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A COMONOTONIC THEOREM FOR BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS IN LP AND ITS APPLICATIONS *

TEOPEMA ITPO KOMOHOTOHHICTbB JIAA 3BOPOTHUX CTOXACTUYHUX
JUGEPEHIIAJBHUX PIBHAHD ¥V LP TA Ii 3ACTOCYBAHHS

We study backward stochastic differential equations (BSDEs) under weak assumptions on the data. We obtain a comonotonic
theorem for BSDEs in LP, 1 < p < 2. As applications of this theorem, we study the relation between Choquet expectations
and minimax expectations and the relation between Choquet expectations and generalized Peng’s g-expectations. These
results generalize the known results of Chen et al.

JlociipkeHo 3BOPOTHI CTOXAacTHUYHI JudepeHIianbHi PiBHSIHHS MIPU CIA0KUX NMPUIYIIEHHX MO0 BUXIMHUX NaHuX. OTpu-
MaHO TEOpEeMy PO KOMOHOTOHHICTB JUTsl 3BOPOTHHUX CTOXACTUYHMX Mu(epeHIiadbHuX piBHSAHB y mpoctopi LP, 1 < p < 2.
Sk 3acTOCyBaHHS Ili€i TeOpEeMH, BUBUCHO CITiBBiTHOIICHHS MiXk crofiBaHHAMHU [1loke i MiHIMAKCHUMH CIIOAIBaHHSIMH Ta
cHiBBiIHOIIEHHs M crioniBanHsMHE [1loke # y3aranpHeHHMH g-crioniBanHsME [lenra. Lli pe3ynbraTy y3araipHIOIOTH BiIOMi
pesynsratu YeHa Ta iH.

1. Introduction. By Pardoux and Peng [14], we know that there exists a unique adapted and square
integrable solution to a backward stochastic differential equation (BSDE for short) of type

T T
yt=f+/g<s,ys,zs>ds—/zs-dWs, te 0,7, (L)

t t

providing that the function g is Lipschitz in both variables y and 2, and that ¢ and the pro-

cess (g(t,0,0))eo,r) are square integrable. We denote the unique solution of BSDE (1.1) by
(T,9,€) (T7g,§))
)2 :

<yt t t€[0,7]
Since then, many researchers have been working on this subject and related properties of the so-
lutions of BSDEs, due to the connection of this subject with mathematical finance, stochastic control,
partial differential equation, stochastic game and stochastic geometry and mathematical economics;

for example, see References [2—5, 7—-13, 15-18]. Among these results, the comparison theorem of

BSDEs with respect to yIET’g ) plays an important role.

An interesting study is to obtain a comparison result applicable to the second part of the zt(T’g )

of the solution <y§T7g ) , zlgT’g ) of BSDE (1.1). In fact, because zt(T’g <) in BSDE (1.1)is a
t(Tvg7€) in

)te[O,T]
speed (volatility in mathematical finance), it is not easy to make comparisons regarding z

the same way as to make comparisons regarding ylgT’g £,

Chen et al. [4] studied the comonotonicity of 2" %), That is, let (y§T’g’§1),z§T’g’fl)) and

yiT’g’&), z,gT’g’&)) be the solutions of BSDE (1.1) corresponding to terminal values ¢ = &; and

& = &, respectively. A sufficient condition on &; and &5 has been given, under which

2198 ¢ (1982) > 0 4P x dt-as.
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Here for any z,x € R%, denote z ® z = (211, 202, . . ., 2q2T4), Where z; and z; are the ith com-
ponents of z and =, ¢ = 1,2,...,d. Furthermore, z ® z > 0 means z;x; > 0, ¢ = 1,2,...,d. As
applications of this result, Chen et al. provide a sufficient condition of Choquet expectations be-
ing equal to minimax expectations in [5] and give a necessary and sufficient condition of Choquet
expectations being equal to g-expectations in [2].

In this paper, we investigate the comonotonicity of z; under weak assumptions on the data.
Furthermore, we give some applications of the comonotonic theorem. These results generalize the
known results of Chen et al. [2, 4, 5].

This paper is organized as follows. In Section 2, we give some notations, lemmas and notions
that are useful in this paper. In Section 3, we investigate the comonotonic theorem for BSDEs in
LP. In Section 4, using the comonotonic theorem, we give some results such as the relation between
Choquet expectations and minimax expectations and the relation between Choquet expectations and
generalized Peng’s g-expectations.

2. Preliminaries. In this section, we shall present some notations, lemmas and notions that are
used in this paper.

Let (2, F, P) be a probability space and (W});>0 be a d-dimensional standard Brownian motion
with respect to filtration (F);>( generated by the Brownian motion and all P-null subsets, i.e¢.,

Fr=0{Wgs<t}VN,

where N is the set of all P-null subsets. Fix a real number 7' > 0. We assume that Fp = F.
Define
LP(Q, F, P) :={£: € is F-measurable random variable such that E[|{|P] < co,p > 1},
LY F,P) =, LP(QL F, P),
SY(R) = {V: (Vi)eejor) 18 (Ft)iejo,r)-adapted  continuous R-valued process with

E [supg<i<r |ViP] < 00,p > 1},
ST(R) = Up>15§“(R)a

Lr(0,T;P;R") := {V: (Vi)eejorp 18 (Ft)iejo,r)-adapted  R™-valued process with

T p/2
E[(/ IVSIQdS) } <w7p21},
0

L0, T; Py R") := U~ LP(0, T; P; R").

Throughout this paper, we assume that 1 < p < 2.

Suppose function g : 2 x [0, 7] x R x R% — R satisfies the following conditions:

(H.1) ¢(-,0,0) € LP(0,T; P; R);

(H.1") ¢g(-,0,0) € L(0,T; P; R);

(H.2) g satisfies a uniform Lipschitz condition, that is: there exists a constant x > 0 such that for
any y1,92 € R, 21,22 € R, |g(t, y1,21) — g(t, y2, 22)| < pullyn — yo| + |21 — 20]), t € [0, TT;

(H.3) g(-,y,0) =0 Vy € R.

Lemma 2.1 (see Briand et al. [1]). Suppose g satisfies (H.1) and (H.2). Then for any £ €
€ LP(Q, F, P), the BSDE
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T T
w=+ [olspezds— [ o aw, @)
t t
has a unique pair of adapted processes (yfT’g ) ) (T 7§)>t o071 € S} (R) x LP(0,T; P; R%).
€10,

Remark 2.1. From Lemma 2.1, we have: suppose ¢ satisfies (H.1") and (H.2), then for each
given { € L(Q, F, P), BSDE (2.1) has a unique pair of adapted processes (yt(T’g ’5), zlfT’g ’5))
€ St(R) x L£(0,T; P; R%).

We give the a priori estimate for BSDEs which is of standard type and taken from [1].

Lemma 2.2. Suppose g satisfies (H.1) and (H.2). For any &1, & € LP(QQ, F, P), let (yET’g’gl),

te[0,7

zt(T’g ,51)) and yt(T’g ’52), zt(T’g ’52)) be the solutions of BSDE (2.1) corresponding to & = & and
§ = &o, respectively. Then there exists a constant C, > 0 depending only on p, T' and Lipschitz
constant | such that

p/2
2

’ ds| | <GCE[E - &)

E Tvgvgl) _ yt(Tvg7§2)

sup

T
+ E /)Z£T797£l) _ Z£T797§2)
0<t<T 0

The following comparison theorem is very useful.

Lemma 2.3 (Comparison theorem, see Hu and Chen [10]). Suppose g and g satisfy (H.1) and
(H.2). For any &,& € LP(Q, F, P), let (ygT’g’&),zt(T’g’&)) and (y,gT’g’&),zt(T’g’&)) be the solu-
tions of the following two BSDEs:

T T
ytl=§1+/g(s,y;,z;)ds—/zsl-dWS, t € 0,7,
t t

T
yf=§z+/g(s,y§,z§)ds—/z§-dWs, t e 0,7
t

If

51 > 52 a.c., gt = g(t7 Y, Z) - g(t7 Y, Z) >0 a.c.,
then for each ¢ € [0, 77,

(T7gvgl) > ygT’§7£2) a.e.

Yy
In the case, we have

ylTo2) = (1382)  y e ifandonlyif & =& ae, =0 ae.

Definition 2.1 (Generalized Peng’s g-expectation, see [10]). Suppose g satisfies (H.2) and (H.3).
For any £ € L(Q, F,P), let (y,gT’g’g), zt(T’g’g)) be the solution of BSDE (2.1) with terminal value

&. Consider the mapping E,[-]: L(Q, F,P) — R, denoted by &;[§] = y(()T’g’g). We call £4(¢] the
generalized Peng’s g-expectation of €.
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Definition 2.2 (Generalized Peng’s g-expectation, see [10]). Suppose g satisfies (H.2) and (H.3).
The generalized Pengs conditional g-expectation of & with respect to F; is defined by

Elé1F] = v,

The generalized Peng’s conditional g-expectation has the following property.
Proposition 2.1 (see [10]). &£,[&|F] is the unique random variable 1 in L(S2, Fy, P) such that

Egl1a&] = &y[1an] VA€ F.
3. A comonotonic theorem for BSDEs in LP. From now on, we further assume that the function
g is deterministic, i.e.,
g:[0,T] x R x R*— R.

Then (H.1) can be rewritten as follows:

T
/|g(s,0,0)|2ds < 0. (H)
0

More specifically, we suppose that g; and g» satisfy the assumption (H) and (H.2). For any &; and
& € L(Q,F, P), let (yt(T’gi’&), ZET’Q“&)) be the solutions of the following BSDEs:

T T
yi =&+ /gi (s,yk, 2L) ds — /zg -dW,, tel0,T], i=1,2. (3.1)
t t
Now we consider the case where random variables &; and & satisfy that there exist two functions
¢1 and ¢o such that & and & are of the form &; = ¢; (erp) , where (X}) are the solutions of the
following SDEs, respectively,

dXsi = (s,Xﬁ) ds + o; (S,Xé) - dWs,

Xéza:, reR, 1=1,2,

and b; and o; satisfy the following assumption for each ¢ = 1, 2.

Assumption A. Let b;(t,2): [0,T] x R — R, o(t,z): [0,T] x R — R? be continuous in
(t,z) and uniformly Lipshictz continuous in z € R, for each i = 1, 2.

Definition 3.1. The functions ¢ and v are said to be comonotonic, if both ¢ and ) are of the
same monotonicity, that is, if ¢ is increasing (or decreasing), so is V.

The following theorem is called comonotonic theorem for BSDEs, which plays an important role
in our paper.

Theorem 3.1. Suppose that (yéT’gl’&),zt(T’gl’&)> and (ygT’gQ’&),zlgT’gQ’&)) are the solutions

of BSDE (3.1) corresponding to terminal values & = ¢1(X7) and &2 = ¢o(X2), respectively. If ¢
and ¢o are comonotonic and

o1 (t,th) ® o9 (t,Xf) >0, dP xdt-a.s.,
then
ZET’QI’&) ® ZIST’QQ’&) >0, dP xdt-a.s.
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Proof. 1f ¢1(X+) and ¢2(X?2) € L%(2, F, P), Chen et al. have proved Theorem 3.1 holds in [5].
Otherwise, there exists 1 < p < 2, such that ¢1(X+) and ¢2(X2) € LP(Q, F, P). Set ! =
= ¢} (X}) = (¢i(XT) An) V (—n), i = 1,2, then ¢(X}) € L*(Q, F, P) and both ¢}'(X]) and

¢;(X’) are of the same monotonicity, for each i = 1, 2. Let z,ET’g U4 and zt(T’gQ’fg) be the solutions

of BSDE (3.1) corresponding to ¢7'(X+) and ¢ (X2), by Chen et al. [5], we have

AT @ 08 5 0GP x dtas. (3.2)
Applying Lemma 2.2, we can obtain zﬁT’gl RN zt(T’gl’gl) and zt(T,gz,gg) — zt(T’QQ’&) in LP(0,T; P;
R%) as n — oo. This with (3.2) implies that

Zt(T,ghél) ® ng’g"”&) >0, dP xdt-as. (3.3)

Theorem 3.1 is proved.
Using Theorem 3.1, immediately, we can obtain the following theorem.
Theorem 3.2. Suppose that b and o satisfy Assumption A. Let (X) be the solution of SDE

dXs =b(s,Xs)ds + o(s,Xs) - dWs, Xog =2, s€]0,T].

Assume ¢ is a function such that ¢(Xrp) € L(Q,F,P) and g satisfies (H) and (H.2). Let
(yt(T’g’¢(XT)), zET’g’d)(XT))) be the solution of the BSDE

T

T
Yt = QS(XT) + /g(s,ys,zs)ds - /28 . dWsa te [O,T].
t t

(1) If ¢ is an increasing function, then

ZT00T) @ 5t X,) >0, dP x dt-a.s. (3.4)
(i1) If ¢ is a decreasing function, then

ng’g’qﬁ(XT)) ©o(t,X) <0, dP xdt-as.. (3.5)

4. Some applications of the comonotonic theorem. 4.1. Additivity of generalized Peng’s
g-expectations. We know that if g(t,y, z) is nonlinear in (y, z), then &;[-] is usually nonlinear on
L(Q, F, P). In this subsection, applying the comonotonic theorem, we give that for some special
random variables, &[] still has the additivity property even when g is nonlinear.

Definition 4.1. (i) 4 function g(t,y,z): [0,T] x R x R+ R is called positively additive, if
for any (y1, 1) and (y2, 20) € R x R%, then

g(t,y1 +y2,21 + 22) = g(t, 1, 21) + g(t, y2, 22),

whenever y1ys > 0,21 ® 29 > 0Vt € [0,T].
(i) 4 function g(t,y,z): [0,T] x R x RY — R is called semipositively additive, if for any
(y1,21) and (y2, 20) € R x R%, then

g(t,y1 +y2,21 + 22) = g(t, 1, 21) + g(t, y2, 22),

whenever z1 @ z9 > 0Vt € [0,T].
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Remark 4.1. (i) If g is a positively additive (or semipositively additive) function, it is easy to
check that g(¢,0,0) = 0 V¢t € [0, T].
(i1) The following two functions are positively additive and semipositively additive, respectively,

d
g(tvyuz) = CLt’y‘ + Z/’LHZ’Z’?
i=1

d
g(ta Y, Z) = bty+ ZI/“Z’L”
i=1

where 2 is the i th component of z.

Theorem 4.1. Suppose that ¢ (X%) and qﬁg(X%) are the random variables defined in Theo-
rem 3.1 and that g satisfies (H.2) and (H.3).

(i) Suppose ¢1 and ¢o are comonotonic with ¢1(XE) > 0, ¢2(X2) > 0 (or ¢1(X}) < 0,
$2(XF) < 0). If

o1 (t, th) ® o9 (t, Xf) >0, dP xdt-a.s.,
and g is a positively additive function, then
Eqlo1(X7) + 02(X7)| Fi) = Elor (X0)| Fil + E[62(XT)| F] e, t€[0,T].
In particular,
Eglo1(XT) + d2(X7)] = Elo1(X7)] + Egld2(XT)].

(i) If g is a semipositively additive function, then the assumptions ¢1(X+) > 0, ¢o(X2) > 0
(or 1(X+) <0, ¢2(X2) <0) in (i) can be dropped.

Proof. (i) Foreachi = 1,2, let (yfT’g’@(X%)), zET’g ’@(X%))) be the solution of BSDEs

T

T
t t

Since ¢ and ¢9 are comonotinic and

o1 (t, X)) © oy (t,X7) >0, dP x dt-as.,

by Theorem 3.1, we have

1 2
[Ta01(X2)) o [(Too2XD) 5 o P x di-as. (4.1)

We next show
1 2
yt(T797¢1(XT))yt(T7gz¢2(XT)) Z 0 a'e" t c [07 T]‘
Indeed, if ¢1(X+) > 0, ¢2(X%) > 0, then applying Lemma 2.3,

1 2
yET,g,m(XT)) >0 ae, yET’g’d’Z(XT)) >0 ae.
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If ¢1(X4) <0, ¢o2(X2) <0, applying Lemma 2.3 again,

1
yiTu‘la(i’l(XT)) ) <0 a.e.

2
g 0 a'e.7 y§T7gz¢2(XT)

Hence
1 2
ylETyg:(bl(XT))yt(T)g#ﬁQ(XT)) Z 0 a‘e', t c [O,T] (42)
(4.1), (4.2) and the assumption that g(t, y, z) is a positively additive function imply

T, , Xl ’]17 s X2
yPoor &) Tada X)) _ (X 1y 4 gy (X2) 4

T
n / g(s,ygT’g’¢1(X:1F)) +ygT,gm(X%))’ng,g,m(X%))
t

T
/ (Tg:61(Xp) ZgT,g,@(X%))) WL,
t

It follows that
Egld1(XT) + 02(X7)|F] = Eglon(XD)|Fe] + Elo2(XT)|F] e, te[0,T].
Choose ¢ = 0, then
Egld1(XT) + 02(X7)] = Eglen (X)) + Elea(XT)].

The proof of (i) is complete.

(i1) is obvious.

Theorem 4.1. is proved.

4.2. Choquet expectations, minimax expectations and generalized Peng’s g-expectations. 4.2.1.
Minimax expectations versus generalized Peng’s g-expectations. Let

1 .
{QQ dQ —e 2 fOT \95\2ds+f0T 95'dW5’ mﬂ < p,dP x dt-a.s.} , (4.3)

where 6! is the ith component of 6;.
Referring to [3, 5, 8], for any £ € L(Q,F,P), we define £[§] = supgep Egle], £[E] =
= infgoep Egl¢]. We further define conditional minimax expectations by

E[¢|Fy] = ess sup Egl¢|F, E[&|Fi] = ess inf Eg[¢|F].
QeEP QeP
Obviously, E[¢|Fo] = E[€], E[€|Fo] = £[€], where ess is essential.
The following lemma shows that £[¢], £[¢], E[¢|F:] and £[¢|F] are well-defined for all £ €
€ L(Q,F,P).

Lemma 4.1. Forany & € L(Q, F, P), then E[¢|F;] € L(Q, Fy, P) and E[E|F] € L(Q, Fy, P).
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Proof. For any () € P, then there exists an adapted process {a;} bounded by s such that
@ = 6—% S lasPds+ [ as-dWs
dP :

For any £ € L(,F,P), then there exists p > 1 such that £ € LP(Q2, F, P). By Holder’s
inequality, we obtain

E [’ﬂ !}}] B (E[|§|p|]:t])1/p (E [(dg)q ‘]:tbl/q
E {WU‘?} a B [Cf%’ft} :

where 1 + 1 = 1. Since (e_; Jo las\ds+fg as'dW3> and <e_; Jo laasds+fy qas~dVVS> are
P q [0,T7 t€[0,77]

Eqall¢][F:] =

both martingales with respect to (F%).c[0,7], hence

1/
(E [(an>q \fDI/q <e—§f5 lqas |2ds+ [ qas‘dws> !
b ! < e%(qfl)duzT < e%(qfl)duQT'

a 1 —
E [dQ |-7:t} e 2 fot |as|2ds+f(;5 as-dWs

Thus
Eqal|€||F] < ez DWT(Eligp| F)) P,

which implies E[¢|F] € L(2, F, P) and E[E|F] € L(Q, Fy, P).
d
In the following, for simplicity, we write in the sequel E#[-|F;] = &;[-|F] for g = Z,_l |2*

and E7H[|F] = Eg[-|F] for g = —p Z |, where 2* is the ith component of 2.

The following theorem shows a relatlon between minimax expectations and generalized Peng’s
g-expectations.

Theorem 4.2 (Martingale representation theorem for minimum and maximum expectations). If
¢ € LIO,F,P), then EF[E\F] = E[E\F], EFENF] = EEF. In particular, EF[E] = E[¢],
£-1le] = E[e].

By Lemma 2.3 and Girsanov’s theorem, it is easy to prove Theorem 4.2. The proof is very similar
to that of Theorem 2.2 in Chen and Epstein [3]. We omit it.

4.2.2. Choquet expectations versus minimax expectations.

Definition 4.2. A capacity is a real valued set function V : F — [0, 1] satisfying:

HV(e)=0,V(Q) =

(if) V(A) < V(B) for any A C B.

The related Choquet expectation is denoted by

0 [es)
C[f]::/( €>1) —1dt+/V§>t
—00 0

From Definition 4.2, we may verify that C[-] satisfies (see [6]):
(1) monotonicity: If £ > n, then C[¢] > C[n],
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(2) positive homogeneity: If A > 0, then C[A¢] = \C[¢],
(3) translation invariance: If ¢ € R, then C[§ + ¢] = C[¢] + c.
Define

Vy(A) = &,(14) VA€ F.

It is easy to check that Vj is a capacity. The related Choquet expectation is denoted by

0 oo
Cylé] = / (Vo€ = t) — 1)dt + / V,(€ > t)dt
—00 0

We next show that for any { € L(€2, F, P), C4[{] < oo.

Lemma 4.2. Suppose that g satisfies (H.2) and (H.3), then C4[§] < oo for each & € L(Q2, F, P).

Proof. We set g(t,y,z) := —g(t,1 —y,—z) for any (t,y,z) € [0,T] x R x R%. Obviously g
satisfies (H.2) and (H.3) with the same Lipschitz constant as g. It is easy to check that V5(A) =
=1 — V,(AY) for each A € F and

Col€] = Cl€™] + Cg[ €71 =CyleT] — Cgle™] V€ € L(Q, F, P).

For each & € L(Q, F, P), there exists 1 < p < 2 such that £ € LP(Q2, F, P). From Lemma 2.2, for
fixed p' € (1,p), we have &[¢] < L(E[|£[P'])/?, where L > 0 is a constant depending only on p/,
T and Lipschitz constant . Thus,

[e'e) [e%s) [e%s) 1/pl [e%s) 1/4’
(p=1)¢’
V(E>t)dt < L <P<5>t>>1“°/dt<L( tp1P<f>t>d’f) ( C dt) |

1 1 00 oo (p=1)¢
where — + — = 1. Since / tP=IP(¢ > t)dt < E[|€|P] < oo and / t P dt < oo, we get
p q 1

1
Cyl€T] < oo. Similarly, C5[€] < co. This concludes the proof of the lemma.
For any £ € L(Q, F, P), we define

0

Cle) = / (V(€>t) - 1)dt + / V(e > t)dt
0

—0o0

0 00

¢ = [wiez0-nar+ [vie=na

—00 0

where V and V are upper and lower probabilities defined by

V(A) = SE%Q(A)’ V(A) = ég%@( ),

where P is the same as in (4.3).
Obviously, V(A) = E[14] = EF[14], V.(A) = E[14] = EH[1 4].
We have the following theorem.
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Theorem 4.3. Suppose (X;) be the solution of SDE in Theorem 3.2. Let ¢ be a monotonic
function such that ¢(X1) € L(Q, F, P). Assuming that for all t > 0 and ©* € R, o'(t,z) > 0
(oi(t, ) is the ith component of o(t,x)), i = 1,2,...,d, then there exist probability measures Q1
and Qo such that

(a) for any ¢ that is increasing, then

Cle(Xr)] = Elo(Xr)] = Eq,[¢(X7)],  Cl6(X7)] = E[¢(X1)] = Eq, [¢(X1)];

(b) for any ¢ that is decreasing, then

Clo(Xr)] = E[p(X7)] = Eq,[¢(X7)],  Clo(Xr)] = E[¢(X7)] = Eq, [¢(X71)].
The probability measures Q1 and Q)2 are defined by
dQ1 _  Jawereaxi,wy o Q2
dP ’ dP
Proof. We only prove (a). The rest of this theorem can be proved in a similar manner.

Proof of part (a). For any ¢(X7) € L(2, F, P), there exists 1 < p < 2, such that ¢(Xr) €
€ LP(Q, F, P). Consider the following BSDE:

1 d ;
— oW T—p i, Wi

T

|z;‘\ds—/zs.dws, te[0,7T7]. (4.4)
=1 t

M=

T
yr = o(X7)+ [ p
/

Let (y}', 21') be the unique solution of BSDE (4.4). By Theorem 3.2, noting that ¢ is an increasing
function, we have

2 ©o(t,Xy) >0, dP x dt-as.
Since o*(t,x) > 0, we can deduce
A4 >0, dP xdt-as., i=1,2,...,d.

Therefore, (y}', 2}') is also the unique solution of the following linear BSDE:

T T
yt:¢(XT)+/MZz§dS—/zS-dWS, t €[0,7]. (4.5)
t =l t
Let Wy := W;—u(1,...,1)Tt. By Girsanov’s theorem, (Wt)te[O,T] is a (Q1-Brownian motion, where
d 1 i
% — ¢TI Wi Moreover, BSDE (4.5) can be rewritten as

T

y = 6(Xr) — /zs AW, te[0,T].
t

t
It is easy to check that ( / zde8> is a martingale with respect to (). Indeed, we have, by
0 t€[0,77]

the BDG inequality and Holder’s inequality,
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1 1
where — + — = 1. Thus,
P q

Elp(Xr)] = Eq, [0(X1)]-
On the other hand, let ¢"(X7) := (¢(X71) An) V (—n). From [5], we have
ElP"(X)] = C[¢" (X1)].
Note that
V(@"(X1) 21) = € [Lgn(xp)zn] = € [Lonxr)=n )]s
V($(X1) 2 1) = € [La(xr)=n] = € [Lo(xr)20)]
and hence
V(" (X7) >t) = V(p(Xr) >1t), as n— oo.
Applying the monotonic convergence theorem, we obtain
Clo"(X1)] = Clp(XT)], as n — oo
From Lemma 2.2, we obtain
Elp™(X1)] — E[p(XT)], as n — oo.

Therefore

E[p(X1)] = Clp(X7)].

From (4.6) and (4.7), we have

Clo(X1)] = Eq,[¢(X1)]-

In a similar manner, we can obtain

Clo(X7)] = Eg,[6(X1)].

Z.-J. ZONG

(4.6)

“4.7)

Now we give an example to illustrate how our result allows one to calculate Choquet expectations.
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Example 4.1. For simplicity, let 7' = 1, d = 1. Suppose b = 0, ¢ = 1 and z = 0, then

Xy = Wy, Wy ~ N(0,1).
2

(i) Let ¢(z) = exp <9: — :1:) L(z>p,), Where 1 < p; < 2.

2p1
Obviously, ¢ is an increasing function and ¢(X1) = ¢(W1) = exp o~ Wi | L wy>py)-
P1 -
It is easy to check out
T 1 o 1 2
El|o(W: pl:/ex — —p1r e 2% dx = e 1 < oo,
o] = [ew (5 -ma) T

p1

and
Ellg(W1)[P] =00 Vp > p1.

Hence, ¢(W1) € L(Q, F, P), ¢(W1) ¢ L*(Q, F, P).
Using Theorem 4.3, we obtain

7 ZL'Q 2 2
Clown)] = o, lown)] = [[exp (5 —a) bt i -

2p1 27
p1
1 7 1 1
= 1 6_5“2 /e_2(1_271)m2€_(1_u)xd33 < 00,
V2T
P
Clp(W1)] = Eq,[¢(W1)] /ooe ( o a:) e 2t ! e 37 4
= = X —_— =
! @2 ' P 2p1 V2T
P1
T o1y,
b AR
27
P1
) 2
(ii) Let ¢(z) = exp (2191 + ac> L(p<—p,)> Where 1 < p; < 2.
. . . . e
Obviously, ¢ is a decreasing function and ¢(X;) = ¢(W71) = exp %1 + Wi ) L <—py)-
) <

It is easy to check out

—p1
2 1 1 1
E[|l¢p(Wy)Pr] = / exp (xz —i—plx) e 2% dx -t < 00,

—0o0

and
Ello(W1)[] = 00 Vp>pr1.
Hence, ¢(W1) € L(Q, F, P), p(W1) ¢ L*(Q, F, P).
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Using Theorem 4.3, we obtain

—p1

z? Lo o1 1o
Clo)] = Eo, o] = [ exp (5o o) e b o beian -

—00

Var
—P1 9 1
CioV)] = B 600 = [ exp (5 ) B0 i e =

— 00

Remark 4.2. The Choquet expectations C[¢(W1)], C[¢(W1)] in Example 4.1 can not be calcu-
lated by Chen and Kulperger [5], because ¢(W7) ¢ L?(€, F, P). But thanks to Theorem 4.3, since
o(W1) € L(Q, F, P), one can easily calculate them.

4.2.3. Choquet expectations versus generalized Peng’s g-expectations. In this subsection, we
provide a necessary and sufficient condition of Choquet expectations being equal to generalized
Peng’s g-expectations.

We have the following theorem.

Theorem 4.4. Suppose that g satisfies (H.2) and (H.3). Then there exists a Choquet expectation
whose restriction to L(Q2, F, P) is equal to a generalized Pengs g-expectation if and only if g does
not depend on y and is linear in z, i.e.,

d
g(tvyvz) =Vt 2= ngzi'
i=1

Proof. Since L?(Q), F,P) C L(Q,F,P), the proof of necessity can be seen in Chen et al. [2]
and Hu [11]. We only prove the sufficiency.
For any ¢ € L(2, F, P), there exists 1 < p < 2, such that £ € LP(Q, F, P). If g(t,y, z) = v - 2,
let us consider the BSDE
T T

yt=§+/vs-zsds—/zs-dWs.

t t

¢
Set W, =W, — / vsds, then
0

T
yt:é'_/zs'dws-
t

ISSN 1027-3190. Vkp. mam. scypn., 2012, m. 64, Ne 6



A COMONOTONIC THEOREM FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. .. 765

By Girsanov’s theorem, (Wt)te[o,T} is a (Q-Brownian motion under () defined by

T

T

d 1

%zexp —2/\vs\2ds+/vs-dWS .
0 0

Thus

&€l = Eqlél.

This implies the generalized Peng’s g-expectation is a classical mathematical expectation. Obviously,

the classical mathematical expectation can be represented by the Choquet expectation. So the proof

of sufficiency is complete.
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