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FOURIER COSINE AND SINE TRANSFORMS
AND GENERALIZED LIPSCHITZ CLASSES IN UNIFORM METRIC”

KOCHHYC- 1 CUHYC-IIEPETBOPEHHS ®YP’€
TA Y3ATAJIBHEHI KJIACH JINIIAIISA B PIBHOMIPHINA METPHUIII

For functions f € L'(R.) with cosine (sine) Fourier transforms fe ( fs) in L'(R), we give necessary and sufficient
conditions in terms of f. (fs) for f to belong to generalized Lipschitz classes H*"™ and h*"™. Conditions for the uniform
convergence of the Fourier integral and for the existence of the Schwartz derivative are also obtained.

Jlst dymxuiii f € L'(Ry) i3 kocunyc-(cunyc-) nepersopennsvu ®yp’e f. (fs) y L'(R) naeneno (8 repminax fo (fs))
HeOoOXi/IHI Ta TOCTaTHI YMOBH HaJle)XHOCTI GyHKUIH f 10 y3aranpHeHux kiacis Jlimmunsg H* ™ ta h*"™. Takox OTpUMaHO
YMOBH piBHOMIpHOI 30ikHOCTI iHTerpasna @yp’e ta icHyBanHs noxigaoi 1IBapua.

1. Introduction. Let f: R — C be a Lebesgue integrable function over R, = [0,+0c0), i.e.,
f € LY(R,). Then the Fourier cosine and sine transforms of f are defined by

1/2 1/2
fo(z) = <72r> /f(t) cos xt dt, fo(z) = (i) /f(t) sinztdt, xze€R.
R R

If, in addition, f, € L'(Ry) (fs € L*(R4)) and f € C(R,) (f is continuous on R, ), then the
inversion formula

1/2 1/2
flt) = <72r> /fc(:v) coszt dx ft) = (i) /fs(x) sin zt dx (1.1)
Ry R4

takes place for all £ € R. A proof is similar to that of inversion formula for

f(z) = (2m)"1/2 / F(t)eet dt
R

and f € L'(R) N C(R) (see [1, p. 192], Chapter 5). In this case we have also lim, . f(z) = 0,
that is f € Cy(R). In all results connected with cosine (sine) Fourier transform we consider the

even (odd) extension f. (f,) of a function f € Cy(R4) onto R. For m € N and f defined on R let

introduce the m-th symmetric difference A7 f(x) = Zm 0(—1)m_j <m> flx+ (m—25)h/2). If
1= J

f e Co(Ry) (e, f € C(R) and lim, s+ f(x) = 0) and || f|| = sup,er | f(2)], then wy,(f,0) =

:= sup{[|A7"f|| : 0 < h < &} is the m-th modulus of smoothness.
Denote by @ the set of all continuous and increasing on R functions w such that w(0) = 0 and

5
w(2t) < Cw(t),t € Ry. Ifw € ® and / t~Yw(t) dt = O(w(d)), then w belongs to the Bari class
0

“The work of the first author is supported by the Russian Foundation for Basic Research under Grant Ne 11-01-00321 and
by the project “Contemporary problems of analysis and mathematical physics” fulfilled by the Moscow Institute of Physics
and Technologies (State University). The work of the second author is supported by the Russian Foundation for Basic
Research under Grant Ne 10-01-00270a and by a grant of the President of Russian Federation, project NSh-4383.2010.1.

© B. 1. GOLUBOV, S. S. VOLOSIVETS, 2012
616 ISSN 1027-3190. Yxp. mam. srcyph., 2012, m. 64, Ne 5



FOURIER COSINE AND SINE TRANSFORMS AND GENERALIZED LIPSCHITZ CLASSES ... 617

B;ifw € ® and 5m/ t=m1u(t) dt = O(w(d)), m > 0, then w belongs to the Bari— Stechkin
class By, (see [2]). Ifoi € ® and w(A\) < CA"w(0) forall A > 1,5 > 0, then w € N™. It is well
known that wy,(f,d) € N™ (see [3], Chapter 3). By definition, H*"™ = {f € Cy(R): wn(f,t) <
< Cw(t),t € Ry} and b = {f € Co(R): wn(f,t) = o(w(t)),t — 0} for w € ®. The class
H@Y(hl) with w(t) = t%, 0 < a < 1, will be denoted by Lip(a) (lip(«r)). There is a different
notation for the class H*2 (h*?) with w(t) = t*, 0 < a < 2. In the paper [4] it was denoted
by Zyg(a) (zyg(a)). F. Moricz [4] established several theorems connecting the behaviour of f and
classes Lip(a), Zyg(a), lip(«), zyg(a). The main content of these results is represented in the
following theorem.
Theorem A. (i) If f € L'(R) N C(R) and for some o € (0,m], m = 1,2, we have

[t ()| dt = O(y™ ) forall y>0, (1.2)
[tl<y

then f € L'(R) and f € Lip(c) for m = 1 and f € Zyg(a) for m = 2.

(i) If f, f € LY(R), f € Lip(a) for some o € (0,1], m = 1, or f € Zyg(e) for some o € (0,2],
m =2, and t™ f(t) > 0 for all t € R, then (1.2) holds.

(iii) Both statements (i) and (ii) are valid for 0 < a < m, m = 1,2, if the right-hand side of
(1.2) is replaced by o(y™~ %), y — 0, and the condition f € Lip(«) or f € Zyg(«) is replaced by
f €lip(a) or f € zyg(a) correspondingly.

In the paper [5] Theorem A was generalized to arbitrary m € N and w belonging to the class B
or By,. Such theorems in the case of trigonometric series are known as Boas-type results. Interesting
survey of earlier results may be found in [6]. R. P. Boas, L. Leindler, J. Nemeth and S. Tikhonov [7, 8]
considered the cases of cosine and sine series separately, while F. Moricz [9—-11] and second author
[12] studied such conditions in terms of complex Fourier coefficients (about papers of L. Leindler
and J. Nemeth see Introduction and references in [7]). Let a,, b, are cosine and sine coefficients
of f € Li_and wg(f,0) is a modulus of continuity of order # > 0. Using our notations, we can
formulate S. Tikhonov’s results from [7] as follows.

Theorem B. Letw € ® and 8 > 0, f € Cor is even, a, > 0 for all n € Z, .

(A)Ifp#2l—1,1 €N, and w € B, then the conditions wg(f,1/n) = O(w(1/n)), n € N, and
Z:_l kPaj, = O(nPw(1/n)) are equivalent.

B)IfB=20—-1,1€N, and w € B, then the condition wg(f,1/n) = O(w(1/n)) is equivalent
to

Zkﬁ+1ak =0’ w(1/n)), neN,
k=1

and
n

Zkzﬁak sinkz = O(nPw(1/n)), neN,
k=1
uniformly in x € [0, 27].
(C) If w € Bag, then the conditions wg(f,1/n) = O(w(1/n)), n € N, and ZZO ar =
= O(w(1/n)), n € N, are equivalent.
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Parts (A) and (B) of Theorem B are valid for odd functions f, but exceptional values of 3 are
20, 1 € N (see [7]). V. Fiilop [13] obtained analogs of the Theorem A for cosine and sine Fourier
transforms.

By definition, a function f has the Schwartz derivative of order m € N in the point x and this
derivative equals to A if there exists limy_q h_mAZL f(x) = A.In [5] the following result is proved.

Theorem C. Let f € L'(R)NC(R), m € N and

[f@)]dt = o(y™™), y— +oc.
[t]>y
Then the Schwartz derivative of order m exists at the point x and equals to A if and only if the
principal value of the integral (2m)~1/? / (it)™ f (t)e'™ dt exists and equals to A.
R
It is known the following theorem of R. Paley [15] (see also [16, p. 277], Ch. 4).
oo
Theorem D. Let the Fourier series ao/2—l—z 1(an cos nz+by, sinnx) of a function f € Cor
n=
has non-negative coefficients an,, by,. Then this series converges uniformly on R.

F. Moricz [11] proved a similar result.
Theorem E. Let the Fourier series Zkez f(k)e““ of a function f € Cyr is such that

A~

kf(k) >0, k € Z. Then this series converges uniformly on R.

The aim of present paper is to obtain the sufficient conditions in order that functions to belong
to the class H“"™ or h*™ in terms of cosine and sine Fourier transforms. These conditions are
necessary for functions with non-negative cosine and sine transforms. Also we obtain analogs of
Theorems C and D (see Theorems 3 and 4). Theorem 5 is a generalization of Theorems 4, 5 and 8
from the paper [13].

2. Auxiliary results. For f € L'(R) let us consider the Fejer operator

(f)()<>0/< ) ftw)coszuan, xR,

™ t

and de La Vallee Poussin operator v(f). = 202:(f) — o(f). Similarly we define o.(f)s(z) and
ve(f)s(x). By definition oy(f).(x) and v(f)(x) are even while o¢(f)s(x) and v (f)s(x) are odd.
Let us remind that an entire function f(z) has exponential type t > 0 (f € E}) if for each ¢ > 0
there exists A = A(e) > 0 such that |f(z)] < Ae+Il for all z € C. By UC(R) (BUC(R))
we denote the space of uniformly continuous (bounded uniformly continuous) functions on R. For a
function f € BUC(R) we set A(f) = inf{||f — g|lc: g € BUC(R) N E}, t € Ry.

It is clear that Cp(R) € BUC(R). Lemma 1 connects the direct approximation theorems for
A¢(f) and properties of vi(f)c (ve(f)s) (see [14], Ch. 5, § 5.1 and Ch. 8, § 8.6).

Lemma 1. Iff € BUC(R), m € Nt > 0 and f is even (odd), then

1f = ve(felloo < CLA(S) < Cowm (£,1/1)

< —

(IS = ve(F)slloo < CLAL(Sf) < Cowm (f,1/1)).

A function ~y(¢) will be called almost increasing (almost decreasing) if there exists a constant
k := k() > 1, such that kvy(t) > v(u) (kvy(u) > 7y(t)) for 0 < u < t.
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Lemma 2 [2]. (i) Let w € ®. Then w € By, k € N, if and only if there exists « € (0, k) such
that t*Fw(t) is almost decreasing.

(ii) Let w € ®. Then w € B if and only if there exists o € (0,1) such that t~%w(t) is almost
increasing.

Lemma 3. Let F € LY(R,) is differentiable on Ry and F' = f € LY(R,). Then tF,(t) =
= —fs(t) and tFy(t) — (2/7)Y2F(0) = f.(t) on R,.

Proof. We have F(z) = F(0) +/ f(t)dt, = € R,. Since f € L'(R,), there exists
0

o
lim, 400 F(x) = F(0) +/ f(t)dt. But F € L*(R,) implies lim,_, o F(x) = 0. Using inte-
0

gration by parts, we obtain

R 9\ 1/2 9\ 1/2
fs(t) = <7r> /f(u) sin tu du = (W> F(u)sintu |g°— /tcostuF(u) du| = —tF.(t).
Ry

Ry

Second identity is proved in a similar way.

Lemma 3 is proved.
Lemma 4 [5]. (i) If w € B,,, m € N, g(t) is a non-negative measurable function and

[otwar=owam). v>o, @)
y
then y™g(t) € L (R.) and
y
/tmg(t) dt =0 (y"w (1/y)), y>0. (2.2)
0

(i) If w € B, g(t) is a non-negative measurable function and t"g(t) € Li (Ry), then (2.2)
implies (2.1).
Lemma 5 [5]. (i) If w € B,,, m € N, g(x) is a non-negative, measurable function on R,

satisfying (2.1) and

ottt =owty™), v+ 23)
y
then t™g(t) € Ll (Ry) and
y
/tmg(t) dt = o(ymw(y_l)), Yy — +oo. 2.4
0

(i) If w € B, g: Ry — Ry is a measurable function such that t™g(t) € LL (Ry) and (2.4)
holds, then (2.3) also holds.
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3. Main results.
Theorem 1. (i) If f € L}(R.)NCo(Ry), m € N, w € B and

Yy
/ o) dt = O(y™w(1/y)) forall y >0, 3.1)
0
or
Yy
/ 1 fu(t)| dt = O(y™w(1/y)) forall y >0, (3.2)
0

then f, € L'(R) (or fs € L'(R)) and f. € H*™ (or f, € H™).

(i) If m € N be even, f. € L*(R) N H*™ and f.(t) keeps its sign on Ry, then (3.1) holds. If
m € N be odd, w € By, f. € LY(R) N H“™ and f.(t) keeps its sign on R, then (3.1) holds.

(iii) If m € N be odd, w € ®, f, € L*(R) N H“™ and fs(t) keeps its sign on R, then (3.2)
holds. If m € N be even and f, € L'(R) N H:o’m and fs(t) keeps its sign on R, then (3.2) holds.

Proof. (i) By Lemma 4(i) the integral / \ fc(t)\ dt is finite for all y > 0 and it is well known

R R y
that f. € Co(R). Therefore, f. € L'(R. ). Further,

. . . ) ht\™
M cosat = Re A'e™ = Re [e’xt <2i sin 2) } , meN, h>0.

For even m we have Al cosat = (—1)"/2cosxt(2sinht/2)™ and for odd m we see that
Amcosat = (—1)"+D/2sin xt(2sin ht/2)™. Similar formulas are valid for A} sinzt. By the

inversion formula (1.1) we find that

( 2 1/2 R h,t m
<> (—1)m/2/fc(t) cos zt <28in2> dt, m is even,
™
. Ry
b fe(z) = " - (3.3)
<2> (—1)(m+1)/2/fc(t)sinxt <2sin};t) dt, m is odd,
™
\ R+
and
( 1/2 m
2 )
<) (—1)m/2/fs(t)sinxt <ZSin};t> dt, m is even,
T
. Ry
W fo(z) = " - (3.4)
<2) (—1)(m+1)/2/fs(t) cos xt <QSin };t> dt, m is odd.
T
\ R+

Thus, in all cases A7 f(z) (A" f,(z)) is either even or odd function of z. From (3.3) we deduce

1/h oo

_ 1/2 R m 1/2

apr@l< ()| [+ [ |idonfpsin | de= (2) e
0 1/h

T
for h > 0. By (3.1) and inequality |sint | < ¢, t € R, we have
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1/h
1] < / | (0] de < CLh™h~™w(h) = Cruo(h).

On the other hand, by Lemma 4(ii) we see that

] < 27 / 70| dt < Cow(h).
1/h

Combining (3.1) and (3.2) yields f. € H¥™. For fs and f, the proof is similar.

621

(3.5)

(3.6)

(i) Let fo(t) > 0 for ¢ > 0 and m is even. Then from the condition f, € H*"™ and inequality

sint > 2t/m, t € [0,7/2], we obtain
1/h

Cyo(h) > |AF (0 >\—()1/2 / X0 (2sm’§) it > / Fu(t) ()™

1/h
or / t" fe(t) dt < Csh™"w(h), that is equivalent to (3.1).

0
If f.(t) > 0 for t > 0 and m is odd, then by Lemma 1 we have
2t

£:(0) — wi(£)(0) = (i)m [ (G -1) detwydu+ 7fc<u> du | < Cw <1
2t

t
whence

/fc(u) du < Crw <§> < ng%.
t

Using condition w € B, and Lemma 4(i), we obtain (3.1).

(i) If fs(t) > 0 for t > 0 and m is odd, then the proof is similar to that of the item (ii) for even

m. Let fo(t) > 0 for t > 0, m is even and f € H“"™. Then for ¢ > 0 by (3.4) we have
. 9 1/2 R ™
Cow(t) > |AT f(z)| = <> /fs(u) sin zu <2 sin 2) du| .
s
Ry

Integrating previous inequality by = € [0, t], we obtain

t t
//fs(u) sin zu <2 sin t;) dudz| < Cy /w(t) du = Cotw(t)
0

0 Ry
or
1/t

A~ t m
Cho /ulfs( )(tu)™ 2 du < Y(1 — cos tu) <2 sinu> du =
0

2

O\\

1/t
// sin zu da f( )<281D> du < Cotw(t).

ISSN 1027-3190. Yxp. mam. xcyphu., 2012, m. 64, Ne 5



622 B. I. GOLUBOV, S. S. VOLOSIVETS

1t
From last inequality in the form fs(w)u™ " du = O(t~™ Lw(t)), t > 0, the condition w € B
0
o0
and Lemma 4(ii) we deduce that / fs(t)dt = O(w(1/y)), y > 0. Using w € By, and Lemma 4(i),
y

we obtain (3.2).

Theorem 1 is proved.

Remark 1. In parts (ii) and (iii) of Theorem 1 one may assume non-negativity or non-positivity
of Re fc, Im fc, Re fs, Im fs instead of fc and fs. Theorem 1 is a generalization of Theorems 1, 2, 6
and 7 from [13] and a non-periodic analog of theorem B and its sine counterpart (see Theorems 3.1
and 3.2 in [7]).

Corollary 1. Let f € L'(R.) N Co(Ry), fo(t) keeps its sign on R;, m € N, w € By, N B.
Then the following three conditions are equivalent:

1) f. € Hom,

2) 3.1), and

3) /ﬂmwzmmum,y>0 3.7)
)

Analogous proposition is valid for fs and fjy.
Theorem 2. (i) Ifm € Nisodd, w e BNN™, f e L"(Ry)NCo(Ry) and f.(t) > 0 on R,
then fo € HY™ if and only if

y
[t =0/, o 69
0
and
y
/tmfc(t) sinztdt = O(y"w(1/y)), y >0, (3.9
0

uniformly in x € R,.
(i) Ifm € N is even, w € BAN™, f € L*(R)NCo(R) and f(t) > 0on Ry, then f, € H*™
if and only if

Yy
/W“ﬁwﬁzmwﬁmvm,y>a (3.10)
0
and
Y
/tmfs(t) sinztdt = O(y™w(1/y)), y >0, (3.11)
0

uniformly in x € R;.
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Proof. (i) By Lemma 4(ii), (3.8) implies (3.7). Using (3.3), we have for h > 0
. o2 (1 th\™ T
AT f(2)] < <) /fc(t) sin xt <2$in 2> dt| + / fe(t)dt | =:
T
0 1/h

9 \1/2
~(2)" (o) + )
and Jp(z) = O(w(h)), h > 0, by (3.7). From Taylor’s formula we obtain 2sinth/2 = th +
+ a(th)(th)3, where |a(t)| < C, t € R, whence
1/h

In(z) < ¢} / fo(t) sinat(th)™ dt| +
0

1/h

" " (a I(th)® f.(t) sin x — 1Yy @) ().
+ O/Z<j)<th> (a(th))! (th)™ fe(t) sinat dt| =: I, (x) + I, («)

Jj=1

It is clear that
1/h

V(@) < Cypm / fe®)t" sinatdt| = O(w(h)), h>0,
0

uniformly in x € R according to (3.9). On the other hand,
. 1/h
IP(x) < Cp Y hm% / £m+2 £(¢) dt. (3.12)
Jj=1 0
Since N™ C By, 42; by Lemma 2 for all 1 < 5 < m, each term from the right-hand side of (3.12)
is O(w(h)) according to (3.7) and Lemma 4(i). Thus, I,(z) = O(w(h)), h > 0, and |A? f(z)| =
= O(w(h)), h > 0.

Conversely, it is easy to see that H“"™ C H“"™*+! by definition and N™ C B™*+! by Lemma 2.
Hence, under conditions of theorem we have f € H*™t! with w € Bp,11. Since m + 1 is even,
by Theorem 1(ii) we obtain (3.8). Using above notations, we have Ij,(z) < Jy,(z) + C3|A7 f(x)|
and I,Sl)(x) < C4(I}(f) () + Jn(z) + |A7 f(2)|. By Lemma 4(ii) and condition w € B, (3.8) implies
(3.7). Finally, w € N™ C By,42; and (3.7) implies I,(LZ)(x) = O(w(h)), h > 0, as above. Thus,
I}(Zl)(x) = O(w(h)), h > 0, unformly in x € Ry, that is equivalent to (3.9).

(ii) The proof is similar to that of (i).

Theorem 2 is proved.

Corollary 2. (i) If m € N is odd, w(t) = t™, f € L'(R}) N Co(R,) and f.(t) > 0 on R,
then fo € HY™ if and only if

y y
/tm+1fc(t) dt = O(y), y>0, and /tmfc(t) sinatdt = O(1), y>0,
0 0
uniformly in x € R,..
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(i1) Similar assertion is valid for fs, fo and even m € N.

Remark 2. Theorem 2 is an analog of Theorems 3.1 and 3.2, part (B), in [7] (see the item (B)
in Theorem B). Corollary 2 is an extensoin of Theorem 3 in [13], where the necessary and sufficent
condition for f € Lip(1) in terms of f. is given.

Theorem 3. (i) Let f € L*(Ry)NCy(Ry), m € N and

/ B dt = oly™), 5 — +oc. (3.13)
Yy

Then the Schwartz derivative of [ of order m exists in the point x > 0 and equals to A(x) if and
only if the integral (2/m)'/? / ™ f,(t) cos(xt + mm /2) dt converges and equals to A(x).
R4
(ii) Similar assertion is valid for fs(t).
Proof. By (3.3) we have

apse = (2)" /+/°° Fettyeos (s-+m ) (250 )" -
0 1/h
- (i)/ (An(x) + Bu()).

According to (3.13) we have By (z) = o(h™), h — 0. Using identity 2sinth/2 = th + «a(th)(th)3,
where a(t) = O(1), t € R (see the proof of Theorem 2), we write
1/h

Ap(z) = / Fu(8) (ht)™ cos (:ct+mg) di+
0

. 1/h
2 <T) / felt)cos (wt +mZ ) ()™ (a(ht) dt =: A (2) + A (@),
0

Jj=1

oo
Since / |fe(t)|dt = o(w(1/y)), y — +oo, for w(t) = t"™ and t™ € N™ C Bi,49; for all
y

1 < j < m, by Lemma 5(i) we obtain
. 1/h
A @) =0 | S pmt / [fe(OIE™ 2 dt | = o(h™ T2 h=m=2p™) = o(h™),  h — 0.
J=1 0

Therefore, the existence of the limit
1/2
NIRRT —m 4(1) _ E ¢ m ™
B(z) := lgli]%h Ay (x) = <7r> /fc(t)t cos (xt+m2) dt
Ry

is equivalent to the existence of limy,_,o h~™ A" f(2) =: A(x) and in the last case B(z) = A(x).
(i1) The proof of this item is similar to that of (i).
Theorem 3 is proved.
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Remark 3. Theorem 3 is an analog of Theorem C.
Theorem 4. Let f € L'(Ry) N UC(R,), fo(t) > 0 (fe(t) > 0) on Ry. If F(z) =

= /$ f(t)dt € LY(R,), then
0

Y Y

1/2 9\1/2 R
f(z) = < ) hm/ t) sin xt dt f(z) = <> lim [ fe(t)cosatdt

Yy—00 T Y—00
0 0

uniformly in x € R,..
Proof. If f € L'(R) is even, then F(x / f(t)dt is odd on R and vice versa. As it is noted

in [5], for f € L}Y(R)NUC(R) we have |A? F(z)| = o(h), h — 0, i.e., F € h*? for w(t) = t. Now
we consider odd f (f = f,) and even F. By Theorem 8 in [13] or Theorem 5 below we have

)
[ IR0l =0ty ™) = o), 5+, (3.14)
0
and by Lemma 5
/ t)|dt =o(y™1), y— 400, (3.15)
Yy

since w(t) = t € By. Using the fact that F,.(t) € Co(R,) and (3.15), we obtain F,(t) € L'(R.)
and by inversion formula (1.1)

F(z+h) — F(z) = — <72r>1/2 1//h+ 7 E.(t)(cos xt — cos(z + h)t) dt =:
0  1/h
= (2)" i + e,

By virtue of (3.15) we have By (z) = o(h), h — 0, uniformly in x € Ry. On the other hand, using
identity cos xt — cos(x + h)t = cos xt(1 — cos ht) + sin xt sin ht, we see that

1/h 1/h
3 Lo (It B0 : (1) (2)
Ap(z) = | F.(t)2sin 5 ) cos wtdt + [ F.(t)sinatsinhtdt =: A} (x) + A} (x).

By (3.14) and inequality |sint| < ¢, ¢ > 0, we obtain
1/h
1A / (t)|t*dt = o(h), h — 0,
0

uniformly in € R, while
1/h 1/h
AP @)y =h / Fu(t)tsin zt dt + / E(t)oP(ht) (ht)? dt =: AP (2) + AY ()
0
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(see the proof of Theorem 2). From (3.15) and condition w € Bs for w(t) = t due to Lemma 5(i) we
have

1/h
m?@ﬂ—Ofﬁ/ﬁEth—ww%*m—dm7h%&
0

also uniformly in z € R,.. Thus, by Lemma 3

1/

Fla+h) —Fx) (i)w / Eu(t)tsinatdt + o(1) =
0

1/h
/fs(t)sinxtdt—i-o(l), h — 0.

Similar relation holds for (F'(z) — F(z — h))/h and tending h to zero yields

_ ()" [ sin z
o) = (2) !ﬂ@ v

uniformly in « € R,.. The proof of the second statement of Theorem 4 is similar to that of the first
one.

Theorem 4 is proved.
Remark 4. Theorem 4 is a non-periodic analog of Theorem D of R. Paley [15].
Theorem 5. (i) If f € LY(R.)NCo(Ry), m €N, w € B and

Yy
/W%WWZJWMUW,y%+w (3.16)
0
or
Yy
/W%®W=dﬂmvm,y%+w (3.17)
0

and (3.1) or (3.2) respectively hold for all y > 0, then f. € LY (Ry) (or fs € LY(Ry)) and f. € h*™
(or fo € h™).

(i) If m € N and f. (or f,) satisfy conditions of Theorem 1 (ii) (or Theorem 1 (iii)), then
fe € h™ implies (3.16) (or f. € h*™ implies (3.17)).
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Proof. (i) By condition of Theorem for every ¢ > 0 there exists yo(¢), such that

Y

9 \1/2 K
<7r> /tm\fc(t)\ dt <ey™w(l/y) forall y > yo.
0

If I;, and J, are defined in the proof of Theorem 1, then similarly to (3.5) we have |Ij]
< eh™h™™w(h) = ew(h) for 0 < h < yy*. On the other hand, by Lemma 5 (ii) we have |.Jj|
= o(w(h)), h — 0. Thus, |A f(2)| = O(I}, + Ji,) = o(w(h)) and f. € h“™ (f, € h*™).
(ii) Let m be even and fc(t) >0onR,. If f € h*"™ then
1/h
o) = A0 2 € [ A0 de, 0<h < hoe),
0

IA

whence /l/h \tmfc(t)| dt = o(h""w(h)), h — 0, and (3.16) is proved.

Let mobe odd, fc(t) > 0on R, and w € B,,. Similarly to the proof of Theorem 1 (ii) we find that
/OO fe(u) du < ew(1/t) for t > ty(e) and /OO fe(u) du = o(w(1/t)), t — +oc. Using condition
w2t€ B, and Lemma 5 (i), we obtain (3.16). '

The case of odd m and f; > 0 is similar to the case of even m and f. > 0. Finally, if m
is even, w € B and fs(t) > 0 on R, then similarly to the proof of Theorem 1 (iii) we have

1/t X
/ ul fo(u) (tu)™ 2 du < etw(1/t) for t > to(e) and by Lemma 5 (ii) we deduce that
0

o0

/ () dt = o(w(1/y)), y— +oo. (3.18)
Y
Using w € B,, and Lemma 5 (ii), we obtain (3.17).
Theorem 5 is proved.
Remark 5. Theorem 5 is a generalization of Theorems 4, 5 and 8 from [13].
Corollary 3. Let f € L*(Ry) N Co(Ry), fo(t) keeps its sign on R, m € N, w € B,,, N B.
Then three conditions f € h*™ (3.16) and (3.18) are equivalent. Similar assertion is valid for fs.
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