normalized by »(0) =

=0, ¢'(0) = 1, where po = po (0, G) is the conformal radius of G with respect to 0. Let ¢, (2) := / [@'(C)]Q/p d¢
0
and let 7, ,(z) be the generalized Bieberbach polynomial of degree n for the pair (G,0) that minimizes the integral
// |¢p(2) — Pp(2)|” do in the class of all polynomials of degree deg P, < n such that P,(0) = 0 and P;,(0) = 1.
G

We study the uniform convergence of the generalized Bieberbach polynomials 7, ,,(2) to ¢, (2) on G with interior and
exterior zero angles determined depending on properties of boundary arcs and the degree of their tangency. In particular,
for Bieberbach polynomials, we obtain better estimates for the rate of convergence in these domains.

Hexait C — xommiexcha mrommna, C = C U {00}, G C C — ckinvenna xopranosa obnacts i3 0 € G, L :=
= 0G, Q := C\G i w = p(z) — xoudopmue Binobpaxenus G Ha kpyr B(0,po) := {w: |w| < po}, HOpMOBaHE
ymoBamu p(0) = 0, ¢©'(0) = 1, ne po = po (0, G) — xoudopmuwmii pagiyc G BimaocHo 0. [oknagemo @, (z) :=

= / [<p’(()]2/p d(¢. Hexail 7, (z) — y3aransHenuil noninom Bibepbaxa cremens n wist mapu (G, 0), mwo MiHiMizye

0
iHTerpan // lp(2) — Pp(2)|" do- y xnaci Beix noninomis crenens deg P, < n Taknx, mo P, (0) = 0, P;,(0) = 1.
G

BuBpyaeThcs piBHOMipHA 36iKHICTH y3aranibHeHUX ToNiHOMiB Bibepbaxa 7, ,(2) 10 pp(2) y G i3 BHyTpimmHiMu Ta
30BHILIHIMH HYJIBOBHMH KyTaMH, I10 BU3HAYAIOTHCS B 3aJICKHOCTI BiJ BIACTHBOCTEH I'PaHUYHMX YT Ta CTEICHS IXHBOTO
JOTHKY. 30KpeMa, Ais nosiHoMiB bibepbaxa OTpMMaHO MMOKpAIIeHi OLIHKY MIBUAKOCTI 301KHOCTI y IIUX 00JIacTsIX.

1. Introduction and main result. Let C be the complex plane, let C = C U {00}, let G C C be a
finite Jordan domain with 0 € G, let L := 9G, let Q := C\G, and let w = ¢(z) be the conformal
mapping of G onto a disk B(0, pg) := {w: |w| < po} normalized by the conditions ¢(0) = 0 and
©'(0) = 1, where pg = pg (0, G) is the conformal radius of G' with respect to 0.

Forp > 0, let A;,(G) denote the set of functions f(z) analytic in G, normalized by the conditions
f(0) =0 and f'(0) = 1, and such that

1/p

11, = gy = | [[ 17N do. ] <
G

where o denotes the two-dimensional Lebesgue measure.
Consider the extremal problem

{171, € AL(G)} — inf. (L.1)

It is well known [22, p. 426] that the function

© F. G. ABDULLAYEYV, N. P. OZKARTEPE, 2012
582 ISSN 1027-3190. Yxp. mam. acypnu., 2012, m. 64, Ne 5
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z

opl2) = / Q] d, zed, (1.2)

0

is the unique solution of the extremal problem (1.1). This function is well known in the geometric
theory of functions and is of great interest (see, e.g., [21]).

Let @, denote the class of all polynomials P,(z), deg P,(z) < n, satisfying the conditions
P,(0) =0 and P/ (0) = 1. For each p > 0, we consider the following extremal problem:

{H‘Pp—PanaPnE@n}%inf. (1.3)

Using a method similar to that given in [13, p.137], one can see that, for any p > 0, there
exists a polynomial P (z) that realizes a minimum of the integral ||, — Pyl|,, in the class pn,
and for p > 1 this polynomial is uniquely determined [13, p. 142]. We call this polynomial the n-th
generalized Bieberbach polynomial for the pair (G,0) and denote it by 7, ,(2). In the case p = 2,
the polynomial 7, »(z) coincides with the Bieberbach polynomial for the pair (G, 0) (see, e.g., [14]).

If G is a Carathéodory domain, then |, — mnpll, — 0 as n — oo [27, p. 63], and so the
sequence {7, ,(2)}0>, converges uniformly to ¢,(z) on compact subsets of G. Our purpose is
to extend the uniform convergence of the sequence {m,,(2)}22, to ¢,(z) on G. Moreover, we
investigate the estimate

les — Tl = max {lep(2) — Tup(2)], = € G} < const eny, (1.4)

where €, ,, = €,,,(p, G) = 0, n — 00, and its dependence on the geometric properties of G.

For p = 2, estimate (1.4) was studied in [18, 20, 26] in the case where L satisfies certain
smoothness conditions and in [2, 5, 810, 14, 15, 24], etc., in the case where L has some zero or
nonzero angles.

In the case p # 2, the existence of a sequence {e,, ,} — 0, n — o0, that satisfies (1.4) for some
domains with quasiconformal and piecewise-smooth (without cusps) boundary was investigated in
[17, 3, 6], etc. It is well known that quasiconformal curves have many properties, but they do not have
zero angles. Similar problems for domains of the class PQ (K, a, 3) with piecewise-quasiconformal
boundaries having interior and exterior zero angles with “power tangency” (of the type cx!™® and
cz' P for some o > 0 and 8 > 0) were investigated in [4].

Prior to introducing the class PQ (K, «, 3) , we give several definitions.

Definition 1.1 [19, p. 97; 23]. A Jordan curve L is called K-quasiconformal (K > 1) if there
is a K-quasiconformal mapping f of a domain D O L such that f(L) is a circle.

Let F(L) denote the set of all sense-preserving plane homeomorphisms f of domains D O L
such that f(L) is a circle and let

K (L) =inf{K(f): f € F(L)},

where K (f) is the maximal dilatation of a mapping f of this type. The curve L is K-quasiconformal
if and only if K (L) < oo. If L is K-quasiconformal, then K (L) < K.

In this paper, we consider the case D = C, i.e., we use the global definition of K -quasiconformal
curve.
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584 F. G. ABDULLAYEV, N. P. )ZKARTEPE

Definition 1.2. A Jordan arc { is called K-quasiconformal if £ is a part of some closed K-
quasiconformal curve.

We can now define the class PQ (K, «, 3) .

Note that, throughout this paper, c,c1, co, ... are positive constants and €,e1,¢€9,... are suffi-
ciently small positive constants that depend, in general, on G.

Definition 1.3 [2]. We say that G € PQ (K,a,(8), K > 1, a > 0, 8 > 0, if L := 0G is
the union of a finite number of K-quasiconformal arcs (K = maxi<;j<m {K;}) connected at the
points zg, 21, .. ., 2m and such that L is a locally K-quasiconformal curve at zy and the following
conditions are satisfied in the local coordinate system (x,y) with origin at zj, 1 < j < m:

a) for 1 < j <p, one has

{z =z +iy: |z| <ey, it <y < CQxHO‘} cQ,
{z=x+iy: |z| <e1, |y| > e2z} C G

b) for p+ 1 < 5 < m, one has

{z =z +iay: |z| <es, car' P <y < C4x1+5} C G,

{z=z+iy: |2] <es |yl > eax} CQ

Here, —00 < ¢] < ¢3 < 00, —00 < ¢3 < ¢4 < 00 and €; > 0, i = 1,4, are some constants.

It is clear from Definition 1.3 that each domain G € PQ (K, «, ) may have p exterior and
m — p interior zero angles. If a domain G does not have exterior (p = 0) (interior (p = m)) zero
angles, then we write G € PQ (K,0,3) (G € PQ (K,a,0)). If a domain G does not have these
angles (o« = = 0), then G is bounded by a K-quasiconformal curve. Further, PQ (K, o, 5) C
C PQ (K, ) (PQ(K,a,B1) C PQ(K,a,Bs)) for g > 1 (B2 > B1) and every fixed 5 > 0
and K > 1 (o> 0and K > 1).

In this paper, we study the convergence of generalized Bieberbach polynomials in the closed
domains G € PQ (K, a, 3) and estimate an upper bound &,,, = €5,(p, G) — 0, n — oo, and its
dependence on the geometric properties of G.

Prior to giving the main results, we introduce the following notation:

, . 2 VIT—1 V20K4*+4K2+1—-2K? -1
= min -1, — [ S — =
Po p ) 2+p 5 P1 9 5 P2 2K2 3
_ VB3KT4+2K?24+1- K2 -1
p3 = 2K2 3
and
Bo(p, K) :=

V(8K2+10+2pK2—p)2—16(K2+1) [4(K2 +1)—2p(K?2 + 1)-2]-8K?+10—-2pK? — p
8(K2+1) '
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2
Theorem 1.1. Suppose that p > 2, G € PQ (K, «a, ) for some K > 1, a < —, and 0 < f <
b

2
< min{g — 1;p+2}' Then, for any n > 2, one has

2—ap

1 2ap
lep = 7rn,pHc(é) < a nn :

Theorem 1.2. Suppose that 2 < p < 2v/2 and G € PQ (K,a,g — 1) for some K > 1,

2
o< 35 Then, for any n > 2, one has
D

2—3ap
1 2ap
llep — 7Tn,p||()(é) < e .

Inn

1
Corollary 1.1. Suppose that p = 2 and G € PQ(K, «,0) for some K > 1, 0 < a < 3 Then,

for any n > 2, one has
1—2«

1 2c
le = mallo@ < s 1 : (1.5)
In approximation problems, it is well known that if a domain has an exterior zero angle, then the

rate of approximation is “slower” than in its absence. Therefore, the right-hand sides of estimates for

A
such rates usually involve quantities of the type <1> . In the presence of an exterior zero angle,
nn

A

quantities of the type <lnln> , A > 0, cannot be replaced by <i>u for any p > 0. Moreover,
since PQ(K,a1,8) C PQ(K, a9, ) for ay > o, we may claim that the rate of approximation
improves as the class PQ(K, «, 3) becomes narrower with respect to « (for the same K and ). In
other words, as the exterior zero angle of a domain becomes “wider” (for the same K and (), the
degree of approximation improves.

In particular, for p = 2 and a domain G € PQ(K,«,0), a result corresponding to Corollary
1.1 was obtained by Andrievskii in [8] (see also [9] (Th. 2)), in which the right-hand side of (1.5)
contains the additional multiplier v/In Inn. However, Corollary 1.1 shows that this multiplier can be
omitted.

Now assume that there is no exterior zero angle (o« = 0). Then, in theory, the rate of approx-
imation must increase. The theorems presented below confirm this: the degree of approximation is

n nn

1\* 1\*
measured along the scale of <> but not the scale of <1> .

Theorem 1.3. Letp > 2 and G € PQ (K,0,0) for some K > 1and 0 < § < min{;9 -

K?2-1

—1; ————=———= /. Then, for any n > 2, one has
1+pK? + 3K2 } for any

llp — Wn,p”c(é) <ceqn,

1
Jor every y such that 0 < v < ——.
pK
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Theorem 1.4. Let2 < p < p3 and G € PQ (K,O,g — 1) for some K > 1. Then, for any

n > 2, one has

Inn
llp — Wn,p”g(é) < CSWa
1
for every ~y such that 0 < v < —.
1 ~
Theorem 1.5. Let 2 — 2K? < p < ps and G € PQ(K,0,58) for some K > 1 and

p . K*-1 1 p
max{§—1,0}<ﬁ<mm 1+pK2+3K274K2+§_1 . Then, for any n > 2, one has

H‘Pp - Wn,p”c(@) <cgn’,

1-2K%(28+2—p)
pK?

Corollary 1.2. Let p =2 and G € PQ (K,0,f) for some K > 1and 0 < 5 < min{

for every v such that 0 < v <

K?—1
14+5K2’

4]{2} Then, for any n > 2, one has

o — mllog < e,
1
hthat 0 < v < — — 20.
for every v such tha < 552 I5}

_ K? -1
Theorem 1.6. Letp > p3 and G € PQ (K, 0, ) for some K > 1 and

———= < P <
1+pK? + 3K2 &

2
< min b 1; —— ¢ . Then, for any n > 2, one has
2 2+0p

llp — Wn,pHc(é) <cgn7,
2-(p+2)B
P+ B)(K? 1)’
Theorem 1.7. Letp3 < p < 2v/2 and G € PQ (K,O,g — 1) for some K > 1. Then, for any

n > 2, one has

for every v such that 0 < v <

Inn
H‘Pp - ”n,pHc(é) < CQW’

2—(p+2)p
p(1+B) (K2 +1)

3 ~ ~
Theorem 1.8. Let 5 <p<2v2and G € PQ (K,0,p) for some 1 < K < Kj, where K, :=

K?-1 ~ D K? -1 ,
= maX{K: m < BQ(]?,K)} N and max{2 — 17W} < ﬁ < mln{po;

Ba2(p, K)} Then, for any n > 2, one has

for every v such that 0 < v <

llop — Wn,p”c(é) < cion” 7,

2-(p+2)8 2
p(L+B)(K2+1) »p

for every v such that 0 < v < (2642 —p).
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Remark 1.1. a) Theorems 1.1-1.8 are unimprovable, and, in some cases, they improve the
corresponding theorems of [4],

b) Theorems 1.1 1.8 extend the results of [3, 4, 6, 18, 20] to domains with zero angles.

¢) Corollary 1.2 improves the corresponding theorems of [4].

d) Theorems 1.3-1.8 show that, as indicated above, the rate of approximation changes in this
case according to the state of 3, i.e., since PQ(K,«, 1) C PQ(K,a,p2) for B2 > (1, we may
claim that the rate of approximation improves as the class PQ(K, «, ) becomes narrower with
respect to 5 (for the same K and «).

2. Some auxiliary facts. Throughout this paper, the notation “a < b” means that a < c;b for
a constant c¢; that does not depend on a and b. The relation “a =< b” indicates that cob < a < c3b,
where ¢y and c3 are independent of a and b.

Let G C C be a finite domain bounded by a Jordan curve L and let w = ®(z) (w = @ (z))
be a conformal mapping of 2 := ext G (G) onto A = {w: |w| > 1} (B(0,1)) normalized by the
conditions ® (co) = oo and @’ (c0) > 0 (#(0) = 0 and &'(0) > 0).

The (exterior or interior) level curve can be defined for ¢ > 0 as follows:

Li={z: |p(z)| =tift <1, |®(z)| =tift >1}, Ly=L.

Denote Gy := int Ly, € := ext Ly, and d(z, L) ;= inf {|¢ — z| : ¢ € L}.

Let L be a K-quasiconformal curve. Then there exists a quasiconformal reflection y(-) across L
such that y(G) = Q, y(Q) = G, and y(-) fixes the points of L. By using the results of [7, p. 76] (see
also [14], Lemma 1), we can find a C(K)-quasiconformal reflection «(+) across L such that

1
|21 —a(2)| < |21 — 2], 21 €L, €<]z\<g,

1
loz] < |ay| <1, e<|z| < =

1

o] < fo=l,  |el <& ozl < |27, fol > <, @.1)
|oz(z) —Z/’ = |z—z/ , 2 el
Joi=laz? = ozl Jo =1

in a certain neighborhood of L.

Lemma 2.1 [1]. Suppose that L is a K-quasiconformal curve, z1 € L, z9, 23 € GN{z: |z — z1|<
< c1d(z1,LR,)}, wj = @(z5) (22,23 € QN {z: |z — 21| < cad(21, Ly}, and wj = ®(z5)), j =
= 1,2,3. Then the following assertions are true:

1) the statements |z1 — zo| < |z1 — 23| and |w1 — wa| < |w1 — ws| are equivalent, and so are
|21 — 22| < |21 — 23| and |w1 — wa| < |wy — wsl;

2) if |21 — 22| < |21 — 23], then

21 — 23

‘wl—w3

’wl_wi%

w1 — w2 21— ”2 w1 — w2
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588 F. G. ABDULLAYEV, N. P. )ZKARTEPE

Lemma 2.2. Suppose that L is a K-quasiconformal curve, z1 € L, and zo € G, wy = p(22)
(22 € Q, wy = D(22)). Then
2K2 2
|w1 — wa| K+ < |21 — 29| < |wy — wo| K2+1. (2.2)

Proof. Let L be a K-quasiconformal curve. Then there exists a K 2-quasiconformal reflection

2
-1
. According to [21, p. 287] and the

y(-) across L. Therefore, L is a k-quasicircle with k = K1

estimate for ¥’ [11] (Theorem 2.8), we have
wy — wa|"TF < |W(wy) — O(ws)| < Jwy —wa|' T, (2.3)

Lemma 2.3 [3, 12]. Let L be a K-quasiconformal curve. Then, for every z € L and zy € G,
there exists an arc {(z, zg) in G that joins z and zy and possesses the following properties:

D) d(C, L) < |¢ — 2| for every ¢ € U(z, 20);

ii) for every (1, (2 € (2, 20), if €(C1, C2) is a subarc of U(z, zy), then mes (1, C2) < |C1 — (2.

1

Let GF:=<z:2€ GND,d(z,L) <e < §d(8D,L) .

Lemma 2.4 [9]. Let L be a K-quasiconformal curve. Then, for every rectifiable arc £ C G*,
one has mes { < mes «(?).

Lemma 2.5. Let L be a K-quasiconformal curve. Then

a) mes G° =< mes a(G®);
K?+1
b P(GF) <%, 6 = ———.

) mes p(G°) < ¢ e

Proof. a) Let J,(2) := |a.(2)|* — |az(z)|* be a Jacobian of an antiquasiconformal mapping c(-)

across L. Then, according to (2.1), we obtain

mes a(GF) = //(—Ja(z))daz = // do, = mes GE.
G= G*

b) It is obvious that
mes P(G°) < sup w(1 — [p(2)*) < sup (1 - [B(2)))- 2.4)
z€G*® z€G*e
According to (2.2) we get
2K2
d(z, L) = (1 —|@(z)[) K*+1. 2.5)

Using (2.4), (2.5), we complete the proof.
Lemma 2.6. Let L be a K-quasiconformal curve. Then, for every u, 0 < u < Ry —1, one has
1
mes a(G144\G) < uK?.

Proof. The required statement follows from Lemma 2.5 and [16].

3. Some properties of domains G € PQ(K, o, 3). Suppose that a domain G € PQ(K, «, 3)
is given. Then, for simplicity but without loss of generality, we can assume that « > 0, 3 > 0, p =1,
m=22=1,2z0=-1,(—1,1) C G, the local coordinate axes in Definition 1.3 are parallel to OX
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ON THE IMPROVEMENT OF THE RATE OF CONVERGENCE ... 589

and OY in the coordinate system, L' := {z: z € L,Imz > 0}, and L? := {z: 2z € L, Imz < 0}.
Then 2 is taken as an arbitrary point on L? (or on L', depending on the chosen direction).

Recall that the domain G € PQ(K,«, ) has interior and exterior zero angles in the nearest
neighborhoods of each of the points z; = 1 and 25 = —1 respectively. Therefore, following the
argument presented in [9], we can say that, for the domain G € PQ(K, «, [3), the function w = ®(z)
(w = @(z)) satisfies the conditions given in Lemma 2.2 in the nearest neighborhood of the point
zg = —1 (21 = 1). Thus, using Lemma 2.2, we can easily get

A1) < ()]~ DR, [z — 1] < [3(=)—p(1) [T

Vze My :={2€G: |z+1| >e1},
3.1)

A5, L) < (|0()] — )FT; |2 41 < |0(2) — d(—1)| 1

Vz e My:={z€Q:|z—1] >ea}.

On the other hand, if G € PQ (K, «a, 3), then, for points z € Q \ My and z € G \ M, using
the properties of the functions w = ®(z) and w = @(z) in the nearest neighborhoods of the points
z1 = 1 and zo = —1, respectively, we obtain (see [9])

[z =1 <[~ [®(z) = @)™, |2+ 1] < [ In|@(z)-G(-1) 7. (3.2)

Lemma 3.1 [4]. Let G be Jordan domain such that, for every z € L, there exists an arc y(z,0)
in G that joins 0 and z and possesses the following properties:

1) mesy(C1, G2) < [C1 — Gof for every (1, (2 € (2, 0);
ii) there exists a monotonically increasing function f(t) such that d(¢,L) = f(|¢ — z|) for every

¢ €7(2,0),
Then, for all polynomials P, (z), deg P, < n, P,(0) = 0, one has

IPle@ < [ 770t 1P, >0
—2

n

Corollary 3.1. Let G € PQ(K,«, 3) for some K > 1, « > 0, and 8 > 0. Then

HPn”C(é) < AnHPana (3-3)
where
2 _
np(2f3+2 p)7 8> g _1,
Ap =< 1Inn, 8= g -1, (34
p
< =-—1.
c p<?

Remark 3.1. 1If p =2, then A, = VInn [9].
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Let GG be an arbitrary Jordan domain and let v € €2 be a rectifiable arc, except for one endpoint
zo € L, that satisfies the following conditions:

i) mesy(1,¢2) < [¢1 — ol for all (1, (2 € 7;

ii) there exists a monotonically increasing function g(¢) such that d((, L) > g (|¢ — zo|) for all
Cen.

Lemma 3.2 [4]. Suppose that a measurable function f(z) is given on the arc 7y and there exists
a monotonically increasing function v(t), v(0) = 0, such that |f(C)| < v(|¢ — zol|) for all { € ~.
Then the function

R = [ s,
v

satisfies the following relation:

cl
22-p) 1 hoalt
{ p /Vz(t) |:t + 0%12( ) + h271(t):| dt, 1<p<?2,

where

g"(r)
Corollary 3.2. Let G € PQ(K,«,0) for some K > 1 and o > 0 and let v(t) = 5. Then,
for any p > 1, one has
2—op 1\ 2
EJ|? <02, a<min{2<1—>;}.
THls 2);2
1
Corollary 3.3. Let G € PQ(K,O0, ) for some K > 1 and > 0 and let v(t) = A Then,

for any p > 1, one has

, | A 9
F {2 ——
We now give conditions under which the function ¢, admits a continuous extension to G.
Lemma 3.3 [4]. Let p > 1 and G € PQ(K,«,3) for some K > 1, « > 0, and f < p — 1.
Then the function o, (z) can be extended to G by continuity.
Corollary 34. Letp > 1and G € PQ(K,«, ). Then, for all z € L and € G, one has

lep(2) — Q)] < |z — ¢T3
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4. Polynomials approximation in the Ay-norm. Let a domain G € PQ(K,«, ), o > 0,
B > 0, be given. For simplicity but without loss of generality, we can take the domain G as at the
beginning of Sec. 3.

Each L7, i,j =1,2,isa K j-quasiconformal arc. Let «;(+) be a quasiconformal reflection across
L7. We also set

. 2¢1 + ¢
711::{Z:$+2y:y: 13 Q(x_1)1+a}’

‘ c1 + 2c¢
= {z:x—l—zy:y:l?)Q(x—l)Ha},

. 2c3 + ¢
T = aj{ZvaHy: y = 733 : (w+1)1+5}a

) c3 + 2c
% = aj{zzxﬂy: y=—""— 3 : (93+1)1+5}7
where the constants ¢;, j = 1,4, are taken from the definition of the class PQ (K, «, 3). It is easy to
check that mes 7}(@, C2) < |G — Co| forall (1,¢ € 7;-, i,j = 1,2, from Lemma 2.4.
Let 0 < e < 1 be sufficiently small and let R := 1+ cn®'. We choose points 2}, i,j = 1,2,
so that they are the intersections of L and %j and the first points in f/}% ={z:z¢€ Lpr,Imz >0}

or [NJ% .= Lp \ IN/}% (according to the motion on Lp). These points divide Ly into four parts:

LY := Lh(2{,23) (connecting the points z{ and z3), L% := L%(23,2%), L?j12 = L}(23,2]), and
4 . )

L}, := L}(23,2)). We have Lg := szl L, v(R) = 'yi Nint Ly, F] = (R) U 'yQ(R) U qu,

and U; := int (T, U LJ’) ii=1,2.
We extend the function ¢, to Uy U Uz as follows:

. Pp(2), z €@,
Bp(z) =14 7" 4.1)
(ppoaj)(z), z€Uj.

Then

- 0, z €@,

Gpz(z) =19, , 4.2)

(#p 0 aj)(2)ajz, 2 €Uj.
Using the Cauchy — Pompeiu formula [19, p. 148], we get
_ 1 (Pp C
pp(2) = 5 <—z< // zed.

1,12
FRUlE U1UU2

Then, using the notation introduced above, we obtain
_ 1 [ 5(© 2p(Q) —wp (1)) 1 // Pp(C)
op(z) = 27”,/ = = d¢ - - doc, (4.3)
Lgr )

U1UU2
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where
#p(¢),  CeLLULY,
F(Q) = gp(1), (€L,
Pp(—1), (€L

1
Lemma 4.1. Letp > land G € PQ(K, «a,f3) for some K > 1and (0 < a < min{Q (1 - > :
p

2
}, 0 < B < po. Then, for any n > 2, one has
p

1 2ap
‘p < (m) o (4.4)

Lemma 4.2. Letp > 1 and G € PQ(K,O0, ) for some K > 1 and 0 < f < min {p— 1;

K?—-1
1+ pK?+3K?

Jer =

}. Then, for any n > 2 and arbitrary small € > 0, one has

e

1 K

= <n>p . (4.5)
K% -1

1+ pK?+3K?

0=,

Lemma 4.3. Letp > py and G € PQ(K,O0, ) for some K > 1 and
< po. Then, for any n > 2 and arbitrary small € > 0, one has

<pB<

2—(p+2)B—¢

p(1+p8)(K*+1)
lep=mnpll, < E .

Proof. The proofs of Lemmas 4.1 -4.3 an similar, and we present them together. Since the first
term in (4.3) is analytic in G, there is a polynomial P, (z) of degree not higher than n [24, p. 142]
such that

1 f (C) / 1 el
i | B~ PAe)| < 2€C o
Lgr

Hence, using (4.3), we get

e = Bnll, <

oy [ #Ome ) //% z a

1,7=1 'Yz(R) U1UUs
Forallp > 1and § < p— 1, we have
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~ 148
20(¢) = @p(=D) = lep(a;(Q)) = (=D < [+ 1] 7, ¢ €nj(R), (4.8)

185() — p(D)] = el () — ep(W < [¢ 177, (e 7 (R), (4.9)

;=

1\ 2
by virtue of relation (2.1) and Corollary 3.4. Therefore, for every o < min {2 <1 — ) ; } and
p/, p

8 < po, we obtain

. 2—(2+p)B
/ sop(C)C—_cp;(—l) acll <6, ® (4.10)
’Yil(R) P
. 2—ap
/ de <0 (4.11)
Wf(R) p

by virtue of Corollaries 3.2 and 3.3 and the fact that /; ; = mes ’yﬁ(R), i,j = 1,2. On the other
hand, according to [21] (Lemma 9), we have

2—¢
. 1\ 5241
d(Zj7L]) < (n) .
Then, using (2.1), (3.1), and (3.2), we get
2—¢
R 1\ G+a &2+
) , toI 148 — ) —
i < \z; _ (_1)1‘ < d(z3, L") = <n Ve>0, i=1,2,
d(zi, L) < (Inn)~ ", i=1,2.
Thus, it follows from (4.10) and (4.11) that
5,(C) — pp(—1) 1\ H BT 2
_ _ 1+8) (K241
/ L g_ip dc <<n>” , 5<min{p—1; W}, (4.12)
i (R) »
2—ap
5 — 1 1 20 1\ 2
/ Mdg <(1> i 0<a<min{2<1—);}. (4.13)
—z nn p) D
77 (R) »

Since the Hilbert transformation

R e

is a bounded linear operator from L,, into itself for p > 1, we have

// ’pruf(o‘pdc’é“ = // [/ (0 ()| *dorc <

U1UUs U10U2
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9 2
<> // |2/(Q)*doc <Y mes ¢ (0;(U))).
i=1 3(0;) J=1

According to (4.2) and (2.1), the Calderon—Zygmund inequality [7, p. 89] yields

1

P

2
Js < Zmesgp(aj(Uj)) . (4.14)
j=1

1
For sufficiently large ¢ and small g9 < 5 e set
. —a-1
Vi = {¢ ¢ e aj), ¢~ 1 < elmm) ™ |,
Vi = aj(U)\V!, j=1,2, a>0,

Uy ={C:[C+1 <eo}; V) :=U;nUs,, j=12, a=0.

Then, by virtue of Lemma 2.6, we obtain

mes gp(Vlj) < (lnn)~®

~1 e—2 (5 e—1
mes p(a; (V) < nic#ei’ = ',

mes cp(aj(Uj\f/jl)) <n® Ve > 0,

and
1

L\
()”, 00,
Inn

Js < 1—¢ (4.15)
1 2
<> pK , Ve>0, a=0.
n
Using (4.8), (4.9), (4.12), (4.13), and (4.15), we get
2—ap
1 2ap
. 1 (m)
lep = Pall, < — + 2y
1\ p(+8)(&2+1)
n
1
1 1 2
()O‘p, O<a<min{2 <1—> } 8>0,
Inn p) ' p
1 i (4.16)
K
()p Ve>0, a=0, B>0.
n

1 2
Casel.Letp>1,0<a<min{2<1—>; },BzO.Then
p p
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2—ap 1 2—ap
1 1 2ap 1 ap 1 2ap
—P, — — — — . 4.1
e an B n * <lnn> * <lnn> B <lnn> .17)
Case2.Letp>1, a=0, > 0. Then
2—(p+2)B—¢ 1—¢
1 1\ p(+8)(K2+1) 1\ pK?
lew—Pall, <=+ (5 ()" <
n n n
1—¢
1 pK? 5 < mi K% -1
— min
n ’ PO K2y 3K2 [
2 (pi2)5— (4.18)
1\ PI+B)(KZ+1) K?-1 _ 8 <
n " 11 pK213K2 =l PO
for any p > 1 and arbitrary small € > 0.
K?-1
Case3.Letp>1, a=0, 0 < 8 < min {po, e +3K2}' Then
1\ K7
pK
lewrall, < (5)7 @19
Case 4. 1t is clear that
. V17T -1
9 p—1 if P<pri= g
min {p -1 +2} = 9
P .
— if p>p1.
p+2 p=n
Letp > po, K >1 0 Ko -1 < /3 < po. Th
e o= . Then
b b2, ; ) 1+pK2+3K2 bo
2—(p+2)B8—¢
1\ p(1+B8)(K2+1)
lewPll, < (5) , @20

for arbitrary small & > 0. If P,,(2) := Py, (2)— P,,(0)+z[1— P.(0)], then it is easy to see that relations
(4.17)—(4.20) are also satisfied for P,(z), P,(0) = 0, and P’ (0) = 1. Thus, we can complete the
proof of Lemmas 4.1 -4.3 considering the extremal properties of 7, ,(z).
5. Proof of Theorems 1.1-1.8. We use the known method given in [3, 4, 9].
Lemma 5.1. Suppose that G is a Jordan domain such that, for {c,} |, {Bn}1, {7n = anfn} |,
and n — oo, under the condition
lep = Tnpll, < an, n=2,3,...,

one has

1Pall oy =< BHHP,’LHP, n=1,2,...,
for all polynomials P,(z) of degree not higher than n with P, (0) = 0. Also assume that there exists
a sequence of indices {ny}p-, such that 3, , < cBn, and Yn, , < €Vn, for all k =1,2,... and
somec>1and 0 < e < 1. Then

llop — Wn,p”o(@) = Tn-
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The proof of this lemma is similar to that of [9] (Lemma 15). Therefore, by taking v, from
Lemmas 4.1-4.3 and 3,, from Corollary 3.1 and combining the results for G € PQ(K, «, 3) in the
case a« = 0 or 8 = 0, we prove Theorems 1.1-1.8.

1. Abdullayev F. G. On orthogonal polynomials in domains with quasiconformal boundary (in Russian): Dissertation. —
Donetsk, 1986.
2. Abdullayev F. G. On the convergence of Bieberbach polynomials in domains with interior zero angles (in Russian) //
Dokl. Akad. Nauk. Ukr. SSR. Ser. A. — 1989. — Ne 12. — P. 3-5.
3. Abdullayev F. G. Uniform convergence of the generalized Bieberbach polynomials in regions with nonzero angles //
Acta math. hung. — 1987. — 77, Ne 3. — P. 223 -246.
4. Abdullayev F. G. Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles //
Czech. Math. J. — 2001. — 51(126). — P. 643 -660.
5. Abdullayev F. G., Baki A. On the convergence of Bieberbach polynomials in domains with interior zero angles //
Complex Anal. Theor. & Appl. — 2001. — 34, Ne 2. — P. 131—143.
6. Abdullayev F. G., Cavus A. On the uniform convergence of the generalized Bieberbach polynomials in regions with
quasiconformal boundary // Approxim. Theory and Appl. — 2001. — 17, Ne 1. — P. 97-105.
7. Ahlfors L. V. Lectures on quasiconformal mappings. — Princeton, NJ: Van Nostrand, 1966.
8. Andrievskii V. V. Uniform convergence of Bieberbach polynomials in domains with zero angles (in Russian) // Dokl.
Akad. Nauk. Ukr. SSR. Ser. A. — 1982. — Ne 4. - P. 3-5.
9. Andrievskii V. V. Uniform convergence of Bieberbach polynomials in domains with piecewise-quasiconformal
boundary (in Russian) // Theory Mappings and Approxim. Functions. — Kiev: Naukova Dumka, 1983. — P. 3-18.
10. Andrievskii V. V. Convergence of Bieberbach polynomials in domains with quasiconformal boundary // Ukr. Math. J.
—1984. — 35, Ne 2. — P. 233-236.
11. Andrievskii V. V., Belyi V. I, Dzjadyk V. K. Conformal invariants in constructive theory of functions of complex
variable. — Atlanta, Georgia: World Federation Publ., 1995.
12. Belyi V. I. Conformal mappings and the approximation of analytic functions in domains with a quasiconformal
boundary // Math. USSR-Sb. — 1977. — 31. - P. 289-317.
13. Davis P. J. Interpolation an approximation. — Blaisdell Publ. Co., 1963.
14. Gaier D. On the convergence of the Bieberbach polynomials in regions with corners // Constr. Approxim. — 1988. —
4. —P. 289-305.
15. Gaier D. On the convergence of the Bieberbach polynomials in regions with piecewise-analytic boundary // Arch.
Math. — 1992. — 58. — P. 462 -470.
16. Goldstein V. M. The degree of summability of generalized derivatives of plane quasiconformal homeomorphisms //
Soviet Math. Dokl. — 1980. — 21, Ne 1. — P. 10—-13.
17. Israfilov D. M. On approximation properties of extremal polynomials (in Russian). — Dep. VINITI, Ne 5461, 1981.
18. Keldysh M. V. Sur I’approximation en moyenne quadratique des fonctions analytiques // Math. Sb. — 1939. — 5(47).
- P. 391-401.
19. Lehto O., Virtanen K. I. Quasiconformal mappings in the plane. — Berlin: Springer, 1973.
20. Mergelyan S. N. Certain questions of the constructive theory of functions (in Russian) / Trudy Math. Inst. Steklov.
- 1951. - 37.
21. Pommerenke C. Univalent functions. — Géttingen, 1975.
22. Privalov I. I. Introduction to the theory of functions of a complex variable. — Moscow: Nauka, 1984.
23. Rickman S. Characterization of quasiconformal Arcs // Ann. Acad. Sc. Fenn. Ser. A. I. Math. — 1996. — 395.
24. Smirnov V. I, Lebedev N. A. Functions of a complex variable / Constructive Theory. — The M. L. T. Press, 1968.
25. Simonenko I. B. On the convergence of Bieberbach polynomials in the case of a Lipschitz domain // Math. USSR-Izv.
- 1980. - 13. - P. 166—-174.
26. Suetin P. K. Polynomials orthogonal over a region and Bieberbach polynomials // Proc. Steklov Inst. Math. — 1971.
- 100.
27. Walsh J. L. Interpolation and approximation by rational functions in the complex domain (in Russian). — Moscow,
1961.

Received 02.12.11

ISSN 1027-3190. Ykp. mam. xcypn., 2012, m. 64, Ne 5



