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ON A p-LAPLACIAN SYSTEM WITH CRITICAL HARDY -SOBOLEV
EXPONENTS AND CRITICAL SOBOLEV EXPONENTS

ITPO p-JAIIJIACOBY CUCTEMY 3 KPUTHYHUMU ITIOKASHUKAMMA
XAPII-COBOJIEBA TA KPUTHNYHUMHU ITOKASHUKAMU COBOJIEBA

We consider a quasilinear elliptic system involving the critical Hardy — Sobolev exponent and Sobolev exponent. Using
variational methods and analytic techniques, we establish the existence of positive solutions of the system.

Po3misiHyTO KBa3iniHIMHY €TINTHYHY CUCTEMY 3 KPUTHYHUMU nokazHukamu Xapui— Coboinea Ta Cobdonena. 13 3actocyBan-
HSM BapiamiiHUX METOJIB Ta aHANITHYHOTO IiJX0My BCTAHOBIICHO iCHYBaHHS JIOJJATHHX PO3B’S3KIB CHCTEMHU.

1. Introduction. The aim of this paper is to establish the existence of nontrivial nonnegative solution
to the semilinear elliptic system

]ul\p’2u1 1 ]ul\p*(t)’Qul ”U,1IP72U1
—Apug — MW = ]¥Fu1 (ug,...,ux) + 0 + A P x €,
.............................................................................. (1)
|ugP2up, [P D20y, g [P
_Apuk —H |$‘p iFuk (u17 ,U,k) + | |t ‘ |5 ) HARS Q)

u;=0, 1<i<k, on 01,

where Apu; = div(|Vu|P~2Vay;), 0 € Q is a bounded domain in RV, N > 3, with smooth

N —p\* N—t
boundaryé?Q,1<p<N,0<u<Mé< p) ,)\>0,0§t<p,p*(t)é]%
-Pp
N
is the Hardy—Sobolev critical exponent, p* = p*(0) = ]\? is the Sobolev critical exponent
-p

and VF(u1,...,up) = (Fuy (U1, ... ug), ..., Fu, (u1,...,ug)), where F: (RT)¥ — Rt are C!
function with positively homogeneous of degree p*.

1/p
We denote by D?(Q) the completion of C5°(£2) with respect to the norm ( / |V - P dx) .
Q

Problem () is related to the well known Caffarelli — Kohn — Nirenberg inequality in [5],
p/r
.
/ ) < Crip / \VulPdz forall we DYP(Q), @)
Q

where p < r < p*(t). If t = r = p, the above inequality becomes the well known Hardy inequality
[5, 10, 13]
juf?

1
—de < = [ |VulPdz  forall  we DYP(Q). 3)
|z|P ")

In the space D'?(2) we employ the following norm:
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1/p

u PR
full = el = | [ (190 = n25)de | . we o
Q

1/p
By using the Hardy inequality (3) this norm is equivalent to the usual norm ( / |VulP dm) .
Q

|- P2

[P

Now, we define the space Wy, = DP(Q) x ... x DP(Q) with the norm

k
[, [ =D sl
i=1

Also, by Hardy inequality and Hardy - Sobolev inequality, for 0 < p < @, 0 < t < p and

The operator L := (!V PV —p is positive in DYP(Q) if 0 < u < 7.

p < r < p*(t) we can define the best Hardy — Sobolev constant:

Au,t,r(Q) = (4)

inf
ueDLP(Q)\{0} < Jul” )p/r
X

In the important case when r = p*(t), we simply denote A, ; () as A, ;. Note that A, ¢ is the
best constant in the Sobolev inequality, namely,

/ <|Vu\p—u| ul” >dm
inf Q |z [P
ue D12 (Q)\{0} . p/p*
(/ |ulP da:)
Q

For any 0 < pu < 1, by (2), (3), 0 < ¢t < p and the Minkowski’s inequality, the following best

constants are well defined:
E / <|Vuz|p uil? >
i=1 ‘ |p

AMO(Q) =

Sr,u = 85r,(Q) = inf - 5
rn = S = R (0,0 P/p ©

/ F(uy,...,ug)dx

Q
Another important parameter is A, 5 ,(£2), the (general) first eigenvalue of the operator L :

f ()
M =A,:,(Q) = 6
1= Auap(©) ueDLP()\ {0} / [ul? ©

cdx
a |7l

Furthermore, \; is positive and simple, the corresponding eigenfunction ¢; does not change sign, the
operator L admits a sequence of eigenvalues diverging to oo [18, 19]. Without loss of generality,
we can assume that ¢; > 0. Setting
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p—1
p2lucpr@); [P Yy (7)

and

/ <|Vup — u|up> dx
M= M (Q) = inf 22 =1

o ueE\{0} |ul?

: ®)

then we have \; < A* (see [15], Lemma 2.1).

Existence of nontrivial nonnegative solutions for elliptic equations with singular potentials were
recently studied by several authors, but, essentially, only with a solely critical exponent. We refer,
e. g., in bounded domains and for p = 2 to [6, 11, 12, 16], and for general p > 1 to [7, 8, 13-15]
and the references therein. For example, Kang in [15] studied the following elliptic equation via the
generalized Mountain — Pass theorem [17]:

T TN (1
—Ayu — = , T €,
P [alf j2l*
u=0, x¢€odf,
P
where Q C RY is a bounded domain, 1 < p < N, 0<s,t<pand0< pu<pn2 . Also,

the authors in [9] via the Mountain — Pass theorem of Ambrosetti and Rabinowitz [2], proved that

-1 *(s)—1

uP _ ]u\p*fl n uP

—Apu — ILLW in RN

. o L N —p\?
admits a positive solution in RY whenever y < 77 £ < p) .
p
In this work, motivated by the above works we are interested to study the problem (1) by using

the Mountain — Pass theorem of Ambrosetti and Rabinowitz [2]. We shall show that the system () has
a positive weak solution.

This paper is divided into three sections, organized as follows. In Section 2, we establish some
elementary results. In Section 3, we prove our main results (Theorems 2 and 3).

2. Local (PS). condition. The corresponding energy functional of problem () is defined by

k * k

1 1 1 | [P () A |u; [P
Jw) = Z||ullP —/Fuda:— E : diL’—E/ " dx,
) p” I rJ @ p*(t) |zt Pz |[*

i=1g

for each u = (uy,...,ux) € W. Then J € C1 (W}, R).

Before proving the main results, we stat several lemmas.

The following lemma is well know, where we have employed the equivalent norm in W1P(€),
see [13] for the case when p = 0.

Lemma 1. Assume that 0 < s <p,p < q<p*(s)and 0 < p < . Then:

(1) there exists a constant C > 0 such that
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1/q

q
[ul dx < C|u|| forall ue DYP(Q),

Ed

Q

(ii) the map u — ﬁﬁfom DYP(Q) into LY(R) is compact if p < q < p*(s).

Also, we need the following version of Brézis —Lieb lemma [4].

Lemma 2. Consider ' € C'((RY)* RY) with F(0,...,0) = 0 and |Fy,(u1,...,u)| <
< Cl(Z::l \uj|p_1> fori=1,... k and some 1 < p < oo, C; > 0. Let u, = (uf,...,uy) be
bounded sequence in LP(QY, (R)¥), and such that w, — u = (uy, ..., uy,) weakly in Wy,. Then one
has

Q/F(un)d:c%Q/F(unu)derQ/F(u)dx as n— oo.

Lemma 3. Assume that 0 < s < p and 0 < pu < fi. Then the functional J satisfies the (PS).
condition for all

* . . p— 3 N— —
O<c<c = mln{NSFpJJ"p(]V—t)(AM’t)( 0/ t)} (9)
Proof. Suppose {u, = (uf,...,up)} C Wy, satisfies J(u,) — ¢ and J'(u,) — 0 with ¢ < ¢*.
It is easy to show that {u, } is bounded in W}, and there exists u = (uq,...,u)) such that u,, — u

up to a subsequence. Moreover, for 1 < ¢ < k, we may assume

u = u; weaklyin  DYP(Q),
ul = u; weaklyin  LP" O (Q, |z['), 0<t<p,
ul' = u; strongly in - LI(Q), 1<gq<p’,

ul —u; ae.on £

Hence, we have J'(u) = 0 by the weak continuity of J. Let u = u’ — u; for 1 <14 < k. Then we

have
/Wﬂp =o(l) for 1<i<k (10)
Q
and by Brezis—Lieb lemma [4], we obtain
[nlly = llunll = llully, as n — oo, (1)
N i ®
Z/ o= Z w0 Z %+ oL (12)
i=1 Q =1 Q i=1 Q
and by Lemma 2,
/F(ﬂn)dac - /F(un)dzz — /F(u)dm as n — oo. (13)
Q Q Q
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Since, J(u,) = c+ o(1), J'(u,) = o(1) and (10)—(13), we can deduce that

k U
1, - 1 - 1 | |P (®)
unp—/Fun / L dex =c— J(u) + o(1),
il = o [ Fme = ST [ (1) + o(1)
Q Q
and
_ _ a;zp*(t)
Huan—/F(un)daz—Z/| ,LV dz = o(1)
Q i=lq

Now, we define

. an @)
8= 71113;02/%613;, (14)
= Q

TN i e
,}5202 / (19 i) e =t i

Let £ € C§°(2) be such that {|o = 1. Since {u,, € W, and since limy, o0 (J' (4, {upn) = 0, using
(10)—(13) and the definitions of «, 5 and ~ in (14), we get that v < a + 5.
By (14), we obtain
p/p”*
PP = lim /F(ﬂn)dm <L i = = (15)

n—o0 SF“LL n—00 SF#W’
Q

and by definition of A, ;,

p*(t)/p] P/P"(®)

1 ®)/p k
< lim < > / varp — lu P ) -
n—00 A,ut 1 | |p

= Q

1 k p/p*(t)
= — lim P =
. L;” ‘)

1

1
= Aimnlim [t = =4, (16)
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From v < a + 3, (15) and (16), we can obtain
1 1 1

a??" < < g—at B,
S S 5T P
(17)
. P —p
aP/P <1—1a p* > < Lﬂ'
F.p SF,u

1

On the other hand, J(uy,) (J'(un), un) = c+ o|lun|]) = ¢+ o(1) as n — oo since (||un|)nen
p

is bounded, which yields,

k «
11 / (1 1 > /|u7-’“|p ()
- — = Flup)de + | - — z dr =c+o(1 18
<p p*) (1) p  p*t) ; |t o (1%)
Q =la
as n — 0o. Therefore
/F(un)daz <cN +o(1) (19)
Q
as n — 0o.
Moreover, by (19), we obtain
a < c¢N. (20)

Plugging (20) into (17), we have

oP/P” <1 _ Sl(cN)p/N) < Lﬁ'

Fp B SF#L

By the upper bound 9 on c there exists d;, depending on N, p, u and ¢, such that o?/?" < §,1.
Similarly, there exists Jo, depending on N, p, u, t and ¢, such that BP/PT (1) < Syar. In particular, it
follows from these two latest inequalities that there exists €9 = €o(V, p, i1, s, ¢) > 0 such that either

a=F=0 or {a>¢ and > ¢}. 21

Up to a subsequence, from (12) and (13) it follows that

¢ = J(un) - ;(J’(un),un) +o(l) >

as n — o0o. From (21) and by assumption ¢ < ¢* we get « = § = 0. Up to a subsequence, u, — u
strongly in Wj.
Lemma 3 is proved.
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Lemma 4 [15]. Assume that 1 <p < N,0<t <pand 0 < u < . Then the limiting problem

uf=t_ fup O

~Agu—p in BV {0},

ue DYP(RY), w>0 in RY\ {0},

has positive radial ground states

Vo(z) £ P N)/pU ( ) P=N/ry, (]ac]) Ve > 0, (22)
€ €
that satisfy
| / [Ve(z —0)/ (-
Ve(x A =)/ (p=t)
/(’V — M ‘.’L’|t ( ,Mt) )
Q
where U, ,,(x) = Uy ,.(|x|) is the unique radial solution of the limiting problem with
U (1) = (N —4)(7i — p) 1/(p*(t)—p)
DM N —p :
Furthermore, U, , have the following properties:
}i_r)r(l) ra(“)Up#(r) =C1 >0,
TBI-‘}-’IOO Tb('“)Up’M(T) =Cy > 0,
lisy 0 U7 (1) = Cra(pe) > 0,
r—0
W+ 17 =
Jim UL ()] = Cabla) >0,
where C;, i = 1,2, are positive constants and a(u) and b(j.) are zeros of the function
FO=@-1)¢ = (N=p)¢" T +p, (20, 0<p<p,
that satisfy
N-—p N-—p
0<a(p) < <b(p) < .
< a(p) " (n) < ]
Now, the p*-homogeneity of F' yields
k */p
u) <M (Z |ul-p> for some constant M > 0. (23)
Recall that p < p* since 1 < p < N.
Theorem 1. Suppose 0 < s < pand 0 < p < . Then:
(i) Sppu = MP/P Ay p;
(i) Sg,, has the minimizers (e1Ve(z), ..., e, Ve(x)) Ve > 0, where $5_ ¥ = 1 and V.(z) are

the extremal functions of A, defined as in (22) (by plugging t = 0 in Lemma 4).
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Proof. (i) By (23) and the Minkowski’s inequality

p/p* p/p*

/ F(u)dx < MPIP / (Zk:uil”)p*/p dx

Q q \i=l

IN

p/p*

k
< MP/P Z /|ui|p*dw <
i=1 \§
k
< MY AL sl = MO Al

=1

where u = (u1,...,ux) € Wi. So that

MP/PT

p
[

( /Q F(u)dw)p/p* o

k
Consider now the map ug = egvg where eg = (eq,...,ex) € (RT) satisfies E - e? =1 and
1=

vp € DIP(Q) is an extremal function for A, 9. Then

* *

p/p p/p

/F(uo)dx = MP/P /\U0|p*dx =
Q

Q
* _ * _ * _
= M AL feoll? = MY AL twolly, = M A ol

So that

Sp,=MPP A,y (24)

(i) From (5), (22) and (24) the desired result follows.

Theorem 1 is proved.
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3. Main results. The main conclusions of this paper are summarized in the following theorems.
Theorem 2. Assume that N + ps — s —p? > 0, A € (A1, \*) and 0 < p < pq, where

a N+ps—s—p? (N—s)pl

241
p p

Then the problem () has a positive solution.
Theorem 3. Assume that 0 < p <, A > 0 and X\ € (A, A1), where

—p—t/N—t

3 MC™ (N —p) —t/N—t k?(p—t)/  Ns—pt/p—
A=)\ 11 _ xp—t/ Nt+st—Ns—pt/p—t
1+ ¥ ¢ oV = 1) |z|
Q

Then the problem () has a positive solution.
In the following, we will give some estimates on the extremal function V¢(x) defined in (22).

1
For m € N large, choose ¢(x) € CP(RY), 0 < ¢(x) < 1, p(z) = 1 for |z| < o p(z) = 0 for
m

1
|z] > —, [IVo(2) | r(q) < 4m, set uc(x) = p(x)Ve(x). For € — 0, the behavior of . has to be the
m
same as that of V,, but we need precise estimates of the error terms. For 1 < p < N, 0 < s5,t <p
and 1 < g < p*(s), we have the following estimates [15]:

p
/ <|Vue|p _ ,u‘(;j‘p > dr = (A#,t)N—t/p—t + O(Eb(u)p-i-p—N), (25)
Q
Jul?®) N b(p)p* (H)—N
T de = (Auy) —t/p—t | Oe (m)p™ (t)— ), (26)
N—s—l—(l—ﬂ)q N —s
CE p 5 q > )
, N ]\b[(ﬂ)
/ ’|1;6|’s dx > CeN_S+(1_5)qlln e, ¢= b(;)s’ @D
Q@ Cﬁq(b(u)ﬂ—%)q’ q< N — 5
b()

Lemma 5. Assume that N+ps—s—p® > 0, X € (A1, \*), € > 0 small enough and 0 < ji < i1,
where

A N+ps—s—p? (N—s)p_l
p 2 :

p p
Then, there exist a function u = (u1, ..., u) € Wy such that
. 1 N/ p—t N—t/p—
sup J(tu) < ¢* :=min{ —S,/F ——— (A /p=t
7 LW g nd

Proof. We divide the proof into two steps.
Step 1. We prove that under the assumptions of this lemma, there exists (u1, ..., ux) € Wy such
that
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1
sup J(tuy, ..., tug) < NSF’”'

>0
We consider the functional I: W — R defined by
1 1
I(u) = —|jul]? —/Fudx forall ueW,
(u) pH [ r (u) k

and by (25), (26) and (27) in case t = 0,

p
[ (19l = bl o = (4,009 + o0,
Q

[P

/ |uelP" dx = (AMVO)N/p + O(Eb(u)p*fN)’
Q

( N —s
CeNfer(lfN/p)q7 q> ,
b(w)

q N —
’uEL dx Z CeNfer(l*N/p)q |1ne|7 q — 5’
| b(1)

CEQ(b(M)‘H—N/p)q, q< N~ 5
b(w)

k
Set ug = (e1te, . . ., epuc) € Wy where (e1, ..., ex) € (RT)* and Z . el =1.
i

N. NYAMORADI

Also, we define the function g1 (t) := J(teque, ..., tegue), t > 0. Note that limy 400 g1(8) =

9
of €.

Then, by the definition of S, we obtain

k ‘ue‘p N/p
1 <Zi:1 e?) /Q <|vu6|p e ) dx

I(teeque, . .. teegue)

< —
- N p/p*
</ F(ejue,... ,ekue)daz>
Q

N/p
|ue|P
P _
/Q (\Vug\ M )dm

1
N i p/p*
Mp/v* (/ |ue|P dm)
Q

1 ( 1 >N/p (AM,O)N/” + O(eb(u)p+p—N)
N \ Mp/p* (A#’O)N/p* + 0(6 (b(u)p*—N)p/p*)

1 1 N/p N/p
SN(W) <Aﬂ,o> Oty ) =

<

IN

N/p

<

—oo and g1(t) > 0 as t is close to 0. Thus sup;>(g1(t) is attained at some finite ¢, > 0 with
(tc) = 0. Furthermore, C' < t. < C”; where C’ and C” are the positive constants independent

<

ISSN 1027-3190. Vkp. mam. scypn., 2012, m. 64, Ne 6
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1 [ Auo N/p b(p)p+p—N L on/p b(p)p+p—N
=~ \amw ) TOL ) = N SE 0l )

where the following fact has bas used:
v 1/ AP
sup<A—* ):< p> , A, B>0.
>0 \ P P N\ gv

Exm [ |teue|P

Consequently,

1
J(teerte, ... teepue) < ngff + O(wptp=Ny _

9

p |z[*
Q
where m := min{el, ... e}
N —
Ifp> 75, from (27) we have
b(k)

/ ‘tru‘ﬂpdx > CEN—s+p7N _ O(eNferpr).
x
Q

Furthermore, N — s +p — N < pb(u) +p — N.

N —
pr:T; ,then N —s+p— N = pb(u) + p — N. From (27) we have
]
Lo |P
[bcc] dx > CeN PN n¢| = O(6N78+p7N| Inel).
Ed

Hence, if ¢ > 0 small and pb(u) — N + s > 0, then we have

1
sup J(teiue, . . ., tegue) < —SFu.
t>0 N

On the other hand, it is easy to verify that the function

FQO=@-1)~(N=p¢P " +u (20,

N —
has the only minimal point " = i Moreover, f(¢) is decreasing in (0,¢”) and is increasing

in (¢”, +00). Hence,

@:ozf@m»Zf(N;S>¢:03u3m

for N +ps—s—p> > 0.
Step 2. We prove that under the assumptions of this lemma, there exists (u1,...,u;) € Wy such
that

sup J(tug, ..., tug) < c*.
t>0
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In case

L oN/p p—t N—t/p—t
— < PV 4 p
NSF,M = p(N — t)( H,t) )

we take (u1,...,ux) € Wi \ {(0,...,0)} as in step 1 to get the result. Otherwise we take
k
(u1,...,u) = (e1te,...,epus) € \{(0,...,0)} where (ey,...,ex) € (RT)* and Z._l el =

and u, satisfy (25)—(27).
Now, we using arguments similar to the first step, with I replace by:

’uz‘p

~ 1
I(u) = 1—9||u\|€vk de  forall  we€ Wy,

\wlt

Which gives the step 2.
Lemma 5 is proved.
Proof of Theorem 2. Set c = infjer maxycpg 1) J(h(t)), where

I'={h e C([0,1],Wy) | h(0) = (0,0), J(h(1)) < 0}.

For any u = (uq,...,ur) € Wi\ {(0,...,0)}, from Lemma 1 (i) and the Minkowski’s inequality,

one can get

»*/p (p/p*)-(p" /P)

k
/F(u)d:r <M / <Z ui|1’> dx < MC—(p*/p)HuH%/k
o \i=l

Q
Then it follows that

1 1
J(u) = =||ull? —/Fud
(u) pH [5e8 p*ﬂ (u)

* * t *
> C (Jlully, = lulfy, = 1l ") = Cllulfy, - Cllully,

| [P (®)

k
A |u; [P
- — dx >
NE @Q ]

i=1g

Hence, there exists a constant p > 0 small such that

b:= inf J(u)>0=J(0,...,0).

llwllw, =p

(28)

Since J(tu) — —oo as t — oo, there exists tyg > 0 such that |[toul| > p and J(tou) < 0. By
the Mountain—Pass theorem [2], there exists a sequence {u,} C Wj such that J(u,) — ¢ and

J'(up) — 0 as n — oo. From Lemma 5 it follows that

0 <c< sup J(ttperue, ..., ttoexue)) < sup J(tejue, ..., tegue)) < c*.
t€[0,1] >0

By Lemma 3 there exists a subsequence of {u, }, still denoted by {u, }, such that u,, — wu strongly

in Wy. Thus we get a critical point u = (uq,...,uy) of J satisfying () and c is a critical value. Set
ut = max{u, 0}. Replacing the terms
Jug[P" @ |uf
dzx, /F(u)d:c, dx for 1<i<k
|z|* |z]*
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in J(u) by
+|p (t +|p
u;
/’ | /F(u+)dx, Pt 1<i<k
e |z[*
respectively and repeating the above process, we get a nonnegative solution u = (ug, ..., ug) to ().

Also, by the maximum principle we deduce that u; > 0in Q for 1 <¢ < k.

Theorem 2 is proved.

Proof of Theorem 3. The proof follows the same lines as that in [3]. Let w = u; = -+ = up =
= 7¢1, T > 0. Then by (28) and the Holder inequality we obtain

& P 1 1 & p*(t)

° x|® * (1) 4 |t
p Zle|| ) p()Z:IQ ||
k k? *
AL — A /yw|P >\1MC (" /p) / 1 /ywp ()
< d dr =
p ; |z|® Z:: (1) ; |2
Q Q Q
k MC—@"/p)( _p)) w|P k [P (®)
=2 (n(1+ -\ / do — / dz <
p ( ( N ) ) alf
Q Q
(N~ p) w7
k MC~P/P(N —p w|P
<=M A
=0 ( 1( + N ) ) / EE X
(p—t)/(N—1) 0
/|$|(Nt+st—Ns—pt)/(p—t)d$ o k /|w|p dr <
p*(t) || -
Mc_ﬁ(N : (N=1)/(p—1) A
"NV =Dp)y rp—t) (Nt+st—Ns—pt)/(p—t)
< [ A1+ N )= A (N—t)/|x| dz,

where we have used the fact that

v ow) _al—1) falV —p)
ma (e17” — () = S

If A€ (X, A1), then

<
I‘Irlgéie](Tgf)l,...,T(ﬁl) <c

Hence, we can obtain a PS-sequence in the cone of nonnegative functions, which has a weak limit
(u1,...,up) with u; > 0 and u; # 0 for 1 < ¢ < k. By the maximum principle [20], we obtain that
u; > 01in Q and (uyg, ..., uy) is a positive solution of ().

Theorem 3 is proved.
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