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THTETPAJIbHI MHOT'OBUJIA JJISI HAIBJATHIMHAX EBOJIOHINHUX
PIBHSIHb TA JIOIIYCTUMICTH TPOCTOPIB ®YHKIIIN

We prove the existence of integral (stable, unstable, center) manifolds for the solutions to the semilinear integral equation
t
u(t) = U(t, s)u(s) + / U(t,€)f(& u(€))d€ in the case where the evolution family (U(t, s))¢>s has an exponential

trichotomy on a half-line or on the whole line, and the nonlinear forcing term f satisfies the @-Lipschitz conditions, i.e.,
If(t,z) — f(t,y)|| < @(t)]|z — yl||, where ©(t) belongs to some classes of admissible function spaces. Our main method
invokes the Lyapunov—Perron methods, rescaling procedures, and the techniques of using the admissibility of function
spaces.

JloBeneHO iCHYBaHHS IHTErpajbHUX (CTIHKHMX, HECTIMKNX, EHTPAIbHUX) MHOTOBUIB JUISL PO3B’S3KIB HAIIBIiHIHHOTO iH-
t
TerpanbHoro piBasuus u(t) = U(t, s)u(s) + / U(t, &) f(& u(€))dE y Bunanky, konu cim’st esontowiit (U (2, s))i>s Mae

CKCITOHCHIIaJIbHYy TPUXOTOMIIO0 Ha MiBOCi abo Hi’i BCiii Oci, a HemiHiiHUN 30yprolounii wieH [ 3aZ0BOJIBHSE (O-JIMIINLCBI
ymoBH, 10010 || f(¢,2) — f(t,y)|| < ¢()||lz — y||, ne ¢(t) HamexUTH KO HESKUX KIAciB JOIYCTHMHX MPOCTOPIB (yHK-
niii. Ham ocHoBHMIA MeTox Gasyerscst Ha MeTonax JlsmyHoBa-—Ileppona, mporenypax nepemaciitaOyBaHHS Ta TEXHILi
3aCTOCYBaHHS JIOIYCTUMOCTI IPOCTOPIB (QyHKIIIH.

1. Introduction and preliminaries. Consider the semilinear evolution equation of the form

B A (t) + (1), te T, (.0

where J is a subinterval of the real line R; each A(t) is a (possibly unbounded) linear operator acting
in a Banach space X, z(t) € X, and f(-,-): J x X — X is a nonlinear operator. When the linear
part (i.e., the equation dz/dt = A(t)z(t)) of the above equation has an exponential dichotomy (or
trichotomy), one shall try to find conditions imposed on the nonlinear forcing term f such that the
equation (1.1) has an integral manifold (e.g., a stable, unstable, or center manifold).

Such early results can be traced back to Hadamard [10], Perron [29, 30], Bogoliubov and
Mitropolsky [4, 5] for the case of matrix coefficients A(t), to Daleckii and Krein [8] for the case
of bounded coefficients acting on Banach spaces, and to Henry [12] for the case of unbounded
coefficients. At this point, we would like to quote the sentence by Anosov [1]:

., Every five years or so, if not more often, some one ,,discovers” the theorem

of Hadamard and Perron, proving it by Hadamard'’s method of proof or by Perrons”.
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The Hadamard’s method is generalized to the so-called graph transform method which has been
used, e.g., in the works [2, 13, 22] to prove the existence of invariant manifolds. This method is
more far-reaching and related to complicated choices of the transforms between graphs represent-
ing the involved manifolds. Meanwhile, the Perron’s method is now extended to the well-known
Lyapunov —Perron method aimed at the construction of the so-called Lyapunov—Perron equations
(or operators) involving the differential equations under consideration to show the existence of the
integral manifolds. It seems to be more natural to use the Lyapunov —Perron method to handle with
the flows or semiflows which are generated by semilinear evolution equations since in this case it is
relatively simple to construct such Lyapunov—Perron equations or operators. We refer the reader to
[3,7,8, 11, 12, 15, 16, 35] and reference therein for more information on the matter.

To our best knowledge, the most popular conditions for the existence of invariant manifolds are
the exponential dichotomy (or trichotomy) of the linear part CC% = A(t)x and the uniform Lipschitz
continuity of the nonlinear part f(¢, ) with sufficiently small Lipschitz constants (i.e., || f(¢,2) —
— f(t, )| < q||z —y]|| for ¢ small enough). The purpose of this paper is establishing the existence of
stable, unstable, and center-stable manifolds when the linear part of equation (1.1) has an exponential
trichotomy on the half-line or on the whole line under more general conditions on the nonlinear term
f(t,x), that is the non-uniform Lipschitz continuity of f, i.e., || f(t,x) — f(t,y)|| < @(t)]|z — vl
for ¢ being a real and positive function which belongs to admissible function spaces defined in
Definition 2.3 below. Under some conditions on ¢, we will prove the existence of center manifolds

for the equation (1.1) provided that the linear part d—f = A(t)x has an exponential trichotomy. Our
method is to transform to the case of exponential dichotomy by some rescaling procedures, and
then applying our techniques and results in [15] where we have used the Lyapunov —Perron method
and the characterization (obtained in [14]) of the exponential dichotomy of evolution equations in
admissible spaces of functions defined on the half-line R to construct the structures of solutions
of the equation (1.1) in a mild form, which belong to some certain classes of admissible spaces on
which we could implement some well-known procedures in functional analysis such as: constructing
of contraction mapping; using of Implicite Function Theorem, etc. The use of admissible spaces has
helped us to construct the invariant manifolds for equation (1.1) in the case of dichotomic linear
parts without using the smallness of Lipschitz constants of nonlinear forcing ternzi 1in classical sense.
Instead, the “smallness” is understood as the sufficient smallness of sup, o(7)dT (see the
conditions in Theorem 4.7 in [15]). Consequently, we have obtained the existentce of invariant-stable
manifolds for the case of dichotomic linear parts under very general conditions on the nonlinear
term f(¢,x) (see [15]). Using these results and rescaling procedures we shall prove, in the present
paper, the existence of center manifolds for the mild solutions of the equation (1.1) in the case of
trichotomic linear parts under the same conditions on the nonlinear term f (¢, x) as in [15]. Moreover,
using the same method we can also obtain the existence of unstable and center-unstable manifolds in
the case of dichotomic and trichotomic linear parts (respectively) for the evolution equations defined
on the whole line. Our main results are contained in Theorems 3.1, 4.1, 4.2, and Corollaries 4.1, 4.2,
4.3. We also illustrate our results in the Examples 5.2, 5.3.

We now recall some notions.
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Definition 1.1. Let J be one of the following intervals: Ry or R. A family of operators
{U(t, 8) }+>s, t,se5 acting on a Banach space X is a (strongly continuous, exponential bounded)
evolution family on J if

() U(t,t) =Id and U(t,r)U(r,s) =U(t,s) forallt > r > sand t,s,r € J,

(ii) the map (t,s) — U(t, s)x is continuous on J for every x € X,

(i) [|U(t, s)x|| < Ket9)||z|| for all t > s, t, 5,7 € J, and = € X, for some constants K, w.

The notion of an evolution family arises naturally from the theory of evolution equation which
are well-posed. Meanwhile, if the abstract Cauchy problem

dl;it) = Abu(t), t>s, t, seld,
(1.2)
u(s) = x5 € X,

is well-posed, there exists an evolution family (U (%, s))¢>s, +,scy such that the solution of the prob-
lem (1.2) is given by u(t) = U(t, s)u(s).

For more details on the notion and some problems focus on properties and applications of evo-
lution family we refer the reader to Pazy [28], Henry [12], and Nagel and Nickel [9]. For a given
evolution family, we have the following concept of an exponential trichotomy of evolution families
on J as follows.

Definition 1.2. Let J be one of the following intervals: Ry or R. A given evolution family
(U(t,5))t>s, t,sey on J is said to have an exponential trichotomy on [ if there are three families of
projections (Pj(t))iey, j = 1,2,3, positive constants N, o, f with o < 8 such that the following
conditions are satisfied:

(i) supye; [ B (0)] < o0, = 1,23,

(i) Pi(t) + Pa(t) + P3(t) = Id for all t € J, and P;(t)P;(t) = 0 for all j # i,

(iii) Pj(t)U(t,s) = U(t,s)Pj(s), forallt > s >0, j=1,2,3,

(iv) U(2, 8)|1mp;(s) are homeomorphisms from Im P;(s) onto Im P;(t) for all t > s, t,s € J,
and j = 2,3, respectively; also we denote the inverse of U(t, s)|1mp,(s) by U(s,t)| (here s < t),

(v) the following estimates hold:

Ut 9)Pi(s)al| < Ne P2 Py(s)al],

1T (s, 6) Pa(t)a|| < Ne PE=2) || Py(t)a]

U2, 5)Pa(s)al| < Ne* || Py(s)al],
forall t>s, t,selJ, xelX

The evolution family is said to have an exponential dichotomy on J if it has an exponential
trichotomy for which the family of projections Ps(t) is trivial, i.e., P3(t) = 0 for all ¢ € J. In this
case, we remark that the property (i) is a consequence of other properties (see [21], Lemma 4.2), and
we also denote P(t) := P;(t) called dichotomy projections.
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2. Function spaces and admissibility. We recall some notions of function spaces and admissibility.
We refer the readers to Massera and Schiffer [20] (Chapter 2) for wide classes of function spaces
that play a fundamental role throughout the study of differential equations in the case of bounded
coefficients A(t) (see also Rébiger and Schnaubelt [31] (§ 1) for some classes of admissible Banach
function spaces of functions defined on the whole line R).

Denote by B the Borel algebra and by A the Lebesgue measure on R. As already known, the
set of real-valued Borel-measurable functions on R} (modulo A-nullfunctions) that are integrable
on every compact subinterval J C Ry becomes, with the topology of convergence in the mean on
every such J, a locally convex topological vector space, which we denote by Ly joc(R1). A set of

seminorms defining the topology of L joc(R4) is given by p,(f) = / |f(t)|dt, n € N, where
JIn

{JIn}nen = {[n,n+ 1] }nen is a countable set of abutting compact intervals whose union is R . With
this set of seminorms one can see (see [20], Chapter 2, § 20) that L; j,.(R) is a Fréchet space.

Let V be a normed space (with norm || - ||y/) and W be a locally convex Hausdorff topological
vector space. Then, we say that V' is stronger than W if V' C W and the indentity map from V' into
W is continuous. The latter condition is equivalent to the fact that for each continuous seminorm 7
of W there exists a number 3, > 0 such that 7(z) < S|x||vfor all z € V. We write V < W to
indicate that V' is stronger than W. If, in particular, W is also a normed space (with norm || - |lw)
then the relation V' — W is equivalent to the fact that V' C W and there is a number « > 0 such
that ||z|lw < a||z|vfor all z € V' (see [20], Chapter 2 for detailed discussions on this matter).

We can now define Banach function spaces as follows.

Definition 2.1. A vector space E of real-valued Borel-measurable functions on R, (modulo
A-nullfunctions) is called a Banach function space (over (R, B, \) if

(1) E is Banach lattice with respect to a norm || - ||g, i.e., (E,| - ||g) is a Banach space, and
if ¢ € E and 1 is a real-valued Borel-measurable function such that | ()| < |¢(-)| A-a.e., then
Y € Eand ||¢||p < elle,

(2) the characteristic functions x4 belong to E for all A € B of finite measure, and
sup;>o [IX[t41)l| B < 00 and infi>o || X441l E > 0,

(3) E = Lijoc(Ry).

For a Banach function space E we remark that the condition (3) in the above definition means
that for each compact interval J C R there exists a number §; > 0 such that / lf(O)]dt < Byl flle

J

forall f € F.

We state the following trivial lemma which will be frequently used in our strategy.

Lemma 2.1. Let E be a Banach function space. Let ¢ and 1 be real-valued, measurable
functions on Ry such that they coincide with each other outside a compact interval and they are
essentially bounded (in particular, continuous) on this compact interval. Then ¢ € E if and only if
Y eE.

We then define Banach spaces of vector-valued functions corresponding to Banach function
spaces as follows.

Definition 2.2. Let E be a Banach function space and X be a Banach space endowed with the
norm || - ||. We set
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E=ERy, X) = {f Ry — X: f is strongly measurable and ||f(-)| € E}
(modullo A-nullfunctions) endowed with the norm

£ lle = MOz

One can easily see that £ is a Banach space. We call it the Banach space corresponding to the
Banach function space E.

We now introduce the notion of admissibility in the following definition.

Definition 2.3. The Banach function space F is called admissible if it satisfies

(i) there is a constant M > 1 such that for every compact interval |a,b] € Ry we have

/| t)|dt < |X( || )HQOHE forall peF, 2.1

t+1
(ii) for ¢ € E the function A1 defined by A1p(t) = / o(7)dr belongs to E,
t
(iil) E is Tt -invariant and T -invariant, where T and T are defined, for T € Ry, by
o(t—T1) for t>712>0,
Trp(t) =
0 for 0 <t <, (2.2)

T o(t) :==@(t+71) for t>0.
Moreover; there are constants Ny, No such that | TF|| < Ny, ||T-|| < N for all 7 € Ry.

Example 2.1. Besides the spaces L,(R, ), 1 < p < oo, and the space

t+1
M(R}) = f € Lnc(Re): sup [ 17(7)ldr < o0
t>0

t+1
endowed with the norm || f v := sup;> / | f(7)|d7, many other function spaces occuring in in-

terpolation theory, e.g. the Lorentz spaces Ltp ¢ 1 <p<oo,1<q<oo(see[6,p.284], Theorem 3,
[36]) and, more general, the class of rearrangement invariant function spaces over (R, B, \) (see
[17]) are admissible.

Remark 2.1. 1If E is an admissible Banach function space then £ < M(R,). Indeed, put
B = infi>0 || X[t 2 > O (by Definition 2.1 (2)). Then, from Definition 2.3 (i) we derive

t+1
M
/ lo(T)|dr < FH()O”E forall t>0 and ¢ € E. (2.3)

M
Therefore, if ¢ € E then ¢ € M(R4) and ||¢|m < FH@HE We thus obtain ' — M(R,).

We now collect some properties of admissible Banach function spaces in the following proposi-
tion (see [14], Proposition 2.6 and originally in [20]).
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Proposition 2.1. Let E be an admissible Banach function space. Then the following assertions
hold.

(@) Let ¢ € Ly oc(Ry) such that ¢ > 0 and A1y € E, where, Ay is defined as in Defini-
tion 2.3(ii). For o > 0 we define functions Ao and N by

t
ALp(t) = / e =5) p(s)ds,
0

Aop(t) := /e_"(s_t)gp(s)ds.
t

t+1
Then Ao and Ay belong to E. In particular, ifsupt>0/ o(T)dT < oo (this will be satisfied
—Jt
if ¢ € E (see Remark 2.1)) then N v and Ao are bounded. Moreover, denoted by || - ||~ for
ess sup-norm, we have

Ny

— 670'

Ny

S g

A1l (2.4)

A5l < -

for operator T, and constants N1, N2 defined as in Definition 2.3.
(b) E contains exponentially decaying functions 1)(t) = e~ for t > 0 and any fixed constant
a> 0.
(c) E does not contain exponentially growing functions f(t) := e for t > 0 and any fixed
constant b > 0.
Remark 2.2. 1f we replace the half-line R, by any infinite (or half-infinite) interval I (e.g.,
I =R_,R, or any (—oo,tp] for fixed ty € R, etc.), then we have the similar notions of admissible
spaces on the interval I with slight changes as follow:
(1) In Definition 2.3, the translations semigroups 7. and 7.~ for 7 € R, should be replaced by
T and T defined for 7 € I as

N p(t—7) for t and ¢t — 7 belonging to I,
T7(t) ==
0 for tel but t —7¢1, (2.5)

T o(t):=¢(t+71) for tel

(2) In Proposition 2.1 (a), the functions A’ and A’ should be replaced by

to
AL (1) ::/e_"“_slap(s)ds, here typ=o0o if I=R, and tr=0 if I=R_,

t

t

Alo(t) := /e‘”'s_tlcp(s)ds.

—0o0
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(3) In Proposition 2.1 (b) and (c) the functions v (t) = e~** (t > 0, and fixed o > 0) should be
replaced by (t) = e~ !l ¢ € I and fixed a > 0; and the functions f(t) := e® for ¢t > 0 and any
fixed constant b > 0 should be replaced by f(t) := e%*l ¢ € I and fixed b > 0.

These notions will be used in Section 5. We denote the admissible function space of the functions
defined on I by Ey. If [ = R, we denote simply F := Eg_ . For a function ¢ defined on the whole
line we denote the restriction of ¢ on I by ¢l|r. It is obvious that, if the function ¢ € Epg, then
(,0|]1 € Ei.

In the case of infinite-dimensional phase spaces, instead of equation (1.1), for an evolution family
(U(t, 5))>s, t.se3 Where J = Ryor R, we consider the integral equation

t
u@:U@gm@+/U@9ﬂgm@@-mM@ t>s tsel 2.6)
We note that, if the evolution family (U(t,s))>s, ¢,sey arises from the well-posed Cauchy prob-
lem (1.2) then the function u, which satisfies (2.6) for some given function f, is called a mild
solution of the inhomogeneous problem
du(t)
dt

= Au(t) + f(t,ult), t>s, tsel,

u(s) = x5 € X.

We refer the reader to Pazy [28] for more detailed treatment on the relations between classical and
mild solutions of evolution equations (see also [9, 18, 35]).

To obtain the existence of an integral manifold for equation (2.6), beside the exponential di-
chotomy (or trichotomy) of the evolution family, we also need the properties of (local) ¢-Lipschitz
of the nonlinear term f in the following definitions in which we suppose as above that J is one of
the infinite intervals R or R. Also, we let Ej be an admissible Banach function space on J. When
J =Ry, we simply write E instead of Eg, .

Definition 2.4 (Local ¢-Lipschitz functions). Let ¢ be a positive function belonging to Ey, and
B, be the ball with radius p in X, i.e., B, := {x € X: ||z|| < p}. 4 function f: ] x B, — X is said
to be local @-Lipschitz of the class (M, p, p) for some positive constants M, p if f satisfies

) ||f(t, )| < Mp(t) for a.e. t € J and all v € B,

(i) || f(t,z1) — f(t, x2)|| < @(t)||x1 — 22| for a.e. t € J and all x1,22 € B,,.

Remark 2.3. 1f f(¢,0) = 0 then, the condition (ii) in the above definition already implies that
f belongs to class (p, , p).

We next recall the definition of y-Lipschitz functions.

Definition 2.5 (-Lipschitz functions). Let ¢ be a positive function belongs to Ej. A function
f:J x X — Xis said to be p-Lipschitz if f satisfies

(1) f(t,0) =0 for ae. t €],

(i) || f(t,z1) — f(t,z2)|| < w(t)||z1 — 22| for a.e. t € J and all x1,x2 € X.

3. Exponential trichotomy and center-stable manifolds on R . In this section, we will gen-
eralize Theorem 4.7 in [15] to the case that the evolution family (U (t, s)):>s>0 has an exponential
trichotomy on R and the nonlinear forcing term f is @-Lipschitz.
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In this case, the interval J = R . For an evolution family (U(¢, s)):>s>0 We rewrite the integral
equation (2.6) for J = R, as

¢
u(t) =U(t, s)u(s) + /U(t,ﬁ)f(ﬁ,u(f))df forae. t>s, t,seRy. (3.1

Precisely, we will prove that there exists a center-stable manifold for the solutions of equation (3.1).

Theorem 3.1. Let the evolution family (U(t,s))i>s>0 have an exponential trichotomy with
the corresponding constants N, o, B (o < ), and projections (Pj(t))i>0, j = 1,2,3, given in
Definition 1.2. Suppose that f: Ry x X — X be p-Lipschitz, where ¢ is the positive function

1 1—e* B
belonging to E such that k < min { N1 1 _ee—ﬁ }, here k is defined by
1+ H)N
bim SN N T ol + Mol 62)

Then there exists a center-stable manifold C = {(t,Cy) | t € Ry and C; C X} for the solutions
of equation (3.1), with the family (Ci)i>0 being the graphs of the family of Lipschitz continuous
mappings (g¢)i>0 (i.e., Cy := graph(g;) = {4+ gz | z € Im(P1(t) + P3(t))} for each t > 0)

k
? independent of t, such

N
where g,: Im (Py(t) + P3(t)) — Im P5(t) has the Lipschitz constant 1

that the following properties hold:

(i) to each xy € Cy, there corresponds one and only one solution u(t) of equation (3.1) on

t0,00) and it satisfies u(to) = 7o and esssupysy, e~ u(t)] < oo, where 7 := * 572,

(ii) C; is homeomorphism to X1 (t) ®X3(t) for all t > 0, where X (t) = Pi(t)X, X3(t) = Ps(t)X,

(iii) C is invariant under the equation (3.1) in the sense that, if u(t) is the solution of equa-
tion (3.1) satisfying u(to) = zo € Cy, and esssupysy, |le”"u(t)|| < oo, then u(s) € C, for all
s 2 to,

(iv) every two solutions ui(t), us(t) on the center-stable manifold C satisfy the condition that

there exist positive constants |1 and C,, independent of to > 0 such that
() = y(t)I| < CeOME[(Pr(to) + Ps(to))a(to) — (Pi(to) + P3(to))y(to)]|

forall t > tg.
Proof. Set P(t) := Py(t) + P5(t) and Q(t) := P»(t) = I — P(t). We consider the following
rescaling evolution family:

Ut,s)x = e U, )z forall t>s>0, zelkX,

a+
2 ~
It is easy to check that (U (%, s))¢>s>0 is an evolution family on X.

where v :=

We now claim that (U(Z, s)):>s>0 has an exponential dichotomy with the projection P(¢) and
Q(t) on the half-line. Infact, it suffices to verify the estimates in Definition 1.2.
By the definition of exponential trichotomy we have
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- (8—a)
1U(s,)Q(t)z]| < Ne~ =9 Q(t)a|| = Ne™ 2

=1Q(t)z|

forall t>s>0, zeX
On the other hand,

T (¢, 5)P(s)z|| = e [U (¢, 8)[Pr(s) + Ps(s)]z]l <
< Nem FE | Py(s)a| + e~ 0= Py(s)a]| <

_ (B_O‘) (t*S)
S Ne™ 2 ([Pa(s)zll + [[P3(s)x) =

CES.
= Ne™ 2 (I1PL(s)(P1(s) + Ps(s))x|| + || P3(s)(Pr(s) + Ps(s))z||) <

E= P
<NHe™ 2 CI(||(Pi(s) + Py(s))zl + [(Puls) + Pa(s))al)) =

(B—a)

—9NHe 2 9|P(s)z| forall t>5>0, ze€X

(here we use the fact that H := sup;~o{[|P1(t)]], | P2(t)]], | P3(t) ]|} < 00).
We finally obtain the following estimate:

(B—a)

|U(t, s)P(s)z|| < 2NHe™ 2 (9| P(s)z| forall t>s>0, z€eX

Therefore, (U(t, s))¢>s>0 has an exponential dichotomy with the projections (P(t));>0 and the di-
chotomy constants N’ := max{N,2NH}, ' = b ; a
Put #(t) := e 7'x(t), and define the mapping F as follows:

> 0.

F2R+ XX — X,

F(t,x) =e V" f(t,e"x) forall t>0, xcX

We can easily verify that the operator F' is also ¢-Lipschitz. Thus, we can rewrite the equation (3.1)

in the new form
t

() = Ut 5)3(s) + / (L, E)F (£, 3(€))de forae. t> s> 0. (3.3)
Hence, by [15] (Theorem 4.7), we obtain that, if
(L+ F)N (MM Ty oo + NofMislloc) 1

1—e 5 1+ N’
then there exists an invariant stable manifold C for the solutions of equation (3.3). Return to equa-

k=

tion (3.1) by using the relation x(t) := € Z(t) we can easily verify the properties of C which are
stated in (i), (ii), (iil), and (iv). Thus, C is an invariant center-stable manifold for the solutions of
equation (3.1).

Theorem 3.1 is proved.
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Remark 3.1. In case the evolution family has an exponential trichotomy and the nonlinear term

f satisfies the local o-Lipschitz of the class (M, ¢, p) with f(¢,0) = 0 and the positive function

1 1—e B
p € F satisfying £ < min {p ¢ 5 } (here k is defined as in (3.2)), then by the

2M N +1"1—e"
similar ways as above and using the results in [15] (Theorem 3.8) we can obtain the existence of a
local center-stable manifold for the solutions of equation (3.1), that is a set C C R, x X such that

there exist positive constants p, pg, p1 and a family of Lipschitz continuous mappings
gt Bp, NIm(Pi(t) + P3(t)) — By, NIm Py(t), te Ry,

with Lipschitz constants independent of ¢ satisfying:

(i) C ={(t,z+g(x)) € Ry x (Im(Py(t) + P5(t)) @Im Py(t)) | t € Ry, z € By, NIm(P1(t) +
+ P5(t))}, and we denote by C; := {z + g;(x) | (t,x + g:(z)) € C},

(ii) C; is homeomorphic to By, NIm(Pi(t) + Ps3(t)) = {z € Im(Pi(t) + P3(t)) | [|z|| < po} for
allt > 0,

(iii) to each zp € Cy, there corresponds one and only one solution u(¢) of equation (3.1) on

to, 00) and it satisfies u(tg) = o and esssup,~,. |le " u(t)|| < oo, where v := ot ﬁ,
t>to

(iv) every two solutions (), u2(t) on the local center-stable manifold C satisfy the condition
that there exist positive constants ; and C), independent of ¢y > 0 such that

2(t) — y(©)|| < CeT™MUE[(Py(to) + Ps(to))x(to) — (Pilto) + Ps(to))y(to)|| (3.4)

for all ¢ > .

4. Unstable manifolds for equations defined on the whole line. We now consider the case that
the evolution family (U (¢, s))+>s and the nonlinear forcing term f are defined on the whole line (i.e.,
the case J = R). That is to say, we will consider the integral equation

t

2(8) = Ut s)a(s) + /U(t,g)f(g,m(g))dg forac. t>s tscR. @.0)

S
As in Section 1, the solutions of the equation (4.1) is called the mild solutions of the equation

%ﬂ; — A(t)e + f(t,z), teR, zeX, (42)

where A(t), t € R (in general case), are unbounded operators in X, which are coefficients of a
well-posed Cauchy problem

du(t)
o = Au®), tzs
u(s) = x5 € X,

whose solutions are given by z(¢) = U(¢, s)z(s) as mentioned in Section 1. In this case, the exis-
tences of (local- or invariant-) stable manifolds on R are defined and proved by the same way as in
the case of equations defined on a half-line R (see [15], Theorem 4.7). Therefore, we will pay our
attention to the case of the unstable manifolds which are defined below.
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4.1. Local-unstable manifolds on R. We shall prove the existence of the local-unstable mani-
fold under the conditions that the evolution family (U (¢, s)):>s has an exponential dichotomy and the
nonlinear term f is local ¢-Lipschitz of the class (M, ¢, p) for a relevant positive function ¢ € ER.

We now give the description of a local-unstable manifold for the solutions of the integral equa-
tion (4.1) in the following definition in which we remind that by B, we denote the ball in X with
radius r centered at 0, i.e., B, = {z € X | ||z|| < r}.

Definition 4.1. A set U C R X X is said to be a local-unstable manifold for the solutions of
equation (4.1) if for every t € R the phase spaces X splits into a direct sum X = X1(t) ® Xa(t) such
that

inf Sn(Xi(t),X2(t)) := inf inf {||z1 + z2||: 2, € X;(t), ||| =1, i=1,2} >0,
teR4 teR L

and if there exist positive constants p, pg, p1 and a family of Lipschitz continuous mappings
hy: BpoﬂXg(t) — B, NXi(t), teR,

with the Lipschitz constants independent of t such that

() U = {(t,z + h(x)) € R x (X2(t) ® X1(t)) | € By, N Xa(t)}, and we denote by Uy :=
={x+ h(x) | (t,x + hi(x)) € U},

(i) Uy is homeomorphic to B,y N Xa(t) for all t € R,

(iii) to each xo € Uy, there corresponds one and only one solution x(t) of equation (4.1)
satisfying the conditions x(to) = xo and esssup,,, ||z(t)[] < p.

Let the evolution family (U(¢,s)):>s have an exponential dichotomy with the corresponding
projection P(t), t € R, and the dichotomy constants N, 5 > 0. Then, we can define the Green’s
function as follows:

P)U(t, 1) for t > T,
G(t,T) = (4.3)
-U(t, T)|[I — P(7)] for t<T.

Thus, we have

IG(t, 7| < (1 —I—H)Ne_mt_T| forall t# 7, where H =supl|P(t)] < oo.
teR

We now prove the existence of a local-unstable manifold. To do that, we first construct the form
of the solutions of the equation (4.1) which are bounded on the half-line (—o0, tg]. We denote by
|| - ||oo the sup-norm on the half-line (—oo, t¢).

Lemma 4.1. Let the evolution family (U(t,s))i>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 3 > 0. Suppose that  is the
positive function which belongs to Eg. Let f: Rx B, — X be local @-Lipschitz of the class (M, ¢, p)
for some positive constants M, p. Let x(t) be a solution of (4.1) such that esssup,<;, ||z(t)]| < p
Sfor some fixed ty. Then, for t < to, we have that x(t) can be rewritten in the form

to
x(t) = U(t, to)jv + / G(t,7)f(r,z(7))dr forall t< to, (4.4)

and some v € Xa(ty) = (I — P(to))X, where G(t,T) is the Green's function defined above.
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Proof. Let

to
y(t) :== /G(t,T)f(T,x(T))dT for all t < . (4.5)

Then the function y(-) is bounded. Indeed, by the estimates of the Green’s function G and the function
f we have

to

Ol < [ @+ HNe P (ra(r)dr <

t to
<@rENM | [ X pmar + [ S| <
—so t

Ni[|A1plloo + Nol A1 T1 ¢l
1—e B

<(1+H)NM{ ]<oo,

Next, by computing directly we verify that y(-) satisfies the integral equation

to
y(to) = Ulto, t)y(t) + / Ul(to, 7)f(r,z(1))dr forall t < . (4.6)
t

Indeed, subtituting y from (4.5) to the right-hand side of (4.6) we obtain

Uto. t)y(t) + / Ulto, 7) (7, 2(7))dr =

to

= Ul(to,t) / G(t,T)f(T,x(T))dT—{—/U(to,T)f(T,x(T))dT:

t

t

:U(t(),t)/U(t,T)P(T)f(T,JJ(T))dT—

—00

—U(tg,t)/U(t,T)(I _ P() (2 (7))dr —i—/U(to,T)f(T,:U(T))dT _

t

= / Ulto, 7)P(7)f(1,2(7))dT—

—0o0
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—/U(to,t)U(t,T)(I—P(T))f(T,x(T))dT—|—/U(t0,7')f(7,m(7'))d7':

o~

- / Ulto, 7)P(r)f (7. 2(r))dr = / G(to, 7)(r,2(r)) = y(to),

here we use the fact U(to, t)U(t, 7)/(I — P(7)) = U(to, 7)({ — P(7)) that for all t < 7 < to.
Thus, we have

y(to) = U(to, )y(t) + / Uto, 7) f (r,x(r))dr.

On the other hand,
to
x(to) = Ulto, t)x(t) + / Ulto, 7)f(7,z(7))dr.
t
Then z(to) — y(to) = U(to,t)[x(t) — y(t)]. We need to prove that xz(t9) — y(to) € (I — P(to))X.
Applying the operator P(t) to the expression z(to) — y(to) = U(to,t)[x(t) — y(t)], we have

1P (t0)[(to) — y(to)]l| = U (to, ) P(1)[2(t) — y(@)]|| < Ne PO~V P(t)]|-|l(t) — y(1)]

Since supycp || P(t)]| < oo and [[z(t) — y()|| < [|2()]lec + ly(-)[lcc < 00, letting t — —oc0 we
obtain that

[P (to)[z(to) — y(to)]ll = 0.

It means that, v := z(t9) — y(to) € (I — P(to))X = X2(to) finishing the proof.

Remark 4.1. By computing directly, we can see that the converse of Lemma 4.1 is also true. It
means, all solutions of equation (4.4) satisfied the equation (4.1) for ¢ < #p.

Lemma 4.2. Let the evolution family (U(t,s))i>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 3 > 0. Suppose that ¢ is
the positive function which belongs to E. Put

(1+ H)N

k=
1—e b

[N1HA190HOO +N2”A1T1+90Hoo]- (4-7)

Let f: R x B, = X be local p-Lipschitz of the class (M, p, p) such that k < min < 1, ﬁ . Then

there corresponds to each v € B, o N Xa2(to) one and only one solution x(t) of the equation (4.1)
on (—o0, to] satisfying the conditions that (I — P(to))x(to) = v and esssup,, ||z(t)|| < p.
Proof. We consider in the space L ((—00, ], X) the ball

B, = {x(-) € Loo((—00,to], X): () [oo = esssuplla(t)]| < p} |

t<to

For v € B,,jon N Xa(to) we will prove the transformation 7" defined by
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to
(Tz)(t) = U(t, to)jv + / G(t,7)f(r,z(7))dr forall ¢ < o,
—0o0

acts from B, into B, and is a contraction. In fact, for z(-) € B, we have that || f(¢,z(t))|| < Mp(1).
Therefore, putting

to
y(t) = U(t, to)jv + / G(t,7)f(r,z(7))dr forall t< t,

to
we obtain that ||y(t)]| < Ne Pt |v| + (1 + H)NM/ e P=7lo(r)dr. 1t follows from the
admissibility of Lo that, y(-) € Loo and B

(1+ H)YNM

ly)lloe < Nlell + 5205

(MM T @lloo + Na|[ A1)
P

d
o7y an

Using now the fact that ||v|| <

p

N
(1+ H)N
7/3(NIHAIT1+<PH00 + No[[Ar¢lloo) < M

1—e™

we have that ||y(-)||sc < p. Therefore, the transformation 7" acts from B, to B,.
It follows from the estimates of G and U (¢, s) that

IT(2) = T(y)lloo

N

< L IONEO) =y Olee (3,10 o + Nall AT o] = Rl — 9l

Since £ < 1, we obtain that 7" is a contraction. By the Banach contraction mapping theorem, the
lemma follows.

From Lemmas 4.1, 4.2 and using the same arguments as in [15] (Theorem 3.8) we obtain the
existence of an unstable manifold in the following theorem.

Theorem 4.1. Let the evolution family (U(t,s)):>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 3 > 0. Then, for any p > 0

and M > 0, we have that, if f is local p-Lipschitz of the class (M, p, p) with the positive function

1
@ € ERr such that k < min {2§\)4, Nri[ here k is defined as in 4.7, there exists a local unstable

manifold for the solutions of equation (4.1). Moreover, for any two solution x1(-) and x5(-) belonging
to this manifold we have
|1(t) — z2(t)|| < Ce=0)||(I — P(to))x1(to) — (I — P(to))xa(to)|| forall t<to, (4.8)

where C, p be the positive constants independent of to, x1(-) and z2(-).
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Proof. The proof of this theorem can be done by the same way as in [15] (Theorem 3.8) replacing
R, by R and using the structures of bounded solutions as in Lemmas 4.1, 4.2. We just note that the
family of Lipschitz mappings (h¢):cr determining the local-unstable manifold is define by

h: Bp/2N N Xg(t) — Bp/g N Xl()y

t

hely) = / G(t, 5)f (s, 2(s))ds

for y € B,jan N Xa(t), where x(-) is the unique solution in Lo ((—00, ], X) of equation (4.1) on
(—o0, t] satisfying (I — P(t))z(t) = y (note that the existence and uniqueness of x(-) is obtained in

Lemma 4.2). Furthermore, the Lipschitz constant of h; is 17 < 1 which is the same as that of g;

determining the local-stable manifold (see [15], Theorem 3.8).

Theorem 4.1 is proved.

From the existence of the local-stable and local-unstable manifolds of equation (4.1) defined on
the whole line we have the following important corollary which describes the geometric picture of
solutions to equation (4.1).

Corollary 4.1. Let the evolution family (U(t,s))i>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 3 > 0. Then, for any p > 0
and M > 0, we have that, if f is local -Lipschitz of the class (M, p, p) with the positive function

1 P

p € ERr such that k < min {23)4, N1 2]\/[N}’ here k is defined as in (4.7), then there exist a

local-stable manifold S and a local-unstable manifold U for the solutions of equation (4.1) having
the following properties:

(a) for each ty the intersection Sy, N Uy, contains the unique element zy,,

(b) the solution uy(t) of equation (4.1) with initial condition uo(to) = 2, is bounded on the
whole line R,

(c) the solutions u(t) of equation (4.1) satisfying u(ty) € Sy, exponentially approach u(t) as
t — 00,

(d) the solutions u(t) of equation (4.1) satisfying ug(t) € Uy, exponentially approach uy(t) as
t — —o0.

Proof. (a) The condition that x € S;; N Uy, is equivalent to the fact that there are w € B,, N
N X1(to) and y € By, N Xa(to) such that x = w + gsyw = hyyy +y where gy, and hy, are members
of the families of Lipschitz continuous mappings (g¢):cr determining S and (h);cr determining U,
respectively. Then w — hy,y = y — gr,w € X1(to) N Xa(to) = {0}. This follows that w = hy,y and
y = g, w. Therefore, w = hyy (g, w) = (hy, © g, )w. We now estimate g, w for w € B,, N X1 (o)
by using the formula (see [15], equation (18))

Gto(w) = /G(to,s)f(s,a:(s))ds, 4.9)

where w € B, /oM X1 (to) and z(-) is the unique solution in B, of equation (4.1) on [to, 00) satisfying
P(to)x(ty) = w (note that the existence and uniqueness of x(-) is obtained in [15] (Theorem 3.7)).
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By (4.9) we have that
H%WW</W%ﬁmﬂwﬁwﬁ<ﬂ+mNM/WWW@W<
0 0

_ (L+ H)NM

< S (VUM llos + Nal[Argloc) = BM < B (since k< ).

2N 2MN

Therefore, we obtain that gy, : B,/on N X1(to) — B,jan N Xa(to). Similarly, we have hy,: B, jon N
N Xa(to) = B,jan N Xi(to). This follows that

hto O Gt - BP/QN N Xl(t()) — Bp/?N N Xl(tO)

Since the mappings g;, and hy, are both Lipschitz continuous with the same Lipschitz constant

kN
1% < 1 (see the proof of [15] (Theorem 3.8)), we obtain that i, o g, is a contraction. Thus, there

exists a unique wy such that wo = (hy, © g¢,)wo. Putting 2z, = wo + g1, wo We obtain that z, is the
unique element of the intersection Sy, N Uy,.

The property (b) follows from the definitions of the local-stable and local-unstable manifolds,
respectively.

The properties (¢) and (d) are consequences of the inequalities in [15] (Theorem 3.7, ineq. (13))
and (4.8), respectively.

4.2. Invariant unstable manifolds on R. In this subsection we consider the existence of the
invariant unstable manifold under the conditions that the evolution family has an exponential di-
chotomy, and the nonlinear term f is (-Lipschitz continuous.

We now give the definition of an invariant unstable manifold for the solutions of the integral
equation (4.1).

Definition 4.2. A4 set S C R X X is said to be an invariant unstable manifold for the solutions
of equation (4.1) if for every t € R the phase spaces X splits into a direct sum X = X1(t) @ Xa(t)
such that

inf Sn(X1(t),X2(t)) := inf inf {||z1 + 22: z; € X;(t), |lz]l =1, i=1,2} >0,
teR4 teR L

and if there exists a family of Lipschitz continuous mappings
gt XQ(t) —)Xl(t), t e R,

with the Lipschitz constants independent of t such that

OS={(t,z+g(z)) e Rx (Xa(t) B X1(t)) | x € Xo(t)}, and we denote by S; := {x + g+(x) |
(t,z + gi()) € S},

(ii) S¢ is homeomorphic to Xs(t) for all t € R,

(iii) to each xo € Sy, there corresponds one and only one solution x(t) of equation (4.1) satisfying
the conditions x(lg) = wg and esssup,<,, ||z(t)|| < oo,

(iv) S is invariant under the equation (4.1) in the sense that, if x(-) is a solution of equation (4.1)
satisfying x(to) € Sy, and esssup,, ||2(t)]| < oo, then x(t) € Sy for all t < to.
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As in the previous subsection, we can construct the form of the solutions of equation (4.1) which
are bounded on the half-line (—o0, tp] in the following lemma whose proof can be done by the same
way as in Lemma 4.1.

Lemma 4.3. Let the evolution family (U(t,s))i>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 3 > 0. Suppose that ¢ is
the positive function which belongs to Ex. Let f: R x X — X be @-Lipschitz. Let x(t) be a solution
of (4.1) such that esssup,,, ||z(t)|| < oo for some fixed to. Then, for t < to, we have that x(t) can
be rewritten in the form

to
x(t):U(t,to)U—l—/G(t,T)f(T,.r(T))dT Jorall t<to, (4.10)

and some v € Xa(ty) = (I — P(to))X, where G(t,T) is the Green's function defined above.

Remark 4.2. By computing directly, we can see that the converse of Lemma 4.3 is also true. It
means, all solutions of equation (4.10) satisfied the equation (4.1) for ¢ < %g.

Similarly to Lemma 4.2 we have the following lemma which describes the existence and unique-
ness of certain bounded solutions.

Lemma 4.4. Let the evolution family (U(t,s))t>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 5 > 0. Suppose that ¢
is the positive function which belongs to E. Let f: R x X — X be p-Lipschitz satisfying k <
< 1, where k is defined as in (4.7). Then there corresponds to each v € Xa(ty) one and only one
solution xz(t) of the equation (4.1) on (—oo,tg] satisfying the condition (I — P(to))z(to) = v and
ess sup;, ||2(t)|| < oo.

Proof. For each ty) € R,v € Xa(ty) we consider the operator

T: Loo((_oo’tﬂ]’X) - LOO((—OO,to],X),

to
x> (Tx)(t) = Ul(t, to)v + / G(t,7)f(r,z(7))dr forall t < to.

It follows from the estimates of G and U (¢, s) that
1T () = T(y)lloo <

< (1+ H)]Y{:Ui‘)ﬁ_ Y()llos [N1[[A1¢llse + Na|| AT 0lloc] = Ellz(-) — y(+)loo-

Since k£ < 1, we obtain that 7" is a contraction. By the Banach contraction mapping theorem, the
lemma follows.

From Lemmas 4.3, 4.4 and using the same arguments as in [15] (Theorem 4.7) we obtain the
existence of an invariant unstable manifold in the following theorem.

Theorem 4.2. Let the evolution family (U(t,s)):>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, B > 0. Suppose that
f: R X X — X be p-Lipschitz, where p is the positive function which belongs to Er such that
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k < 1, here k defined as in (4.7). Then there exists an invariant unstable manifold for the solutions
of equation (4.1). Moreover, for any two solution x1(-) and x2(-) belonging to this unstable manifold
we have

21 (t) — z2(t)[| < Ce 0| (I — P(to))w1(to) — (I — Plto))aa(to)ll forall t< to,

where C, 1 be the positive constants independent of ty, x1(-) and xa(+).

Proof. The proof of this theorem can be done by the same way as in [15] (Theorem 4.7) replacing
R, by R and using the structures of bounded solutions as in Lemmas 4.3, 4.4. We just note that the
family of Lipschitz mappings (g;)ier determining the unstable manifold is define by

gt Xg(t) — Xl(t),

t

aly) = / G(t, 5)f (s, 2(5))ds

for y € Xs(t), where z(+) is the unique solution in L., ((—o0, t], X) of equation (4.1) on (—o0, t] sat-
isfying (I — P(t))x(t) = y (note that the existence and uniqueness of z(-) is obtained in Lemma 4.4).

Theorem 4.2 is proved.

Using now the similar arguments as in Corollary 4.1, we easily obtain the following corollary
which describes the relations of solutions of equation (4.1) with initial values lying on the invariant
stable or unstable manifolds and the solution lying on the intersection of the two manifolds.

Corollary 4.2. Let the evolution family (U(t,s))i>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, 3 > 0. Suppose that f is
p-Lipschitz with the positive function ¢ € Eg such that k < N:—l’ here k defined as in (4.7). Then
there exist an invariant stable manifold S and an invariant unstable manifold U for the solutions of
equation (4.1) having the following properties:

(a) for each tq the intersection Sy, N Uy, contains the unique element zy,,

(b) the solution uo(t) of equation (4.1) with initial condition uo(to) = z, is bounded on the
whole line R,

(c) the solutions u(t) of equation (4.1) satisfying u(ty) € Sy, exponentially approach uo(t) as
t — oo,

(d) the solutions u(t) of equation (4.1) satisfying u(tg) € Uy, exponentially approach u(t) as
t — —o0.

4.3. Invariant center-unstable manifolds on R. Using Theorem 4.2 and rescaling procedures
similar to Theorem 3.1 to transform the trichotomy case to the dichotomy case, we can easily obtain
the exsitence of an invariant center-unstable manifolds in the following theorem.

Theorem 4.3. Let the evolution family (U(t,s))i>s have an exponential trichotomy with the
corresponding constants K, «, B (a < [3), and projections (Pj(t))icr, j = 1,2,3, given in Def-
inition 1.2. Suppose that f: Ry X X — X be -Lipschitz, where @ is the positive function which

1 —exh
Nii1 _ee—,B }, here k is defined by (4.7). Then there exists

belongs to Er such that k < min {

ISSN 1027-3190. Yxp. mam. xcypu., 2012, m. 64, Ne 6



790 NGUYEN THIEU HUY, VU THI NGOC HA, HA PHI

a center-unstable manifold C* = {(¢t,C}') | t € Ry and C{ C X} for the solutions of equa-
tion (3.1), with the family (C}')icr being the graphs of the family of Lipschitz continuous mappings
(h)ier (ie, Cp := graph(hy) = {z + hyx | z € Im(P(t) + P3(t))} for each t € R) where

N
he: Im(Ps(t) + Ps(t)) — Im Py (t) has the Lipschitz constant 1

k
" independent of t, such that the
following properties hold:

(i) to each xq € C}. there corresponds one and only one solution u(t) of equation (3.1) on

(—o00, to] satisfying u(to) = wo and ess SUD;«¢, \|€7tu(t)|| < 00, where 7y := @ ;— 6,

(if) C}! is homeomorphism to Xa(t) @ X3(t) for all t € R, where Xa(t) = Im Pa(t) and X3(t) =
= Im P5(¢),

(iii) C"Y is invariant under the equation (3.1) in the sense that, if u(t) is the solution of equa-
tion (3.1) satisfying u(ty) = xo € C and esssup,, |7 u(t)|| < oo, then u(s) € C¥ for all
s < to,

(iv) every two solutions uq(t), ua(t) on the center-unstable manifold C% satisfy the condition
that there exist positive constants |, and C,, independent of to > 0 such that

|2(t) — y(t)]] < Cpue )| (Py(to) + Ps(to))z(to) — (Pilto) + Pa(to))y(to)||  (4.11)

forall t < tg.

Note that the existence of an invariant center-stable manifold on R is defined and proved by the
same ways as in the case of half-line R (see Theorem 3.1).

From the existence of the invariant center-stable and center-unstable manifolds of equation (4.1)
defined on the whole line we have the following important corollary describing the behavior of
solutions to equation (4.1).

Corollary 4.3. Let the evolution family (U(t,s))i>s have an exponential dichotomy with the
corresponding projections P(t), t € R, and the dichotomy constants N, «, 8 > 0. Suppose that f is
p-Lipschitz with the positive function p € Eg such that

k< i 1 1—e*bf  V2-1
min s y s
N+l 1-e P 'N+yv2-1

here k defined as in (4.7). Then there exist an invariant center-stable manifold C and an invariant
center-unstable manifold C"™ for the solutions of equation (4.1) having the following properties:

(a) for each tg € R the intersection Cy, N C} is homeomorphism to X3(to) = P3(to)X,

(b) the solution u(t) of equation (4.1) with initial condition ug(to) € Cy, N C} satisfies that

esssupeg [l Hu(t)|| < oo, where y := a ;— B,

(c) for the solution u(t) of equation (4.1) satisfying u(ty) € Cy, we have that e~ "u(t) exponen-
tially approaches e~ "ug(t) as t — oo,

(d) for the solution u(t) of equation (4.1) satisfying u(to) € C} we have that e"'u(t) exponen-
tially approaches e'tug(t) as t — —oo.

Proof. (a) Let us first prove that for each z € X3(t) there exists a unique w € Xi(t) @ X3(t)
such that w = h(z + gi(w)) + 2z, where ¢g; and h; are the members of the Lipschitz mapping
families (g;):cr and (h;)icr determining the invariant center-stable and center-unstable manifolds,
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respectively. Indeed, the mapping
L: Xy (t) @X3<t> — X (t) @Xg(t),

y—=h(z+g(y)) + 2

satisfies that

Nk
Ly — Lya|| = [|he(z + gt (v1)) — bz + g (2)| < ——lge(v1) — ge(yo)|| <

l - k
= 1_ k yl y2 .

Since < 1 we obtain that L is a contraction. Let w be its unique fixed point. Then w is the

unique element in X7 (¢) @ X3(t) such that w = hy(z + g1 (w)) + 2.

Define now the mapping D: X3(t) — C; N C}! by D(z) = w + g;(w), where w is the unique
element in X; (¢) @ X3(t) such that w = hy(z + g¢(w)) + 2. Then we have w + g,(w) = z + g;(w) +
+ hi(z 4+ g1(w)) € C, N CP. The uniqueness of w yields that D is a well-defined mapping.

We next prove the sujectiveness of D. For x € C, N C}* we have that there is u € X (t) @ X3(¢)
and v € X5(t) @ X3(t) such that z = u + g¢(u) = v + he(v). Then we have u — h(v) = v —
— ge(u) € (X1(t) ® X3(t)) N (Xa(t) ® X3(t)) = X3(t). Therefore, there is a z € X3(t) such that
u — hy(v) = v — g4(u) = z. This follows that u — h¢(z + g;(u)) = z. As shown above, this relation
means that Dz = u + g;(u) = x. Therefore, D is surjevtive.

We now prove that D is a Lipschitz mapping. In fact, by the definition of D we have D(z;) =
= w1 + g¢(w1) and D(z2) = wa + g¢(w2) for wy and wy being the unique solutions in X7 (t) G X3(¢)
of equations wy = h¢(21 + g¢(w1)) + 21 and wy = h¢(22 + gi(w2)) + 22, respectively. Then putting

l= % (the Lipschitz constant of g; and h;), we have
(1= Dlwr — wall < [ID(21) — D(22)[| =
= llz1 + helz1 + ge(w1)) + ge(wn) — (22 + he(22 + gr(w2)) + ge(w2)) | <
<z = zall + Ulz1 = 22l + Ul ge(wi) — ge(w2) | + llge(w2) — ge(wa)|| <

< @A+ D)z1 = 2]l + 10 + Dz — o

I(1+1)

Therefore, we obtain that |[D(z1) — D(22)|| < (1 +1)||21 — 22| + 17

|ID(21) — D(22)||. Thus,

1— 12
[D(21) — D(22)| < )QHZI — 2,

2— (141
V21
N++v2-1

m. This follows that D is continuous and injective. As

here we note that 2 — (1 4+ 1) > 0 since k < . Hence, we obtain that D is a Lipschitz

. . . —1?
mapping with Lischitz constant
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shown above D is already surjective, therefore, D is bijetive. The inverse D! of D is defined as
D! C,NCP — X3(t) with D™ Hw + gi(w)) = z if 2 = w — hy(z + g¢(w)) (note that, by the
contraction-mapping arguments we can easily show that for each w € Xj(t) @ X3(t) there exists a
unique 2 € X3(t) such that = = w — hy(z + gi(w))). We then prove that D! is also a Lipschitz
mapping. Indeed, for 1 = u + g¢(u) and zo2 = v + ¢¢(v) belonging to C; N C}* we have that

ID™ 21 = D™ s = 21 — 2ol <
< JJwy — hy(z1 + ge(wr)) — (w2 — hi(z2 + 9t(w2)))|| <
< Jlwr = wal + 121 = 2ol + [ — w2 =
= (1+1®)|wy —ws)|| + 1D 2y — D lag|| <

1412

<7 wi + ge(wr) — wa — ge(wa)|| + 1D oy — D as|| =

142

=] |lx1 — z2| + lHD_lxl — D_leH.

Therefore, we obtain that

- - 1+
D721 = D7 < =755

’1‘1 —CL‘QH.

Hence, D! is also Lipschitz mapping. This follows that D is a homeomorphism, and we obtain that
C; N C}! is homeomorphism to X3(¢) for all ¢t € R.

The property (b) follows from the definitions of the invariant center-stable and center-ustable
manifolds, respectively.

The properties (c) and (d) are consequences of the inequalities (3.4) and (4.11), respectively.

Corollary 4.3 is proved.

5. Examples. In this section, we give some concrete examples of reaction-diffusion equations to
illustrate our abstract results.

The reaction-diffusion processes are modeled by the following equation:

dx(t)
dt

— A(t)a(t) + f(t,).

where x(t) is the density of material, the partial differential operators A(t) represent the diffusion,
and f represents the source of material which, in many contexts, depends on time in diversified
manners (see [23] (Chapter 11), [24, 37]). Therefore, sometimes one may not hope to have the
uniformly Lipschitz continuity of f. Our theoretical results hence give a chance to consider the
above reaction-diffusion equation in general cases. Let us start by the following equation.

Example 5.1. Consider the reaction-diffusion equation of the form

dz(t)
dt

= Ax(t) + f(t, ),
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where A is a sectorial operator satisfying that the spectrum o(A) of A is decomposed in three disjoint
sets that are {\A € o(A) | ReX < 0}, {A € 0(A) | ReA > 0}, and {\ € 0(A) | ReA = 0} such
that o0(A) NiR is of finitely many points. Then, A is a generator of an analytic semigroup (7(¢))¢>0-
We define the evolution family U(¢,s) := T'(t — s) for all t > s > 0. We now claim that it has an
exponential trichotomy with an appropriate choice of projections. By the spectral mapping theorem
for analytic semigroups we have that, for fixed ¢, the spectrum of the operator T'(¢o) splits into three
disjoint sets o1, 02, 03, where o1 C {|2| < 1},02 C {|z] > 1},03 C {|2| = 1} with o3 consisting
of finitely many points.

Next, we choose Py = Pi(ty), P» = Px(tg), P3 = Ps(tp) be the Riesz projections corresponding
to the spectral sets o1, 02, 03, respectively. Clearly, P;, P» and Ps commute with 7'(¢) for all £ > 0.

Obviously, Py + P, + P3 = I and P;P; = 0 for @ # j, and there are positive constants M, ¢
such that ||T(t)P;| < Me=% for all t > 0. Furthermore, let Q := P, + P3 = I — P; and consider
the strongly continuous semigoup (7(t)):>0 on the space Im @, where T(t) := T'(t)Q. Since
oo Uoz = o(Tg(to)), (To(t))i=o0 can be extended to a group (T (%))tcr in Im Q). As well-known
in the semigroup theory, there are positive constants K, «, v such that o can be chosen as small as
required (we may let o < ), and the following estimates hold:

|To(—t)Pa|| < Ke™ ' forall t>0,

|To(t)Ps| < Kell forall ¢eR.

Summing up the above discussions, we conclude that the evolution family (U(¢, s)):>5 has an expo-
nential trichotomy with projections P;, j = 1,2, 3, and positive constants IV, «r, 3, where

B = min{4, v},
N := max{K, M }.

t+1
Thus, if f is ¢-Lipschitz for some positive function ¢ satisfying that sup;cr / p(7)dr is small
t

enough, then the integral equation

x(t) =U(t,s)z(s) +/U(t,§)f(§,x(§))d§ forall t> s,

has a center manifold.
Example 5.2. For fixed n € N*, consider the equation

wi(2,1) = wee (2, 1) + nPw(z, t) + o) sin(w(z,t)), 0<x<w, teR,

(5.1)
w(0,t) = w(mt) =0, teR,

where the step function ((t) is defined as in formula (5.2).
We define X := L5[0, 7], and let A : X — X be defined by A(y) = y" + n?y, with

D(A)={yeX: y and y" are absolutely continuous, y" € X, y(0) =y(m) =0}.
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The equation (5.1) can now be rewritten as

W Aut f(t) for u(t) = w(-.1),

where f: R x X — X, with f(¢,u) = ¢(t) sin(u) for ¢ being defined for a constant ¢ > 1 by

2k +1 1 2k +1 n 1
9 9lkl+c’ 2 9lk|+c

k| ifte{ } for k=0,+1,42,...,

p(t) = (5.2)

0 otherwise.

Here, we note that ( can take any arbitrarily large value but we still have that

2k+1 1

t+1 2 tolkFe
/\ (7)|dr < 2 / ot = 25up L o !
su )| dr su = 2su )
te]g 4 = keg keg olkl+e—2 = 2c-1
¢ %1 1
2 7 9lkl+c

Therefore, ¢ € M(R) which is an admissible space.

It can be seen that (see [9]) that A is the generator of an analytic semigroup (7'(¢))¢>0.
Since 0(A) = {—1+n2, —4+n?,...,0,—(14+n)2+n?, ...}, applying the spectral mapping theorem
for analytic semigroups we get

o(T (1) = e =

_ {et(nzfl) et(n274)’ o 761‘/((1171)27112)} U {1} U {eft((1+n)27n2) eft((2+n)27n2)’ - }

) Y

One can see easily that the nonlinear forcing term f is @-Lipschitz. Using Example 5.1 we obtain
t+1 1
that, if sup,cg / ©(7)dT, which is less than 2T is sufficient small (or c is sufficiently large),
t
then there exists a center manifold for mild solutions of equation (5.1).

Example 5.3. For fixed n € N*| consider the equation
wi(2,t) = a(t)[wee (2, 1) + n2w(z,t)] + o(t) sin(w(z,t)), 0<z<T, teR,
(5.3)
w(0,t) =w(m,t) =0, teR,
where ¢ is defined as in (5.2); the function a(-) € L joc(R) and satisfies the condition v; > a(t) >

> o > 0 for fixed 79, 71 and a.e. t € R.
We put X := Ly[0, 7], and let A: X — X be defined by A(y) = 3" + n?y, with

D(A)={y€X: y and y” are absolutely continuous, y"” € X, y(0) =y(m) =0}.

Putting A(t) := a(t) A, the equation (5.3) can now be rewritten as

d
== AWMu+ fltw) for u(t) =w(-b),
where f: R x X — X, with f(t,u) = ¢(t)sin(u).
Thus, as the above examples, A is a sectorial operator and generates an analytic semigroup
(T'(t))¢>0, and o(A) satisfies the conditions as in Examples 5.1 and 5.2. Therefore, A(t) “generates”

the evolution family (U(¢, s)):>s which is defined by the formula
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t

Ult,s) =T / o(r)dr

s

Using the above arguments as in Examples 5.1 and 5.2 we have that the analytic semigroup (7'(¢)):>0
has an exponential trichotomy with the projections Py, k = 1,2, 3, and the trichotomy constants NV,
«, B where « is as small as required. Also, the following estimates hold:

(1) ||T(t)|P1X|| < Ne_ﬁtv

(i) [T2(—)] = (T @) px) ]| < Ne™?,

(iii) || T(t)| psx]] < Ne for all t > 0.

From this, it is straightforward to check that the evolution family (U (¢, s)):>5 has an exponential
trichotomy with the trichotomy projection Py, k = 1,2, 3, and the trichotomy constants N, 3, a by
the following estimates:

t

Ut s)lewl = |7 | [atmar ||| < vees),
§ P X
t
10 (s, 1)/ = 12, 8) o) = | T | - / a(r)dr < Ne-Alt—s)
$ Pyx
t
|U(t,s)|px|| = ||T /a(T)dT) < Neot=5)
s Psx
t+1 1
for all t > s > 0. Therefore, we obtain that, if sup;cg o()dr = — is sufficient small, then

9c¢—1
t
there exists a center manifold for mild solutions of equation (5.3).
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