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SHAPE-PRESERVING PROJECTIONS IN LOW-DIMENSIONAL SETTINGS
AND THE g-MONOTONE CASE

®OPMO3BEPITAIOYI TPOEKIIT Y MAJIOBUMIPHINA ITOCTAHOBIII
TA ¢-MOHOTOHHUWI BUIIATOK

Let P: X — V be a projection from a real Banach space X onto a subspace V' and let S C X. In this setting, one can ask
if S is left invariant under P, i.e., if PS C S. If V is finite-dimensional and S is a cone with particular structure, then the
occurrence of the imbedding PS C S can be characterized through a geometric description. This characterization relies
heavily on the structure of S, or, more specifically, on the structure of the cone S™ dual to \S. In this paper, me remove the
structural assumptions on S* and characterize the cases where PS C S. We note that the (so-called) g-monotone shape
forms a cone which (lacks structure and thus) serves as an application for our characterization.

Hexait P: X — V — npoexkuis nificHoro 6anaxoBoro npocropy X Ha mignpoctip V' i, kpim toro, S C X. VY wiii mocranosumi
BUHHKAE IUTAHHA: YU € S NBOIHBapiaHTHHM Iin jgiero P, To0To un mae micne BkinageHus PS C S? Skmo migmpocTip
V' € ckiHYeHHOBUMIpPHHUM, a S € KOHYCOM i3 IIEBHOIO CTPYKTYpOI0, TO BKIaneHHs P.S C S Moxe OyTH oxapakTepu30BaHO
IIIIXOM TeoMeTpHYHOro omucy. L xapakTepusanis iCTOTHO 3aJISKUTh Bif CTPYKTypH S, abo, TOYHIIIE, Bill CTPYKTYpH
KoHyca S™, crpsbkeHoro 10 S. Y wmiif po6oTi yCyHEHO CTPYKTYpPHI IPUITYIEHH moa0 S™ i 0XapakTepH30BaHO BHIIAAKH, ¥
skux PS C S. BinzHaueHo, mo (Tak 3BaHa) g-MOHOTOHHA ()OpMa yTBOPIOE KOHYC, KU (HE Ma€ CTPYKTYPH 1 TOMY) MOXKe
OyTH BUKOPHCTAHHMII IS 3aCTOCYBaHHS HAILIOl XapaKTepu3arii.

1. Introduction. Denote the space of linear operators from real Banach space X into subspace
V € X by £L = L(X,V). For a given subset S C X, one can look to determine those (Q € L
which leave S invariant; i.e., those ) such that Q.S C S. There are numerous settings in which
QS C S has important consequences and connections. For example, under the right conditions on S,
X becomes a Banach lattice and () such that Q.S C S becomes a positive operator (see [7] for an
overview). Existence of positive operators (or more precisely positive extensions) is employed, for
example, in the Korovkin’s classical theorem (described in [2]) and in its many generalizations (see,
for example, [3]).

A natural assumption on S is that it is a cone — a convex set, closed under nonnegative scalar
multiplication. And outside of the Banach lattice realm, Q € L£(X, V') such that QS C S is often
called a cone-preserving map (see [8] for an extensive description). Borrowing this terminology,
for given cone S let us denote the set of all cone-preserving operators by Ls = Lg(X, V). Not
surprisingly, the determination of whether or not a given () € £ belongs to Lg can be quite difficult.
Indeed, one finds in the literature that existence of cone-preserving operators is frequently considered
only in the case in which X is finite-dimensional. The fact that membership in Lg is very ‘sensitive’
to X, S and @ certainly contributes to the difficulty. For example, there is no finite-rank operator in
Ls(X, V) which fixes V, where X = (C[0, 1], || ||oc), S is the cone of nonnegative elements from X
and V = Il = [1,z, 22, the space of second-degree algebraic polynomials (spanned by {1, z, 2%}).
However, if instead we require fixing II; and 22 — (z + 22)/2, i.e., nearly fixing V, then such an
operator does belong to Ls(X, V). Or instead, consider the fact that, while there exists no projection
from X onto V' = II; preserving monotonicity, it is possible to project X; onto V' and leave the cone
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of monotone functions (of X7) invariant, where X; is the (Banach) space of C'! functions on [0, 1]
normed by || f[x, := max{[| f|loc, [l/'lloc }-

When elements of X are to approximated from V' such that the characteristic, or shape, de-
scribed by (inclusion in) S should be maintained, then we say such a () provides a shape-preserving
approximation whenever () € Lg and () is referred to as a shape-preserving operator. This paper
considers the problem of existence of shape-preserving operators for a given S. From the viewpoint
of shape-preserving approximation, we will be primarily interested in those () € £ that projections,
ie.,

P e L(X,V) suchthat P, =idy.

Let P = P(X,V) denote the set of projections in £ and let Ps be the set of shape-preserving
projections. The paper [5] gives a characterization of Pg # & under so-called high-dimensional
assumptions (which are explained below). As illustrated, for example, in [1, 4] and [6], there are many
natural settings for which the high-dimensional assumptions are valid (and thus the characterization
can be applied).

The main goal of this paper is to consider the existence question Pg # & without the assumptions
of [5], that is, existence under low-dimensional assumptions, and to apply our results in a specific
setting.

We divide this paper into four sections. Following this introductory section, we establish in
Section 2 some basic notation involving convex cones and describe exactly our low-dimensional
assumptions. In Section 3 we state, and subsequently prove, our main existence results. Within this
section we describe a decomposition of subspace V' which is used extensively in the consideration
of shape-preserving operators. Finally in Section 4 we identify a very natural setting in which the
low-dimensional assumptions hold and our existence results can be applied to yield some interesting
results.

2. Preliminaries and low-dimensional assumptions. Throughout this paper, we will denote the
ball and sphere of real Banach space X by B(X) and S(X), respectively. V' C X will always denote
a finite-dimensional subspace of X. The dual space of X is denoted, as usual, by X*. To emphasize
bi-linearity, use (x, ¢) to denote p(z) for z € X and ¢ € X*. In a (real) topological vector space,
a cone K is a convex set, closed under nonnegative scalar multiplication. K is pointed if it contains
no lines. For ¢ € K, let [p]" := {ap | a > 0}. We say [¢]T is an extreme ray of K if ¢ = o1 + @2
implies 1,2 € [¢]T whenever @1, 2 € K. We let E(K) denote the union of all extreme rays
of K. When K is a closed, pointed cone of finite dimension we always have K = co(E(K)) (this
need not be the case when K is infinite dimensional; indeed, we note in [6] that it is possible that
E(K) = @ despite K being closed and pointed).

Definition 2.1. Let S C X denote a closed cone. We say that x € X has shape (in the sense
of S) whenever x € S. Denote the set of projections from X onto V by P = P(X,V). If P € P
and PS C S then we say P is a shape-preserving projection, denote the set of all such projections
by Ps. For a given cone S, define

S*={pe X*|(x,9) >0 Vz € S}.
We will refer to S* as the dual cone of S. A dual is always a weak*-closed cone in X* but, in

general, need not be pointed. The following lemma indicates that S* is in fact “dual” to S.
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Lemma 2.1. Letz € X. If (x,¢) > 0 for all p € S* then x € S.
Proof. We prove the contrapositive; suppose x € X such that z ¢ S. Then, since S is closed and
convex, there exists a separating functional ¢ € X* and a € R such that (z, ) < a and

(s,p) >a VseS. (2.1)
Note that we must have o < 0 because 0 € S. In fact, for every s € S we claim
(s,0) > 0> a. (2.2)

To check this, suppose there exists sg € S such that (sg, p) = 8 < 0; this would imply

«
()=

while %80 € S. And this is in contradiction to (2.1). The validity of (2.2) implies that ¢ € S* and

this completes the proof.

Remark 2.1. Not surprisingly, characteristics of the cone S and the subspace V' play a role in
the existence of shape-preserving operators. In [5], it is assumed that both S and V' have ‘largest
possible’ dimension (the so-called high-dimensional assumptions). Specifically, in that paper it is
assumed that a basis for V' can be obtained from S (dim (V') = dim (V' N S)) and that S C X is ‘so
large’ that the zero-functional is the only element of X* that vanishes on S (and so, roughly speaking,
dim (S) = dim (X)). This latter condition is clearly equivalent to the (geometric) condition that S*
is pointed.

In this paper we look to remove the assumptions described in the note above. Specifically,
throughout the remainder of this paper we make the following low-dimensional assumptions: S*
is not pointed and dim (V' N S) < dim (V). By way of completeness, we note that the case S* is
pointed and dim (V' N S) < dim (V) is handled by Theorem 3.1 (below); in this case we always have
Ps(X,V)=w2.

Remark 2.2. We wish to distinguish between two types of (non-pointed) dual cones: those
which can be made pointed and those which cannot. To this end, let S+ C X* denote the space of
functionals that vanish against S and note S~ C S*. We are interested in (potentially) ‘sharpening’
S*, in the following sense.

Definition 2.2. We say that S* can be sharpened if

(S*\Si)mstg

where the closure is taken with respect to the weak* topology. In this case, we define S* := S5*\ S-L.

This concept of sharpening a dual cone is motivated by a simple fact: S* is a pointed cone, with
a “pre-dual”cone nearly identical to cone S. And, as we illustrate in the next section, S* can be
employed to give a geometric characterization of when Pg = @.

3. Main results. 3.1. General existence results. In this section we give characterizations for
Ps # @; the proofs of these statements are given in Subsection 3.3. To understand when Pg # &,
we should consider the relationship between the shape to be preserved, S, and the range of our
projection, V. Indeed, this relationship can be expressed by restricting S* to V, denoted S|*V. This
consideration can often completely characterize when Pg # &.
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Definition 3.1. Let d := dim (V). Define Vy := {v € V | {(v,¢) = 0 Vo € S*} and note
Vo C S. Now let k := dim (VN S) —dim (Vo). Fix a basis {v1,...,vq} for V such that vy, ..., v, &
¢ S, Vo = [Urs1,- -+, Va—(er2)l, and vg_(x11y,---,va € S (where [ay, ..., as] denotes the linear
span of {a1,...,as}). Using this basis, we define V_ := [v1,...,v;] and Vi = [vg_(441);- - -, Vd]
and decompose V as

V=V_eWweV,= ['Ul, e Uy Upgdy v o Ud— (k+2)» Vd— (k1) 5 - - - ,Ud].

Remark 3.1. The following results rely on the decomposition of V' given above. Note that once
the cone S C X is fixed, this decomposition is merely a convenient basis choice for V. Indeed, every
Q € L(X,V) can be expressed in terms of this basis as

d d
Q=) w®v,  where Qf = (f ui)v;
i=1 i=1
with u; € X* for each . Using the representation, we say that the action (up to similarity) of () on
V' is the matrix ((v;, u;)). Evidently @ is a projection if and only if ((vs, u;)) = d;;.

Recall that S+ C S* denotes the space of functionals that vanish against S. We say subspace
M C X* is total over subspace Y C X if dim (M), ) = dim (Y"). Without any assumptions on the
dual cone S* we have the following characterization.

Theorem 3.1. Let S C X be given and V =V_ @ Vo @ V. Then Ps(X,V) # & if and only
if S* is total over V_ and Ps(X,V,) # @.

This characterization indicates that shape-preservation onto V' is almost equivalent to shape-
preservation onto V. And in Subsection 3.2, we establish existence results involving V. For the
remainder of this section, we consider the case in which $* can be sharpened, i.e., the case in which
St is defined.

When a dual cone has a particular structure, existence of shape-preserving operators can be
described in terms of that structure, which we now define. Note that, in the context of our current
considerations, we say a finite (possibly) signed measure p with support £ C X* is a generalized
representing measure for ¢ € X* if (z,p) = [ (s,z) du(s) for all z € X. A nonnegative measure
1 satisfying this equality is simply a representin?g measure.

Definition 3.2. Let X be a Hausdorff space over R. We say that a pointed closed cone K C X*
is simplicial if K can be recovered from its extreme rays (i.e., K =0 (E(K))) and the set of extreme
rays of K form an independent set (independent in the sense that any generalized representing
measure for x € K supported on FE(K) must be a representing measure).

Proposition 3.1. A pointed closed cone K C X* of finite dimension d is simplicial if and only
if K has exactly d extreme rays.

Theorem 3.2 ([5], Theorem 1.1). Let S* C X* denote the dual cone of S C X and suppose S*
is simplicial. Then Ps(X,V') # & if and only if the cone Sl*v is simplicial.

Theorem 3.3. Let S C X be given and suppose S* (exists and) is simplicial. Then Ps(X, V) #
£ & if and only if S is total over V and S‘V+

3.2. Preservation onto V_, Vy, V. Forany Q € L(X,V) we can write (using Remark 3.1)

is simplicial.

. d—(k+2) d
Q:<ZUi®Ui>@ Z U @v; | B Z U Qv | =1 Q- D QoD Q.
=1 i=rt1 i=d—(k+1)
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In this section we consider these components of () in the shape-preserving projection case. When @)
is a projection, note that each component is also a projection (onto its specific range).

Lemma 3.1. Foragiven S C X,letV =V_@Vy@ V. Let P € P(X,V) be any projection.
Then Py € Ps(X, V).

Proof. For every f € S and every ¢ € S* we have

d—(k+2) d—(k+2)
<P0f780> = < Z <f7ui>vi7<p> = Z <f,ul><'l)z,§0> =0
i=r+1 i=r+1

by definition of Vj. This implies, by Lemma 2.1, that Py f € S and, since P is a projection, we have
Py € Ps(X, Vo).

Lemma 3.1 is proved.

Lemma 3.2. Foragiven S C X, letV =V_ @& Vy @ Vy and assume dim (V_) = r # 0. If

d
P= E i ®@v; € Ps(X, V) then uy, ..., u, € S*+ and S* is total over V_.
1=
Proof. Let P € Ps(X,V) and write P_ = E T u; ® v;. For every f € S we know

P f+Pf+P.feb.
But the decomposition of V' (Definition 3.1) implies

P_f = u(f)vi=0, (3.1)
i=1

for every f € S, since otherwise we would have dim (V1) > k. Now (3.1) implies that for each ¢,
u;(f) = 0 for all f € S and thus u; € S*. This, together with the fact that P is a projection, i.e.,
ui(v;) = d;5, implies that S+ is total over V_.

Lemma 3.2 is proved.

Remark 3.2. When k = dim (V) # 0, note that S|*V is a k-dimensional pointed cone. It is
+

convenient to interpret this cone as a subset of R¥ by associating each Ply, € S |*V with the k-vector
+

[P (Vd—(k+1))> - - 5 ©(vg)]T. We will use this association throughout the remainder of the paper. And
*
lv.

Lemma 3.3. Let S C X be given and let S* denote its dual cone. Let V =V_ & Vy @& V. and
assume dim (V) = k # 0. If the (k-dimensional) cone S| is simplicial then Ps(X, V) # @.

so by construction, we may regard S* as a cone in the positive orthant of R¥.

|V+
Proof. Recall that our fixed basis of V, is given by {vg_(x11),-- -, vq}. For convenience within
this proof, relabel these elements as {v1,..., vy }. Now, by assumption, S|*V has exactly k extreme
+
rays. Label each ray as
+ +
[u1|v+:| 7"‘7[uk“v+] bl
where Ul|y, - Uk|,, are non-zero points chosen from distinct rays. Thus we have
* + +
S|V+ = CO ([u”\,J PRI [uk|V+] ) . (3.2)
Define the (row) vector w := (u1, ..., u;) € (S*)*, where each u; restricts to extreme ray [ui|V+]+,
and the (column) vector v = (vy,...,v;)7. Using this notation, note that for any ¢ € S* we may

write

(<1)1,90>, SRR <vk’ Q0>)T = <'U790> = (<Ui’uj>) Cp = Mct,o»
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where M := ((v;,u;)) is a k x k matrix and ¢, is the vector of nonnegative coefficients guaranteed

by (3.2). Since S|*V has k independent elements, matrix M is non-singular. Thus we may solve for
+

¢, and write ¢, = M 1 (v, ). Let Py := uM ~! ® v; obviously P is a projection from X into V.
Moreover, for every f € S and ¢ € S* we have

<P+f> SO> = <<f>U’M_1>Ua(p> = <f7u>M_1<U>30> = <fa u>C<p >0

since (f,u)c, is a dot-product of two vectors with nonnegative entries. By Lemma 2.1, P, f € S.
Lemma 3.3 is proved.
Lemma 3.4. Let S C X be given and let S* denote its dual cone. Let V =V_ & Vyd V. and
assume dim (V) = k # 0. If the (k-dimensional ) cone S} is not closed then Ps(X,Vy) = @.

vy
Proof. We consider the contrapositive. Let P € Ps(X,V,) and let P*S* denote the (weak*)
closure of P*S* C X*. Choose P*p € P*S* C P*X* and a sequence {P*¢;}7°, C P*S* such
that P*¢r — P*p. Notice, by Lemma 2.1, {P*cpk}zozl C S*. 5% is weak*-closed and therefore
P*p € S*; this implies P*p € P*S* since (P*)? = P*. Thus P*S* is closed. Note that P*S* is
v, and thus (P*S*)‘V+ = S|*V+. To

verify this, choose ¢ € S*, v € V and consider

(v, P*p) = (Pv, ) = (v, ¢),

where the last equality follows from the fact that P is a projection. But this equation simply says that

homeomorphic to (P*S*) is closed. Finally, we claim (P*S*)

v,

*

is closed.
v,

P*p and ¢ agree on V., thus establishing the claim. From here we can conclude that S|

Lemma 3.4 is proved.

3.3. Proofs of existence results. Proof of Theorem 3.1. (=) Let P € Pg(X,V) and write
P=P_ @& Py® P,. By Lemma 3.2, S* is total over V_. Furthermore, for every f € S and every
p € 5* we have

0 <(Pf,p) =(P-f,0) +(Pof, ) + (Pif,0) = (Py, )

by Lemmas 3.1 and 3.2 and therefore Pg(X, V}) # @.
(<) Let Q = Q- @ Qo ® Q4+ be any projection onto V' and define Py := @p. Choose P; €
Ps(X, Vy); we claim

Py P Eps(X,%@V+). 3.3)

The fact that this operator is shape-preserving is clear since Vy C S. We need only verify that that the
action of the operator on V5@ V. is the identity action. Note that we need only check that P, vanishes
on Vj. But this is clear since Vjy C S is a linear space, P;Vp C S and VNV, = {0}. This establishes
(3.3). We now focus on V_. Since S* is total over V_ (and assuming  := dim (V_) > 0), there exist
ui,...,ur € St such that P_ := Zr | Wi ®wv; 1s a projection onto V_ (in the case r = 0 define P_

1=

d
to be the zero-operator). Now with P; chosen as above, write P} = E —d (k1) u; ®v;. Again using
i=d—

S total over V_, there exist functionals @1, . . ., ¢, € S+ such that for each j € {d—(k+1),...,d},
there exist constants {cij,...,¢,;} € R such that

,
<Uz’> Z Cm,jst> = —(vi,u;) for i=1,...,r
m=1
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,
Define @; := Z | Cm.iPi and note that
m=

(v,®;) = —(v,u;) forany veV_. (3.4)
. d .
Let Uj :=uj + ®; foreach j =d — (k+1),...,d and Py := Zi:d_(kﬂ) U; ® v;. We claim

P=P &PRoP,

belongs to Ps(X, V). Consider first P, ; note, by construction each ®; C S+ vanishes S. Thus
Py € Pg(X,V,) and so by (3.3), we have

Py@® Py € Ps(X, Vo & V). 3.5)

Regarding P_, by construction this operator vanishes on S and this, combined with (3.5), implies
PS C S. To see that P has the identity action on V, we need only check that P_ vanishes on
Vo @& V4 and Py @ P4 vanishes on V_. The former condition holds since the basis we use for Vj and
V7 belongs to S. To establish the latter, first note that P vanishes on V_ by construction. And, by
(3.4), for any v € V_ we have

d d
Piv= Z (v, Uj)v; = Z (v, u; + ®i)v; =
i=d—(k+1) i=d—(k+1)
d
= Z (v, u; —u;)v; =0
i=d—(k+1)

by the definition of each ®;. So P, vanishes on V_. This establishes that P is a projection.
Theorem 3.1 is proved.

Proof of Theorem 3.3. By Theorem 3.1, the proof will be complete if we can show Pg (X, V;) #
1

vy
closed cone and, as such, is exactly the dual cone of

Sy = {z € X|(z,¥) >0 Yy € §*}.

Note that S contains the cone S. By Theorem 3.2,

+ @ is equivalent to S*  simplicial, which we now establish. Recall that S¥ C S* is a pointed, weak*

SF s simplicial <= Pg, (X,V}) # @

v
and thus we need only show

PS(X, V+) 7é g < Psl(X, V+) 75 . (36)

Let P € Ps(X,Vy); we claim P(S;) C S;. From Lemma 2.1, it follows that P(S;) C S; if and
only if P*(S*) C S*, where P* denotes the adjoint of P (defined by (f, P*u) = (Pf,u) for f € X
and v € X*). We know that P*(S*) C S* since (via Lemma 2.1) P*S* C S* and S* C S*.
Thus we need only show that, for each ¢ € S* non-zero P*i) does not vanish against S. But
P*y) = Z;?:l(vj, Y)u;, where (via relabeling) {vi,...,vx} C S is our fixed basis for V.. And so
P*4p # 0 implies (v;, 1)) # 0 for some i. Therefore P*1) € S*, which establishes P(S;) C Si. Thus
P € Pg, (X, V). To complete the proof, let P € Pg, (X, V). Arguing as above, it follows that
P*S* C S* and thus P € Ps(X, V), which establishes (3.6).
Theorem 3.3 is proved.
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4. Application: the g-monotone case. In this section we consider the preservation of ¢-
monotonicity (defined below) by a projection from X = (C?[—1.1],||-||) onto V' = II,, (the subspace
of algebraic polynomials of degree less than or equal to n), where

IF1l = max {Hf loo }-

For s € N, let Y, denote the collection of s distinct points Y = {y;};_; where yp = —1 <
<y <...<ys<1l=vysy1. Forge Nand Y € Y, define

St ={fe X}(—l)jf(q)(t) >0 whenever ¢ € [y;,y;4+1), j=0,...,s}.

We say f € X is g-monotone (with respect to Y € Yj) exactly when f € SY.. We denote by 7353/
the set of g-monotone preserving projections from X onto II,,.

The main point of this section is the following characterization. The proof of this theorem con-
siders the (topological) consequence of restricting a dual cone to subspace V = II,,. For purposes of
illustration, we include (in Subsection 4.1) two arguments that establish an existence result; Version
1 uses a “classical” approach to shape-preservation and Version 2 utilizes the restriction of a dual
cone.

Theorem 4.1. Let s € N. Then, for Y € Y,

Py #@ <= n—s—q<1

Proof. We prove this result through induction on ¢. The ¢ = 1 case is verified (for all s and n)
in the following section (see Lemma 4.1). We now proceed with the inductive step; for fixed qg, we

assume
PS;07A®<:>n—s—q0§1 4.1

and show
Pgui1 # & & n—s—(g+1) <1 (4.2)

Suppose n — s — (qo + 1) < 1; then we have (n — 1) — s — qo < 1 and so by (4.1) there exists
—1
P e Psqo (X, 11— 1) Using the notation from Subsection 3.2, we may write P = Z:_l U ® Vg

where Pf = Z f, ug)v € I,,_1. Define P.= Z g ® O where U9 ® 99 := d_1 ® 1 and,
for k > 0, 43 := uk o Dy (Dy is the differential operator) vk := I o vy, (I is the integral operator).
Thus

n

(PAE) =D (fran)in(t) = f(=1)+ > _(f' ur) i (vp) =
h=1

k=0

¢ n

)+ / (' unyon() dz = fF(—1) + / (PF')(x) de

2 k=1

Note that P : C%+1[—1,1] — II,,. Moreover, since P is a projection (onto IT,_1), so is P (onto II,).

And finally, if f € S{’/OH then f' € S¥ which implies Pf’ € S¥. Therefore, since (Pf)®0+1) =

= (Pf")@) we have Pf € Pgag+1. Thus Pag+1 7 &. To establish the other direction of (4.2),
Y

Y
consider n—s—(qo+1) > 1; we show that this implies Pgao+1 = &. Suppose there exists P € Pgqo+1.
Y Y
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X n -~ n—1 _ R
Arguing as above, express P as P = g g W ® v, where vy, := 2¥. Define P := Zk*O U @ Vg
where uy, = uy, o I; and 0, = Dy o vi. Then

n n
(PF)(X) = (f,ik)or(t) = Dy (Zmﬂ um) = Dy (P(I+f)) .-
k=0 k=1
Evidently P is a projection from C% onto II,_;. If f € S{ then Pf e SY since P(Iif) € S{’/‘)H
and this implies P e ,PS;Z/O (X,II,,—1). But from our supposition, we have (n — 1) — s —qp > 1,
which, from (4.1), implies PS;Z/O = @. This contradiction has resulted from assuming P € PS;OH
and therefore we must have PS@"“ = . This establishes (4.2).
Theorem 4.1 is proved.
4.1. The q = 1 case. In this subsection we verify the ¢y = 1 case via the following lemma.
Lemma 4.1. PS;(X, II,) #90 <= n—s<2.
To begin, denote S} by Sy and let S* C X* denote the dual cone of Sy. Recall the decomposition
of V used above; relative to Sy, we write V = V_ & V @ V. Note that Vj is 1-dimensional

and Vp = [1]. As we will see below, dim (V}) = n — s; recall from above that we may assume
S; C R"7%. For fixed Y, put

v,
S

A=Az):= l_I(yZ —x).
i=1
Proposition 4.1. dim (V}) = max{0,n — s}. If n—s > 0 then, fori=1,...,n— s,
x
vi(x) = /(1 —tYA(t) dt € Sy
-1
and {vi,...,vn_s} forms a basis for V.

Letv € VNSy;then fori =1,...,s we have v/(y;) = 0. Thus if n — s < 0 then dim (V) = 0.
Assume n — s > 0; then by definition of Sy we can write v'(x) = p(z)A(z) for some polynomial
p- But deg(A) = s and so p € II,_(41). Therefore dim (V;) < n — s. Finally, note that for
t1=1,...,n—s,

x
v = /(1 —t)A(t) dt € Sy
-1
and are independent. Thus V} = [v1,..., 05—

Note that in this application we have have labeled the basis elements for V. as vy, ..., v,_s. This
departure from the labeling in the previous section is meant to simplify the notation in the current
setting.

Lemma 4.2. Suppose n—s > 2. Then S} C R"™* is not closed and thus Ps, (X,11,) = @.

v,
Proof. Fix y; for some j € {1,...,s}. Since n—s > 3, it is clear from Proposition 4.1 that a basis
x x
for V. can be chosen as prescribed to include elements v; := / A(t) and vy := / (1—tA(1).
-1 -1

Without loss, assume A(t) > 0 for t € (y;—1,y;). And so, since S}, 1s a cone, it must contain, for
+

/

t |v+

A(t)

each such ¢, the point (or vector) . Thus by Proposition 4.1 there exists a vector
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(1)},
z=|1,1,23,...,2p_¢| := lim +
| ’ ] =y A()

belonging to the closure of S|*V . Now, by way of contradiction, let us suppose there exists ¢ € S*
+

such that Py, = 2 Note that

=) =o | [a0)) =etm) =¢ | [a-Man 43)
—1 —1
which implies
© / t2A(t) | = 0.
-1
Moreover, for every even integer v > 2 we have

/t”A(t) €S and /(t2 —t")A(t) € S
-1 -1

since t2 — ¢t > 0 on [—1,1]. And thus for every v

© t"A(t) | = 0. (4.4)
/

For convenience, assume y; = 0. Define A(z) by A(z) = zA(z). Let To(z) be an odd Tchebyshev

€T
polynomial of (arbitrary odd) degree d. Consider the polynomial p(z) := / Toﬁ € X; the norm

~1
|lp|| is clearly bounded independent of d. But by (4.3) and (4.4) we find

o(p)| = | / Yot |A@) [|=le| D2 /Citz_lA —d
el =1 i=1"
4 odd 1 odd
since |c1| = d. This implies that ¢ is unbounded and thus cannot be an element of S*. Therefore

SI*V+ is not closed. Consequently, by Lemma 4.2 and Corollary 3.4, we have Pg, (X,V}) = @ and
thus Ps, (X, V) = & by Theorem 3.1.

Lemma 4.2 is proved.

Lemma 4.3. Supposen —s < 2. Then Ps, (X,V) # @.

Proof (Version 1). Set ysyo :=yo = —1. Fix n € N, n — s < 2. For each g € C[—1, 1] denote
by Ly—1(z,9) := L(z,9;vy1,...,yn) — the Lagrange polynomial of degree < n, that interpolates g
at y;’s, j = 1,...,n. First we remark, that the operator P € £(C*[—1,1],11,,), defined by

xT

(Pg)(w)i=9(0) + [ Lua(t.g)d,
0
is a projection, that is P € P(C'[-1,1],1I,). This readily follows from the fact, that for each
Pn—1 € II,,_1 we have
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Lnfl(xvpnfl) = pnfl(x)'
So, to end the proof we have to check, that if f € Sy, then (Pf) € Sy as well, or, which is the
same,

Ly_1(z, fHA(z) >0, =z€[-1,1], (4.5)
where A(z) = H;_l(yj — 2). Indeed, if n < s, then L,_yi(z, f') = 0, that yields (4.5). If
n=s+1, then L,_1(x, f') = AA(z), where A > 0, that yields (4.5). Finally, if n = s + 2, then
Lp—1(z, f") = (ax + b)A(x). Let us show, that

ar+b>0, zel[-1,1]. (4.6)
If x = —1, then
Ln—l(_17f/) f/(_l)
—a+b= A(=1) :A(—l) > 0.
Similarly a 4+ b > 0. Thus (4.6) holds, that yields (4.5).

Proof (Version 2). We claim that (regardless of the value n — s) S is total over V_. Indeed
note that in our setting we have r := dim (V_) = min{s,n} and V_ = [z,2?%,...,2"]. And since
{05, 32, C S+ we have that S+ is total over V_. Now in the case n — s < 0 we have dim (V) = 0
and so trivially Pg(X, V) # @ since the zero-operator belongs to this set. Suppose n — s > 0; by

*
vy
S|*V is simplicial. This is clear in the n — s = 1 case, since every 1-dimensional pointed cone is

Proposition 4.1, n — s is exactly the dimension of S;* . We claim, in the cases n — s = 1, 2, the cone

(trivially) simplicial. For n — s = 2, note that a 2-dimensional pointed cone is simplicial if and only

if it is closed. We now show S‘*V C R? is closed. Recall that S|*V
+ +

of R?. And it will suffice to show that for some basis for V., there exist functionals @1, s € S*

belongs to the positive quadrant

such that (gpi)|v+ belongs to the ray determined by e; (the standard basis element) for ¢ = 1,2. To
this end, note that

- /j C(t—1)A®E)  and vy — /j(t AW
‘v+ = [CL,O] and (51)\\@

are elements of S and form a basis for V. Moreover (¢ ;)
a,b > 0. Therefore S} is exactly the positive quadrant of R?. Thus, in the cases n — s = 1,2 we

= [0, b] for some

v,
have S|*V simplicial, which implies Pg(X, V) # @ by Theorem 3.3. By Theorem 3.1 we conclude
+
Ps(X,V) # @.

Lemma 4.3 is proved.
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