UDC 517.5
M. P. Prophet (Univ. Northern Iowa, USA),
I. A. Shevchuk (Kyiv Nat. Taras Shevchenko Univ., Ukraine)

SHAPE-PRESERVING PROJECTIONS IN LOW-DIMENSIONAL SETTINGS AND THE q-MONOTONE CASE ФОРМОЗБЕРІГАЮЧІ ПРОЕКЦІЇ У МАЛОВИМІРНІЙ ПОСТАНОВЦІ ТА q-МОНОТОННИЙ ВИПАДОК

Abstract

Let $P: X \rightarrow V$ be a projection from a real Banach space X onto a subspace V and let $S \subset X$. In this setting, one can ask if S is left invariant under P, i.e., if $P S \subset S$. If V is finite-dimensional and S is a cone with particular structure, then the occurrence of the imbedding $P S \subset S$ can be characterized through a geometric description. This characterization relies heavily on the structure of S, or, more specifically, on the structure of the cone S^{*} dual to S. In this paper, шe remove the structural assumptions on S^{*} and characterize the cases where $P S \subset S$. We note that the (so-called) q-monotone shape forms a cone which (lacks structure and thus) serves as an application for our characterization.

Нехай $P: X \rightarrow V$ - проекція дійсного банахового простору X на підпростір V i, крім того, $S \subset X$. У цій постановці виникає питання: чи є S лівоінваріантним під дією P, тобто чи має місце вкладення $P S \subset S$? Якщо підпростір V є скінченновимірним, а $S \in$ конусом із певною структурою, то вкладення $P S \subset S$ може бути охарактеризовано шляхом геометричного опису. Ця характеризація істотно залежить від структури S, або, точніше, від структури конуса S^{*}, спряженого до S. У цій роботі усунено структурні припущення щодо S^{*} і охарактеризовано випадки, у яких $P S \subset S$. Відзначено, що (так звана) q-монотонна форма утворює конус, який (не має структури і тому) може бути використаний для застосування нашої характеризації.

1. Introduction. Denote the space of linear operators from real Banach space X into subspace $V \subset X$ by $\mathcal{L}=\mathcal{L}(X, V)$. For a given subset $S \subset X$, one can look to determine those $Q \in \mathcal{L}$ which leave S invariant; i.e., those Q such that $Q S \subset S$. There are numerous settings in which $Q S \subset S$ has important consequences and connections. For example, under the right conditions on S, X becomes a Banach lattice and Q such that $Q S \subset S$ becomes a positive operator (see [7] for an overview). Existence of positive operators (or more precisely positive extensions) is employed, for example, in the Korovkin's classical theorem (described in [2]) and in its many generalizations (see, for example, [3]).

A natural assumption on S is that it is a cone - a convex set, closed under nonnegative scalar multiplication. And outside of the Banach lattice realm, $Q \in \mathcal{L}(X, V)$ such that $Q S \subset S$ is often called a cone-preserving map (see [8] for an extensive description). Borrowing this terminology, for given cone S let us denote the set of all cone-preserving operators by $\mathcal{L}_{S}=\mathcal{L}_{S}(X, V)$. Not surprisingly, the determination of whether or not a given $Q \in \mathcal{L}$ belongs to \mathcal{L}_{S} can be quite difficult. Indeed, one finds in the literature that existence of cone-preserving operators is frequently considered only in the case in which X is finite-dimensional. The fact that membership in \mathcal{L}_{S} is very 'sensitive' to X, S and Q certainly contributes to the difficulty. For example, there is no finite-rank operator in $\mathcal{L}_{S}(X, V)$ which fixes V, where $X=\left(C[0,1],\|\cdot\|_{\infty}\right), S$ is the cone of nonnegative elements from X and $V=\Pi_{2}=\left[1, x, x^{2}\right]$, the space of second-degree algebraic polynomials (spanned by $\left\{1, x, x^{2}\right\}$). However, if instead we require fixing Π_{1} and $x^{2} \mapsto\left(x+x^{2}\right) / 2$, i.e., nearly fixing V, then such an operator does belong to $\mathcal{L}_{S}(X, V)$. Or instead, consider the fact that, while there exists no projection from X onto $V=\Pi_{2}$ preserving monotonicity, it is possible to project X_{1} onto V and leave the cone
of monotone functions (of X_{1}) invariant, where X_{1} is the (Banach) space of C^{1} functions on $[0,1]$ normed by $\|f\|_{X_{1}}:=\max \left\{\|f\|_{\infty},\left\|f^{\prime}\right\|_{\infty}\right\}$.

When elements of X are to approximated from V such that the characteristic, or shape, described by (inclusion in) S should be maintained, then we say such a Q provides a shape-preserving approximation whenever $Q \in \mathcal{L}_{S}$ and Q is referred to as a shape-preserving operator. This paper considers the problem of existence of shape-preserving operators for a given S. From the viewpoint of shape-preserving approximation, we will be primarily interested in those $Q \in \mathcal{L}$ that projections, i.e.,

$$
P \in \mathcal{L}(X, V) \quad \text { such that } \quad P_{\left.\right|_{V}}=i d_{V}
$$

Let $\mathcal{P}=\mathcal{P}(X, V)$ denote the set of projections in \mathcal{L} and let \mathcal{P}_{S} be the set of shape-preserving projections. The paper [5] gives a characterization of $\mathcal{P}_{S} \neq \varnothing$ under so-called high-dimensional assumptions (which are explained below). As illustrated, for example, in [1, 4] and [6], there are many natural settings for which the high-dimensional assumptions are valid (and thus the characterization can be applied).

The main goal of this paper is to consider the existence question $\mathcal{P}_{S} \neq \varnothing$ without the assumptions of [5], that is, existence under low-dimensional assumptions, and to apply our results in a specific setting.

We divide this paper into four sections. Following this introductory section, we establish in Section 2 some basic notation involving convex cones and describe exactly our low-dimensional assumptions. In Section 3 we state, and subsequently prove, our main existence results. Within this section we describe a decomposition of subspace V which is used extensively in the consideration of shape-preserving operators. Finally in Section 4 we identify a very natural setting in which the low-dimensional assumptions hold and our existence results can be applied to yield some interesting results.
2. Preliminaries and low-dimensional assumptions. Throughout this paper, we will denote the ball and sphere of real Banach space X by $B(X)$ and $S(X)$, respectively. $V \subset X$ will always denote a finite-dimensional subspace of X. The dual space of X is denoted, as usual, by X^{*}. To emphasize bi-linearity, use $\langle x, \varphi\rangle$ to denote $\varphi(x)$ for $x \in X$ and $\varphi \in X^{*}$. In a (real) topological vector space, a cone K is a convex set, closed under nonnegative scalar multiplication. K is pointed if it contains no lines. For $\varphi \in K$, let $[\varphi]^{+}:=\{\alpha \varphi \mid \alpha \geq 0\}$. We say $[\varphi]^{+}$is an extreme ray of K if $\varphi=\varphi_{1}+\varphi_{2}$ implies $\varphi_{1}, \varphi_{2} \in[\varphi]^{+}$whenever $\varphi_{1}, \varphi_{2} \in K$. We let $E(K)$ denote the union of all extreme rays of K. When K is a closed, pointed cone of finite dimension we always have $K=\operatorname{co}(E(K)$) (this need not be the case when K is infinite dimensional; indeed, we note in [6] that it is possible that $E(K)=\varnothing$ despite K being closed and pointed).

Definition 2.1. Let $S \subset X$ denote a closed cone. We say that $x \in X$ has shape (in the sense of S) whenever $x \in S$. Denote the set of projections from X onto V by $\mathcal{P}=\mathcal{P}(X, V)$. If $P \in \mathcal{P}$ and $P S \subset S$ then we say P is a shape-preserving projection; denote the set of all such projections by $\mathcal{P}_{\mathcal{S}}$. For a given cone S, define

$$
S^{*}=\left\{\varphi \in X^{*} \mid\langle x, \varphi\rangle \geq 0 \quad \forall x \in S\right\}
$$

We will refer to S^{*} as the dual cone of S. A dual is always a weak*-closed cone in X^{*} but, in general, need not be pointed. The following lemma indicates that S^{*} is in fact "dual" to S.

Lemma 2.1. Let $x \in X$. If $\langle x, \varphi\rangle \geq 0$ for all $\varphi \in S^{*}$ then $x \in S$.
Proof. We prove the contrapositive; suppose $x \in X$ such that $x \notin S$. Then, since S is closed and convex, there exists a separating functional $\varphi \in X^{*}$ and $\alpha \in \mathbb{R}$ such that $\langle x, \varphi\rangle<\alpha$ and

$$
\begin{equation*}
\langle s, \varphi\rangle>\alpha \quad \forall s \in S \tag{2.1}
\end{equation*}
$$

Note that we must have $\alpha<0$ because $0 \in S$. In fact, for every $s \in S$ we claim

$$
\begin{equation*}
\langle s, \varphi\rangle \geq 0>\alpha \tag{2.2}
\end{equation*}
$$

To check this, suppose there exists $s_{0} \in S$ such that $\left\langle s_{0}, \varphi\right\rangle=\beta<0$; this would imply

$$
\left\langle\frac{\alpha}{\beta} s_{0}, \varphi\right\rangle=\alpha
$$

while $\frac{\alpha}{\beta} s_{0} \in S$. And this is in contradiction to (2.1). The validity of (2.2) implies that $\varphi \in S^{*}$ and this completes the proof.

Remark 2.1. Not surprisingly, characteristics of the cone S and the subspace V play a role in the existence of shape-preserving operators. In [5], it is assumed that both S and V have 'largest possible' dimension (the so-called high-dimensional assumptions). Specifically, in that paper it is assumed that a basis for V can be obtained from $S(\operatorname{dim}(V)=\operatorname{dim}(V \cap S))$ and that $S \subset X$ is 'so large' that the zero-functional is the only element of X^{*} that vanishes on S (and so, roughly speaking, $\operatorname{dim}(S)=\operatorname{dim}(X)$). This latter condition is clearly equivalent to the (geometric) condition that S^{*} is pointed.

In this paper we look to remove the assumptions described in the note above. Specifically, throughout the remainder of this paper we make the following low-dimensional assumptions: S^{*} is not pointed and $\operatorname{dim}(V \cap S) \leq \operatorname{dim}(V)$. By way of completeness, we note that the case S^{*} is pointed and $\operatorname{dim}(V \cap S)<\operatorname{dim}(V)$ is handled by Theorem 3.1 (below); in this case we always have $\mathcal{P}_{S}(X, V)=\varnothing$.

Remark 2.2. We wish to distinguish between two types of (non-pointed) dual cones: those which can be made pointed and those which cannot. To this end, let $S^{\perp} \subset X^{*}$ denote the space of functionals that vanish against S and note $S^{\perp} \subset S^{*}$. We are interested in (potentially) 'sharpening' S^{*}, in the following sense.

Definition 2.2. We say that S^{*} can be sharpened if

$$
\left(\overline{S^{*} \backslash S^{\perp}}\right) \cap S^{\perp}=\varnothing
$$

where the closure is taken with respect to the weak* topology. In this case, we define $S^{\sharp}:=\overline{S^{*} \backslash S^{\perp}}$.
This concept of sharpening a dual cone is motivated by a simple fact: S^{\sharp} is a pointed cone, with a "pre-dual"cone nearly identical to cone S. And, as we illustrate in the next section, S^{\sharp} can be employed to give a geometric characterization of when $\mathcal{P}_{S}=\varnothing$.
3. Main results. 3.1. General existence results. In this section we give characterizations for $\mathcal{P}_{S} \neq \varnothing$; the proofs of these statements are given in Subsection 3.3. To understand when $\mathcal{P}_{S} \neq \varnothing$, we should consider the relationship between the shape to be preserved, S, and the range of our projection, V. Indeed, this relationship can be expressed by restricting S^{*} to V, denoted $S_{\left.\right|_{V}}^{*}$. This consideration can often completely characterize when $\mathcal{P}_{S} \neq \varnothing$.

Definition 3.1. Let $d:=\operatorname{dim}(V)$. Define $V_{0}:=\left\{v \in V \mid\langle v, \varphi\rangle=0 \forall \varphi \in S^{*}\right\}$ and note $V_{0} \subset S$. Now let $k:=\operatorname{dim}(V \cap S)-\operatorname{dim}\left(V_{0}\right)$. Fix a basis $\left\{v_{1}, \ldots, v_{d}\right\}$ for V such that $v_{1}, \ldots, v_{r} \notin$ $\notin S, V_{0}=\left[v_{r+1}, \ldots, v_{d-(k+2)}\right]$, and $v_{d-(k+1)}, \ldots, v_{d} \in S$ (where $\left[a_{1}, \ldots, a_{s}\right]$ denotes the linear span of $\left.\left\{a_{1}, \ldots, a_{s}\right\}\right)$. Using this basis, we define $V_{-}:=\left[v_{1}, \ldots, v_{r}\right]$ and $V_{+}:=\left[v_{d-(k+1)}, \ldots, v_{d}\right]$ and decompose V as

$$
V=V_{-} \oplus V_{0} \oplus V_{+}=\left[v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{d-(k+2)}, v_{d-(k+1)}, \ldots, v_{d}\right]
$$

Remark 3.1. The following results rely on the decomposition of V given above. Note that once the cone $S \subset X$ is fixed, this decomposition is merely a convenient basis choice for V. Indeed, every $Q \in \mathcal{L}(X, V)$ can be expressed in terms of this basis as

$$
Q=\sum_{i=1}^{d} u_{i} \otimes v_{i}, \quad \text { where } \quad Q f=\sum_{i=1}^{d}\left\langle f, u_{i}\right\rangle v_{i}
$$

with $u_{i} \in X^{*}$ for each i. Using the representation, we say that the action (up to similarity) of Q on V is the matrix $\left(\left\langle v_{i}, u_{j}\right\rangle\right)$. Evidently Q is a projection if and only if $\left(\left\langle v_{i}, u_{j}\right\rangle\right)=\delta_{i j}$.

Recall that $S^{\perp} \subset S^{*}$ denotes the space of functionals that vanish against S. We say subspace $M \subset X^{*}$ is total over subspace $Y \subset X$ if $\operatorname{dim}\left(M_{\left.\right|_{Y}}\right)=\operatorname{dim}(Y)$. Without any assumptions on the dual cone S^{*} we have the following characterization.

Theorem 3.1. Let $S \subset X$ be given and $V=V_{-} \oplus V_{0} \oplus V_{+}$. Then $\mathcal{P}_{S}(X, V) \neq \varnothing$ if and only if S^{\perp} is total over V_{-}and $\mathcal{P}_{S}\left(X, V_{+}\right) \neq \varnothing$.

This characterization indicates that shape-preservation onto V is almost equivalent to shapepreservation onto V_{+}. And in Subsection 3.2, we establish existence results involving V_{+}. For the remainder of this section, we consider the case in which S^{*} can be sharpened, i.e., the case in which S^{\sharp} is defined.

When a dual cone has a particular structure, existence of shape-preserving operators can be described in terms of that structure, which we now define. Note that, in the context of our current considerations, we say a finite (possibly) signed measure μ with support $E \subset X^{*}$ is a generalized representing measure for $\varphi \in X^{*}$ if $\langle x, \varphi\rangle=\int_{E}\langle s, x\rangle d u(s)$ for all $x \in X$. A nonnegative measure μ satisfying this equality is simply a representing measure.

Definition 3.2. Let X be a Hausdorff space over \mathbb{R}. We say that a pointed closed cone $K \subset X^{*}$ is simplicial if K can be recovered from its extreme rays (i.e., $K=\overline{\mathrm{co}}(E(K))$) and the set of extreme rays of K form an independent set (independent in the sense that any generalized representing measure for $x \in K$ supported on $E(K)$ must be a representing measure).

Proposition 3.1. A pointed closed cone $K \subset X^{*}$ of finite dimension d is simplicial if and only if K has exactly d extreme rays.

Theorem 3.2 ([5], Theorem 1.1). Let $S^{*} \subset X^{*}$ denote the dual cone of $S \subset X$ and suppose S^{*} is simplicial. Then $\mathcal{P}_{S}(X, V) \neq \varnothing$ if and only if the cone $S_{\left.\right|_{V}}^{*}$ is simplicial.

Theorem 3.3. Let $S \subset X$ be given and suppose S^{\sharp} (exists and) is simplicial. Then $\mathcal{P}_{S}(X, V) \neq$ $\neq \varnothing$ if and only if S^{\perp} is total over V and $S_{{V_{+}}^{\prime}}^{\sharp}$ is simplicial.
3.2. Preservation onto $\boldsymbol{V}_{-}, \boldsymbol{V}_{\mathbf{0}}, \boldsymbol{V}_{+}$. For any $Q \in \mathcal{L}(X, V)$ we can write (using Remark 3.1)

$$
Q=\left(\sum_{i=1}^{r} u_{i} \otimes v_{i}\right) \oplus\left(\sum_{i=r+1}^{d-(k+2)} u_{i} \otimes v_{i}\right) \oplus\left(\sum_{i=d-(k+1)}^{d} u_{i} \otimes v_{i}\right)=: Q_{-} \oplus Q_{0} \oplus Q_{+} .
$$

In this section we consider these components of Q in the shape-preserving projection case. When Q is a projection, note that each component is also a projection (onto its specific range).

Lemma 3.1. For a given $S \subset X$, let $V=V_{-} \oplus V_{0} \oplus V_{+}$. Let $P \in \mathcal{P}(X, V)$ be any projection. Then $P_{0} \in \mathcal{P}_{S}\left(X, V_{0}\right)$.

Proof. For every $f \in S$ and every $\varphi \in S^{*}$ we have

$$
\left\langle P_{0} f, \varphi\right\rangle=\left\langle\sum_{i=r+1}^{d-(k+2)}\left\langle f, u_{i}\right\rangle v_{i}, \varphi\right\rangle=\sum_{i=r+1}^{d-(k+2)}\left\langle f, u_{i}\right\rangle\left\langle v_{i}, \varphi\right\rangle=0
$$

by definition of V_{0}. This implies, by Lemma 2.1, that $P_{0} f \in S$ and, since P is a projection, we have $P_{0} \in \mathcal{P}_{S}\left(X, V_{0}\right)$.

Lemma 3.1 is proved.
Lemma 3.2. For a given $S \subset X$, let $V=V_{-} \oplus V_{0} \oplus V_{+}$and assume $\operatorname{dim}\left(V_{-}\right)=r \neq 0$. If $P=\sum_{i=1}^{d} u_{i} \otimes v_{i} \in \mathcal{P}_{S}(X, V)$ then $u_{1}, \ldots, u_{r} \in S^{\perp}$ and S^{\perp} is total over V_{-}.

Proof. Let $P \in \mathcal{P}_{S}(X, V)$ and write $P_{-}=\sum_{i=1}^{r} u_{i} \otimes v_{i}$. For every $f \in S$ we know

$$
P_{-} f+P_{0} f+P_{+} f \in S
$$

But the decomposition of V (Definition 3.1) implies

$$
\begin{equation*}
P_{-} f=\sum_{i=1}^{r} u_{i}(f) v_{i}=0 \tag{3.1}
\end{equation*}
$$

for every $f \in S$, since otherwise we would have $\operatorname{dim}\left(V_{+}\right)>k$. Now (3.1) implies that for each i, $u_{i}(f)=0$ for all $f \in S$ and thus $u_{i} \in S^{\perp}$. This, together with the fact that P is a projection, i.e., $u_{i}\left(v_{j}\right)=\delta_{i j}$, implies that S^{\perp} is total over V_{-}.

Lemma 3.2 is proved.
Remark 3.2. When $k=\operatorname{dim}\left(V_{+}\right) \neq 0$, note that $S_{\left.\right|_{V_{+}}}^{*}$ is a k-dimensional pointed cone. It is convenient to interpret this cone as a subset of \mathbb{R}^{k} by associating each $\varphi_{\left.\right|_{+}} \in S_{\left.\right|_{+}}^{*}$ with the k-vector $\left[\varphi\left(v_{d-(k+1)}\right), \ldots, \varphi\left(v_{d}\right)\right]^{T}$. We will use this association throughout the remainder of the paper. And so by construction, we may regard $S_{\left.\right|_{+}}^{*}$ as a cone in the positive orthant of \mathbb{R}^{k}.

Lemma 3.3. Let $S \subset X$ be given and let S^{*} denote its dual cone. Let $V=V_{-} \oplus V_{0} \oplus V_{+}$and assume $\operatorname{dim}\left(V_{+}\right)=k \neq 0$. If the (k-dimensional) cone $S_{V_{+}}^{*}$ is simplicial then $\mathcal{P}_{S}\left(X, V_{+}\right) \neq \varnothing$.

Proof. Recall that our fixed basis of V_{+}is given by $\left\{v_{d-(k+1)}, \ldots, v_{d}\right\}$. For convenience within this proof, relabel these elements as $\left\{v_{1}, \ldots, v_{k}\right\}$. Now, by assumption, $S_{\left.\right|_{+}}^{*}$ has exactly k extreme rays. Label each ray as

$$
\left[u_{\left.1\right|_{V_{+}}}\right]^{+}, \ldots,\left[u_{\left.k\right|_{V_{+}}}\right]^{+}
$$

where $u_{\left.1\right|_{V_{+}}}, \ldots, u_{\left.k\right|_{V_{+}}}$are non-zero points chosen from distinct rays. Thus we have

$$
\begin{equation*}
S_{\left.\right|_{V_{+}}}^{*}=\operatorname{co}\left(\left[\mathrm{u}_{\left.1\right|_{\mathrm{v}_{+}}}\right]^{+}, \ldots,\left[\mathrm{u}_{\mathrm{k}_{\mathrm{V}_{+}}}\right]^{+}\right) . \tag{3.2}
\end{equation*}
$$

Define the (row) vector $\boldsymbol{u}:=\left(u_{1}, \ldots, u_{k}\right) \in\left(S^{*}\right)^{k}$, where each u_{i} restricts to extreme ray $\left[\left.u_{i}\right|_{V_{+}}\right]^{+}$, and the (column) vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{k}\right)^{T}$. Using this notation, note that for any $\varphi \in S^{*}$ we may write

$$
\left(\left\langle v_{1}, \varphi\right\rangle, \ldots,\left\langle v_{k}, \varphi\right\rangle\right)^{T}=\langle\boldsymbol{v}, \varphi\rangle=\left(\left\langle v_{i}, u_{j}\right\rangle\right) \boldsymbol{c}_{\varphi}=M \boldsymbol{c}_{\varphi},
$$

where $M:=\left(\left\langle v_{i}, u_{j}\right\rangle\right)$ is a $k \times k$ matrix and \boldsymbol{c}_{φ} is the vector of nonnegative coefficients guaranteed by (3.2). Since $S_{V_{+}}^{*}$ has k independent elements, matrix M is non-singular. Thus we may solve for \boldsymbol{c}_{φ} and write $\boldsymbol{c}_{\varphi}=M^{-1}\langle\boldsymbol{v}, \varphi\rangle$. Let $P_{+}:=\boldsymbol{u} M^{-1} \otimes \boldsymbol{v}$; obviously P is a projection from X into V_{+}. Moreover, for every $f \in S$ and $\varphi \in S^{*}$ we have

$$
\left\langle P_{+} f, \varphi\right\rangle=\left\langle\left\langle f, \boldsymbol{u} M^{-1}\right\rangle \boldsymbol{v}, \varphi\right\rangle=\langle f, \boldsymbol{u}\rangle M^{-1}\langle\boldsymbol{v}, \varphi\rangle=\langle f, \boldsymbol{u}\rangle \boldsymbol{c}_{\varphi} \geq 0
$$

since $\langle f, \boldsymbol{u}\rangle \boldsymbol{c}_{\varphi}$ is a dot-product of two vectors with nonnegative entries. By Lemma 2.1, $P_{+} f \in S$.
Lemma 3.3 is proved.
Lemma 3.4. Let $S \subset X$ be given and let S^{*} denote its dual cone. Let $V=V_{-} \oplus V_{0} \oplus V_{+}$and assume $\operatorname{dim}\left(V_{+}\right)=k \neq 0$. If the (k-dimensional) cone $S_{V_{+}}^{*}$ is not closed then $\mathcal{P}_{S}\left(X, V_{+}\right)=\varnothing$.

Proof. We consider the contrapositive. Let $P \in \mathcal{P}_{S}\left(X, V_{+}\right)$and let $\overline{P^{*} S^{*}}$ denote the (weak*) closure of $P^{*} S^{*} \subset X^{*}$. Choose $P^{*} \varphi \in \overline{P^{*} S^{*}} \subset P^{*} X^{*}$ and a sequence $\left\{P^{*} \varphi_{k}\right\}_{k=1}^{\infty} \subset P^{*} S^{*}$ such that $P^{*} \varphi_{k} \rightarrow P^{*} \varphi$. Notice, by Lemma 2.1, $\left\{P^{*} \varphi_{k}\right\}_{k=1}^{\infty} \subset S^{*} . S^{*}$ is weak*-closed and therefore $P^{*} \varphi \in S^{*}$; this implies $P^{*} \varphi \in P^{*} S^{*}$ since $\left(P^{*}\right)^{2}=P^{*}$. Thus $P^{*} S^{*}$ is closed. Note that $P^{*} S^{*}$ is homeomorphic to $\left.\left(P^{*} S^{*}\right)\right|_{V_{+}}$and thus $\left.\left(P^{*} S^{*}\right)\right|_{V_{+}}$is closed. Finally, we claim $\left.\left(P^{*} S^{*}\right)\right|_{V_{+}}=S_{\left.\right|_{V_{+}}}^{*}$. To verify this, choose $\varphi \in S^{*}, v \in V_{+}$and consider

$$
\left\langle v, P^{*} \varphi\right\rangle=\langle P v, \varphi\rangle=\langle v, \varphi\rangle,
$$

where the last equality follows from the fact that P is a projection. But this equation simply says that $P^{*} \varphi$ and φ agree on V_{+}, thus establishing the claim. From here we can conclude that $S_{\left.\right|_{V_{+}}}^{*}$ is closed.

Lemma 3.4 is proved.
3.3. Proofs of existence results. Proof of Theorem 3.1. (\Rightarrow) Let $P \in \mathcal{P}_{S}(X, V)$ and write $P=P_{-} \oplus P_{0} \oplus P_{+}$. By Lemma 3.2, S^{\perp} is total over V_{-}. Furthermore, for every $f \in S$ and every $\varphi \in S^{*}$ we have

$$
0 \leq\langle P f, \varphi\rangle=\left\langle P_{-} f, \varphi\right\rangle+\left\langle P_{0} f, \varphi\right\rangle+\left\langle P_{+} f, \varphi\right\rangle=\left\langle P_{+}, \varphi\right\rangle
$$

by Lemmas 3.1 and 3.2 and therefore $\mathcal{P}_{S}\left(X, V_{+}\right) \neq \varnothing$.
(\Leftarrow) Let $Q=Q_{-} \oplus Q_{0} \oplus Q_{+}$be any projection onto V and define $P_{0}:=Q_{0}$. Choose $P_{1} \in$ $\mathcal{P}_{S}\left(X, V_{+}\right)$; we claim

$$
\begin{equation*}
P_{0} \oplus P_{1} \in \mathcal{P}_{S}\left(X, V_{0} \oplus V_{+}\right) . \tag{3.3}
\end{equation*}
$$

The fact that this operator is shape-preserving is clear since $V_{0} \subset S$. We need only verify that that the action of the operator on $V_{0} \oplus V_{+}$is the identity action. Note that we need only check that P_{1} vanishes on V_{0}. But this is clear since $V_{0} \subset S$ is a linear space, $P_{1} V_{0} \subset S$ and $V_{0} \cap V_{+}=\{\mathbf{0}\}$. This establishes (3.3). We now focus on V_{-}. Since S^{\perp} is total over V_{-}(and assuming $r:=\operatorname{dim}\left(V_{-}\right)>0$), there exist $u_{1}, \ldots, u_{r} \in S^{\perp}$ such that $P_{-}:=\sum_{i=1}^{r} u_{i} \otimes v_{i}$ is a projection onto V_{-}(in the case $r=0$ define P_{-} to be the zero-operator). Now with P_{1} chosen as above, write $P_{1}=\sum_{i=d-(k+1)}^{d} u_{i} \otimes v_{i}$. Again using S^{\perp} total over V_{-}, there exist functionals $\varphi_{1}, \ldots, \varphi_{r} \in S^{\perp}$ such that for each $j \in\{d-(k+1), \ldots, d\}$, there exist constants $\left\{c_{1 j}, \ldots, c_{r j}\right\} \in \mathbb{R}$ such that

$$
\left\langle v_{i}, \sum_{m=1}^{r} c_{m, j} \varphi_{m}\right\rangle=-\left\langle v_{i}, u_{j}\right\rangle \quad \text { for } \quad i=1, \ldots, r .
$$

Define $\Phi_{j}:=\sum_{m=1}^{r} c_{m, j} \varphi_{j}$ and note that

$$
\begin{equation*}
\left\langle v, \Phi_{j}\right\rangle=-\left\langle v, u_{j}\right\rangle \quad \text { for any } \quad v \in V_{-} . \tag{3.4}
\end{equation*}
$$

Let $U_{j}:=u_{j}+\Phi_{j}$ for each $j=d-(k+1), \ldots, d$ and $P_{+}:=\sum_{i=d-(k+1)}^{d} U_{i} \otimes v_{i}$. We claim

$$
P:=P_{-} \oplus P_{0} \oplus P_{+}
$$

belongs to $\mathcal{P}_{S}(X, V)$. Consider first P_{+}; note, by construction each $\Phi_{j} \subset S^{\perp}$ vanishes S. Thus $P_{+} \in \mathcal{P}_{S}\left(X, V_{+}\right)$and so by (3.3), we have

$$
\begin{equation*}
P_{0} \oplus P_{+} \in \mathcal{P}_{S}\left(X, V_{0} \oplus V_{+}\right) \tag{3.5}
\end{equation*}
$$

Regarding P_{-}, by construction this operator vanishes on S and this, combined with (3.5), implies $P S \subset S$. To see that P has the identity action on V, we need only check that P_{-}vanishes on $V_{0} \oplus V_{+}$and $P_{0} \oplus P_{+}$vanishes on V_{-}. The former condition holds since the basis we use for V_{0} and V_{1} belongs to S. To establish the latter, first note that P_{0} vanishes on V_{-}by construction. And, by (3.4), for any $v \in V_{-}$we have

$$
\begin{gathered}
P_{+} v=\sum_{i=d-(k+1)}^{d}\left\langle v, U_{i}\right\rangle v_{i}=\sum_{i=d-(k+1)}^{d}\left\langle v, u_{i}+\Phi_{i}\right\rangle v_{i}= \\
=\sum_{i=d-(k+1)}^{d}\left\langle v, u_{i}-u_{i}\right\rangle v_{i}=0
\end{gathered}
$$

by the definition of each Φ_{i}. So P_{+}vanishes on V_{-}. This establishes that P is a projection.
Theorem 3.1 is proved.
Proof of Theorem 3.3. By Theorem 3.1, the proof will be complete if we can show $\mathcal{P}_{S}\left(X, V_{+}\right) \neq$ $\neq \varnothing$ is equivalent to $S_{\left.\right|_{+}}^{\sharp}$ simplicial, which we now establish. Recall that $S^{\sharp} \subset S^{*}$ is a pointed, weak* closed cone and, as such, is exactly the dual cone of

$$
S_{1}:=\left\{x \in X \mid\langle x, \psi\rangle \geq 0 \quad \forall \psi \in S^{\sharp}\right\} .
$$

Note that S_{1} contains the cone S. By Theorem 3.2,

$$
S_{\left.\right|_{V_{+}}}^{\sharp} \text { is simplicial } \Longleftrightarrow \mathcal{P}_{S_{1}}\left(X, V_{+}\right) \neq \varnothing
$$

and thus we need only show

$$
\begin{equation*}
\mathcal{P}_{S}\left(X, V_{+}\right) \neq \varnothing \Longleftrightarrow \mathcal{P}_{S_{1}}\left(X, V_{+}\right) \neq \varnothing . \tag{3.6}
\end{equation*}
$$

Let $P \in \mathcal{P}_{S}\left(X, V_{+}\right)$; we claim $P\left(S_{1}\right) \subset S_{1}$. From Lemma 2.1, it follows that $P\left(S_{1}\right) \subset S_{1}$ if and only if $P^{*}\left(S^{\sharp}\right) \subset S^{\sharp}$, where P^{*} denotes the adjoint of P (defined by $\left\langle f, P^{*} u\right\rangle=\langle P f, u\rangle$ for $f \in X$ and $u \in X^{*}$). We know that $P^{*}\left(S^{\sharp}\right) \subset S^{*}$ since (via Lemma 2.1) $P^{*} S^{*} \subset S^{*}$ and $S^{\sharp} \subset S^{*}$. Thus we need only show that, for each $\psi \in S^{\sharp}$, non-zero $P^{*} \psi$ does not vanish against S. But $P^{*} \psi=\sum_{j=1}^{k}\left\langle v_{j}, \psi\right\rangle u_{j}$, where (via relabeling) $\left\{v_{1}, \ldots, v_{k}\right\} \subset S$ is our fixed basis for V_{+}. And so $P^{*} \psi \neq 0$ implies $\left\langle v_{i}, \psi\right\rangle \neq 0$ for some i. Therefore $P^{*} \psi \in S^{\sharp}$, which establishes $P\left(S_{1}\right) \subset S_{1}$. Thus $P \in \mathcal{P}_{S_{1}}\left(X, V_{+}\right)$. To complete the proof, let $P \in \mathcal{P}_{S_{1}}\left(X, V_{+}\right)$. Arguing as above, it follows that $P^{*} S^{*} \subset S^{*}$ and thus $P \in \mathcal{P}_{S}\left(X, V_{+}\right)$, which establishes (3.6).

Theorem 3.3 is proved.
4. Application: the \boldsymbol{q}-monotone case. In this section we consider the preservation of q monotonicity (defined below) by a projection from $X=\left(C^{q}[-1.1],\|\cdot\|\right)$ onto $V=\Pi_{n}$ (the subspace of algebraic polynomials of degree less than or equal to n), where

$$
\|f\|:=\max _{j=0, \ldots, q}\left\{\left\|f^{(j)}\right\|_{\infty}\right\}
$$

For $s \in \mathbb{N}$, let \mathbb{Y}_{s} denote the collection of s distinct points $Y=\left\{y_{i}\right\}_{i=1}^{s}$ where $y_{0}=-1<$ $<y_{1}<\ldots<y_{s}<1=y_{s+1}$. For $q \in \mathbb{N}$ and $Y \in \mathbb{Y}_{s}$, define

$$
S_{Y}^{q}=\left\{f \in X \mid(-1)^{j} f^{(q)}(t) \geq 0 \text { whenever } t \in\left[y_{j}, y_{j+1}\right], \quad j=0, \ldots, s\right\} .
$$

We say $f \in X$ is q-monotone (with respect to $Y \in \mathbb{Y}_{s}$) exactly when $f \in S_{Y}^{q}$. We denote by $\mathcal{P}_{S_{Y}^{q}}$ the set of q-monotone preserving projections from X onto Π_{n}.

The main point of this section is the following characterization. The proof of this theorem considers the (topological) consequence of restricting a dual cone to subspace $V=\Pi_{n}$. For purposes of illustration, we include (in Subsection 4.1) two arguments that establish an existence result; Version 1 uses a "classical" approach to shape-preservation and Version 2 utilizes the restriction of a dual cone.

Theorem 4.1. Let $s \in \mathbb{N}$. Then, for $Y \in \mathbb{Y}_{s}$,

$$
\mathcal{P}_{S_{Y}^{q}} \neq \varnothing \Longleftrightarrow n-s-q \leq 1
$$

Proof. We prove this result through induction on q. The $q=1$ case is verified (for all s and n) in the following section (see Lemma 4.1). We now proceed with the inductive step; for fixed q_{0}, we assume

$$
\begin{equation*}
\mathcal{P}_{S_{Y}^{q_{0}}} \neq \varnothing \Longleftrightarrow n-s-q_{0} \leq 1 \tag{4.1}
\end{equation*}
$$

and show

$$
\begin{equation*}
\mathcal{P}_{S_{Y}^{q_{0}+1}} \neq \varnothing \Longleftrightarrow n-s-\left(q_{0}+1\right) \leq 1 \tag{4.2}
\end{equation*}
$$

Suppose $n-s-\left(q_{0}+1\right) \leq 1$; then we have $(n-1)-s-q_{0} \leq 1$ and so by (4.1) there exists $P \in \mathcal{P}_{S_{Y}^{q_{0}}}\left(X, \Pi_{n-1}\right)$. Using the notation from Subsection 3.2 , we may write $P=\sum_{k=1}^{n-1} u_{k} \otimes v_{k}$ where $P f=\sum_{k=1}^{n-1}\left\langle f, u_{k}\right\rangle v_{k} \in \Pi_{n-1}$. Define $\widehat{P}:=\sum_{k=0}^{n} \hat{u}_{k} \otimes \hat{v}_{k}$ where $\hat{u}_{0} \otimes \hat{v}_{0}:=\delta_{-1} \otimes 1$ and, for $k>0, \hat{u}_{k}:=u_{k} \circ D_{t}$ (D_{t} is the differential operator), $\hat{v}_{k}:=I_{t} \circ v_{k}$ (I_{t} is the integral operator). Thus

$$
\begin{aligned}
& (\widehat{P} f)(t)= \\
= & \sum_{k=0}^{n}\left\langle f, \hat{u}_{k}\right\rangle \hat{v}_{k}(t)=f(-1)+\sum_{k=1}^{n}\left\langle f^{\prime}, u_{k}\right\rangle I_{t}\left(v_{k}\right)= \\
= & f(-1)+\int_{-1}^{t} \sum_{k=1}^{n}\left\langle f^{\prime}, u_{k}\right\rangle v_{k}(x) d x=f(-1)+\int_{-1}^{t}\left(P f^{\prime}\right)(x) d x .
\end{aligned}
$$

Note that $\widehat{P}: C^{q_{0}+1}[-1,1] \rightarrow \Pi_{n}$. Moreover, since P is a projection (onto Π_{n-1}), so is \widehat{P} (onto Π_{n}). And finally, if $f \in S_{Y}^{q_{0}+1}$ then $f^{\prime} \in S_{Y}^{q_{0}}$ which implies $P f^{\prime} \in S_{Y}^{q_{0}}$. Therefore, since $(\widehat{P} f)^{\left(q_{0}+1\right)}=$ $=\left(P f^{\prime}\right)^{\left(q_{0}\right)}$, we have $\widehat{P} f \in \mathcal{P}_{S_{Y}^{q_{0}+1}}$. Thus $\mathcal{P}_{S_{Y}^{q_{0}+1}} \neq \varnothing$. To establish the other direction of (4.2), consider $n-s-\left(q_{0}+1\right)>1$; we show that this implies $\mathcal{P}_{S_{Y}^{q_{0}+1}}=\varnothing$. Suppose there exists $P \in \mathcal{P}_{S_{Y}^{q_{0}+1}}$.

Arguing as above, express P as $P=\sum_{k=0}^{n} u_{k} \otimes v_{k}$, where $v_{k}:=x^{k}$. Define $\widehat{P}:=\sum_{k=0}^{n-1} \hat{u}_{k} \otimes \hat{v}_{k}$ where $\hat{u}_{k}=u_{k} \circ I_{t}$ and $\hat{v}_{k}=D_{t} \circ v_{k}$. Then

$$
(\widehat{P} f)(t)=\sum_{k=0}^{n}\left\langle f, \hat{u}_{k}\right\rangle \hat{v}_{k}(t)=D_{t}\left(\sum_{k=1}^{n}\left\langle I_{t} f, u_{k}\right\rangle v_{k}\right)=D_{t}\left(P\left(I_{t} f\right)\right)
$$

Evidently \widehat{P} is a projection from $C^{q_{0}}$ onto Π_{n-1}. If $f \in S_{Y}^{q_{0}}$ then $\widehat{P} f \in S_{Y}^{q_{0}}$ since $P\left(I_{t} f\right) \in S_{Y}^{q_{0}+1}$ and this implies $\widehat{P} \in \mathcal{P}_{S_{Y}^{q_{0}}}\left(X, \Pi_{n-1}\right)$. But from our supposition, we have $(n-1)-s-q_{0}>1$, which, from (4.1), implies $\mathcal{P}_{S_{Y}^{q_{0}}}=\varnothing$. This contradiction has resulted from assuming $P \in \mathcal{P}_{S_{Y}^{q_{0}+1}}$ and therefore we must have $\mathcal{P}_{S_{Y}^{q_{0}+1}}=\varnothing$. This establishes (4.2).

Theorem 4.1 is proved.
4.1. The $\boldsymbol{q}=1$ case. In this subsection we verify the $q_{0}=1$ case via the following lemma.

Lemma 4.1. $\mathcal{P}_{S_{Y}^{1}}\left(X, \Pi_{n}\right) \neq \varnothing \Longleftrightarrow n-s \leq 2$.
To begin, denote S_{Y}^{1} by S_{Y} and let $S^{*} \subset X^{*}$ denote the dual cone of S_{Y}. Recall the decomposition of V used above; relative to S_{Y}, we write $V=V_{-} \oplus V_{0} \oplus V_{+}$. Note that V_{0} is 1-dimensional and $V_{0}=[1]$. As we will see below, $\operatorname{dim}\left(V_{+}\right)=n-s$; recall from above that we may assume $S_{\left.\right|_{V_{+}}}^{*} \subset \mathbb{R}^{n-s}$. For fixed Y, put

$$
\Delta=\Delta(x):=\prod_{i=1}^{s}\left(y_{i}-x\right)
$$

Proposition 4.1. $\operatorname{dim}\left(V_{+}\right)=\max \{0, n-s\}$. If $n-s>0$ then, for $i=1, \ldots, n-s$,

$$
v_{i}(x):=\int_{-1}^{x}\left(1-t^{i}\right) \Delta(t) d t \in S_{Y}
$$

and $\left\{v_{1}, \ldots, v_{n-s}\right\}$ forms a basis for V_{+}.
Let $v \in V \cap S_{Y}$; then for $i=1, \ldots, s$ we have $v^{\prime}\left(y_{i}\right)=0$. Thus if $n-s \leq 0$ then $\operatorname{dim}\left(V_{+}\right)=0$. Assume $n-s>0$; then by definition of S_{Y} we can write $v^{\prime}(x)=p(x) \Delta(x)$ for some polynomial p. But $\operatorname{deg}(\Delta)=s$ and so $p \in \Pi_{n-(s+1)}$. Therefore $\operatorname{dim}\left(V_{+}\right) \leq n-s$. Finally, note that for $i=1, \ldots, n-s$,

$$
v_{i}=\int_{-1}^{x}\left(1-t^{i}\right) \Delta(t) d t \in S_{Y}
$$

and are independent. Thus $V_{+}=\left[v_{1}, \ldots, v_{n-s}\right]$.
Note that in this application we have have labeled the basis elements for V_{+}as v_{1}, \ldots, v_{n-s}. This departure from the labeling in the previous section is meant to simplify the notation in the current setting.

Lemma 4.2. Suppose $n-s>2$. Then $S_{\left.\right|_{V_{+}}}^{*} \subset \mathbb{R}^{n-s}$ is not closed and thus $\mathcal{P}_{S_{Y}}\left(X, \Pi_{n}\right)=\varnothing$.
Proof. Fix y_{j} for some $j \in\{1, \ldots, s\}$. Since $n-s \geq 3$, it is clear from Proposition 4.1 that a basis for V_{+}can be chosen as prescribed to include elements $v_{1}:=\int_{-1}^{x} \Delta(t)$ and $v_{2}:=\int_{-1}^{x}\left(1-t^{2}\right) \Delta(t)$. Without loss, assume $\Delta(t) \geq 0$ for $t \in\left(y_{j-1}, y_{j}\right)$. And so, since $S_{\left.\right|_{+}}^{*}$ is a cone, it must contain, for each such t, the point (or vector) $\frac{\left(\delta_{t}^{\prime}\right)_{V_{+}}}{\Delta(t)}$. Thus by Proposition 4.1 there exists a vector

$$
\boldsymbol{z}=\left[1,1, z_{3}, \ldots, z_{n-s}\right]:=\lim _{t \rightarrow y_{j}^{-}} \frac{\left(\delta_{t}^{\prime}\right)_{V_{+}}}{\Delta(t)}
$$

belonging to the closure of $S_{\left.\right|_{V_{+}}}^{*}$. Now, by way of contradiction, let us suppose there exists $\varphi \in S^{*}$ such that $\varphi_{V_{+}}=\boldsymbol{z}$. Note that

$$
\begin{equation*}
1=\varphi\left(v_{1}\right)=\varphi\left(\int_{-1}^{x} \Delta(t)\right)=\varphi\left(v_{2}\right)=\varphi\left(\int_{-1}^{x}\left(1-t^{2}\right) \Delta(t)\right) \tag{4.3}
\end{equation*}
$$

which implies

$$
\varphi\left(\int_{-1}^{x} t^{2} \Delta(t)\right)=0
$$

Moreover, for every even integer $\nu \geq 2$ we have

$$
\int_{-1}^{x} t^{\nu} \Delta(t) \in S \quad \text { and } \quad \int_{-1}^{x}\left(t^{2}-t^{\nu}\right) \Delta(t) \in S
$$

since $t^{2}-t^{\nu} \geq 0$ on $[-1,1]$. And thus for every ν

$$
\begin{equation*}
\varphi\left(\int_{-1}^{x} t^{\nu} \Delta(t)\right)=0 \tag{4.4}
\end{equation*}
$$

For convenience, assume $y_{j}=0$. Define $\widehat{\Delta}(x)$ by $\Delta(x)=x \widehat{\Delta}(x)$. Let $T_{O}(x)$ be an odd Tchebyshev polynomial of (arbitrary odd) degree d. Consider the polynomial $p(x):=\int_{-1}^{x} T_{O} \widehat{\Delta} \in X$; the norm $\|p\|$ is clearly bounded independent of d. But by (4.3) and (4.4) we find

$$
|\varphi(p)|=\left|\varphi\left(\int_{-1}^{x}\left(\sum_{\substack{i=1 \\ i \text { odd }}}^{d} c_{i} t^{i}\right) \widehat{\Delta}(t)\right)\right|=\left|\varphi\left(\sum_{\substack{i=1 \\ i \text { odd }^{-1}}}^{d} c_{i} t^{i-1} \Delta\right)\right|=d
$$

since $\left|c_{1}\right|=d$. This implies that φ is unbounded and thus cannot be an element of S^{*}. Therefore $S_{\left.\right|_{V_{+}}}^{*}$ is not closed. Consequently, by Lemma 4.2 and Corollary 3.4 , we have $\mathcal{P}_{S_{Y}}\left(X, V_{+}\right)=\varnothing$ and thus $\mathcal{P}_{S_{Y}}(X, V)=\varnothing$ by Theorem 3.1.

Lemma 4.2 is proved.
Lemma 4.3. Suppose $n-s \leq 2$. Then $\mathcal{P}_{S_{Y}}(X, V) \neq \varnothing$.
Proof (Version 1). Set $y_{s+2}:=y_{0}=-1$. Fix $n \in \mathbf{N}, n-s \leq 2$. For each $g \in C[-1,1]$ denote by $L_{n-1}(x, g):=L\left(x, g ; y_{1}, \ldots, y_{n}\right)$ - the Lagrange polynomial of degree $<n$, that interpolates g at y_{j} 's, $j=1, \ldots, n$. First we remark, that the operator $P \in \mathcal{L}\left(C^{1}[-1,1], \Pi_{n}\right)$, defined by

$$
(P g)(x):=g(0)+\int_{0}^{x} L_{n-1}\left(t, g^{\prime}\right) d t
$$

is a projection, that is $P \in \mathcal{P}\left(C^{1}[-1,1], \Pi_{n}\right)$. This readily follows from the fact, that for each $p_{n-1} \in \Pi_{n-1}$ we have

$$
L_{n-1}\left(x, p_{n-1}\right) \equiv p_{n-1}(x)
$$

So, to end the proof we have to check, that if $f \in S_{Y}$, then $(P f) \in S_{Y}$ as well, or, which is the same,

$$
\begin{equation*}
L_{n-1}\left(x, f^{\prime}\right) \Delta(x) \geq 0, \quad x \in[-1,1] \tag{4.5}
\end{equation*}
$$

where $\Delta(x):=\prod_{j=1}^{s}\left(y_{j}-x\right)$. Indeed, if $n \leq s$, then $L_{n-1}\left(x, f^{\prime}\right) \equiv 0$, that yields (4.5). If $n=s+1$, then $L_{n-1}\left(x, f^{\prime}\right)=A \Delta(x)$, where $A \geq 0$, that yields (4.5). Finally, if $n=s+2$, then $L_{n-1}\left(x, f^{\prime}\right)=(a x+b) \Delta(x)$. Let us show, that

$$
\begin{equation*}
a x+b \geq 0, \quad x \in[-1,1] \tag{4.6}
\end{equation*}
$$

If $x=-1$, then

$$
-a+b=\frac{L_{n-1}\left(-1, f^{\prime}\right)}{\Delta(-1)}=\frac{f^{\prime}(-1)}{\Delta(-1)} \geq 0
$$

Similarly $a+b \geq 0$. Thus (4.6) holds, that yields (4.5).
Proof (Version 2). We claim that (regardless of the value $n-s) S^{\perp}$ is total over V_{-}. Indeed note that in our setting we have $r:=\operatorname{dim}\left(V_{-}\right)=\min \{s, n\}$ and $V_{-}=\left[x, x^{2}, \ldots, x^{r}\right]$. And since $\left\{\delta_{y_{i}}^{\prime}\right\}_{i=1}^{s} \subset S^{\perp}$ we have that S^{\perp} is total over V_{-}. Now in the case $n-s \leq 0$ we have $\operatorname{dim}\left(V_{+}\right)=0$ and so trivially $\mathcal{P}_{S}\left(X, V_{+}\right) \neq \varnothing$ since the zero-operator belongs to this set. Suppose $n-s>0$; by Proposition 4.1, $n-s$ is exactly the dimension of $S_{\left.\right|_{V_{+}}}^{*}$. We claim, in the cases $n-s=1,2$, the cone $S_{\left.\right|_{V_{+}}}^{*}$ is simplicial. This is clear in the $n-s=1$ case, since every 1-dimensional pointed cone is (trivially) simplicial. For $n-s=2$, note that a 2-dimensional pointed cone is simplicial if and only if it is closed. We now show $S_{{V_{+}}_{+}}^{*} \subset \mathbb{R}^{2}$ is closed. Recall that $S_{\left.\right|_{V_{+}}}^{*}$ belongs to the positive quadrant of \mathbb{R}^{2}. And it will suffice to show that for some basis for V_{+}, there exist functionals $\varphi_{1}, \varphi_{2} \in S^{*}$ such that $\left(\varphi_{i}\right)_{V_{V_{+}}}$belongs to the ray determined by \boldsymbol{e}_{i} (the standard basis element) for $i=1,2$. To this end, note that

$$
v_{1}:=\int_{-1}^{x}-(t-1) \Delta(t) \quad \text { and } \quad v_{2}:=\int_{-1}^{x}(t+1) \Delta(t)
$$

are elements of S and form a basis for V_{+}. Moreover $\left(\delta_{-1}^{\prime}\right)_{V_{V_{+}}}=[a, 0]$ and $\left(\delta_{1}^{\prime}\right)_{\left.\right|_{V_{+}}}=[0, b]$ for some $a, b>0$. Therefore $S_{\left.\right|_{V_{+}}}^{*}$ is exactly the positive quadrant of \mathbb{R}^{2}. Thus, in the cases $n-s=1,2$ we have $S_{\left.\right|_{V_{+}}}^{*}$ simplicial, which implies $\mathcal{P}_{S}\left(X, V_{+}\right) \neq \varnothing$ by Theorem 3.3. By Theorem 3.1 we conclude $\mathcal{P}_{S}(X, V) \neq \varnothing$.

Lemma 4.3 is proved.

1. Chalmers B., Mupasiri D., Prophet M. P. A characterization and equations for minimal shape-preserving projections // J. Approxim. Theory. - 2006. - 138. - P. 184-196.
2. Cheney E. W. Introduction to approximation theory. - New York: Chelsea Publ., 1982.
3. Donner K. Extension of positive operators and Korovkin theorems. - Berlin: Springer, 1982.
4. Lewicki G., Prophet M. P. Minimal multi-convex projections // Stud. Math. - 2007. - 178, № 2. - P. $99-124$.
5. Mupasiri D., Prophet M. P. A note on the existence of shape-preserving projections // Rocky Mountain J. Math. 2007. - 37, № 2. - P. 573-585.
6. Mupasiri D., Prophet M. P. On the difficulty of preserving monotonicity via projections and related results // Jaen J. Approxim. - 2010. - 2, № 1. - P. 1-12.
7. Schaefer H. H. Banach lattices and positive operators. - New York: Springer, 1974.
8. Schneider H., Tam B. On the core of a cone-preserving map // Trans. Amer. Math. Soc. - 1994. - 343, No. 2. P. $479-524$.
