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GENERALIZED RELAXED ELASTIC LINE ON AN ORIENTED SURFACE

Y3ATAJIBHEHA PEJIAKCOBAHA ITPY’KHA JITHIA
HA OPIEHTOBAHIN MMOBEPXHI

We study the relaxed elastic line in a more general case on an oriented surface. In particular, we obtain a differential
equation with three boundary conditions for the generalized relaxed elastic line. Then we analyze the results in a plane, on
a sphere, on a cylinder, and on the geodesics of these surfaces.

BuBuaeThcs penakcoBaHa MpYyKHA JIiHISA y OLIBII 3aralbHOMY BHIIQJKYy Ha Opi€HTOBaHiM MOBEpXHi. 30KpeMa, OTPHMAaHO
nudepeHiianbHe PiBHSHHS 3 TpbOMa IPAaHMYHUMH YMOBAaMU JUIS y3arajibHEHoOI peslakcoBaHoi mpyskHoi JiHii. OTpuMani
Ppe3yiIBTaT! MPOaHANi30BaHO Ha IUIONINHI, cepi, IITHIPI Ta Ha TeONe3NIHHUX X OBEPXOHb.

1. Introduction. A relaxed elastic line of length ¢ on a connected oriented surface in three-
dimensional Euclidean space £ as defined by G. S. Manning in [2] and characterized in [3], min-
¢

imizes the total square curvature, / HQ(S)dS, in the family of all arcs of length ¢ having the same

initial point and initial direction. In0[2], he finds that whether or not the solutions are geodesic curves
of the surface depends on the boundary conditions and on the surface. Because physical motivation
for study of the problem on surface may be found in the nucleosome core partical of DNA molecule.
In [3], H. K. Nickerson and G. S. Manning consider the relaxed elastic line model on an oriented
surface and they derive an intrinsic equation with two boundary conditions for a relaxed elastic line
on this surface. They give several illustrations and apply this formulation to give important results
about relaxed elastic lines on various surface. They find the geodesics in a plane and on a sphere are
relaxed elastic lines, but the geodesics on the other surface are not.

In this paper, our purpose is to study extremal for the variational problem of minimizing the
functional

¢
Fla) = /(IQZ + Ao + Ap)ds
0

within the family of all arcs of length ¢ on a connected oriented surface in three-dimensional Euc-
lidean space E3 having the same initial point and initial direction. The functional consist of the
addition of twisting energy to bending energy. Then the functional is a generalizing of Manning’s
relaxed elastic line functional. Therefore, we call as “generalized relaxed elastic line” the curve which
is extremal of this functional. We obtain a differential equation with three boundary conditions for
generalized relaxed elastic line on a connected oriented surface in three-dimensional Euclidean space
E3. Then, we apply the results to analyze three important situations: in a plane and its geodesic,
on a sphere and its geodesic and on a cylinder and its geodesics. These examples pave the way for
comparing the relaxed elastic line and the generalized relaxed elastic line.

2. Intrinsic equations for a generalized relaxed elastic line on an oriented surface. Let S be
a connected oriented surface in the three-dimensional Euclidean space E3 and let a: I C R —.S be
an arc parametrized by arc length s, 0 < s < ¢, with curvature (s) and torsion 7(s). The arc « is
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called as a generalized relaxed elastic line if it is an extremal for variational problem of minimizing
value of the functional F,

4
Fla) = /(Fﬂ + AoT + A1)ds, (2.1)
0

which stands in the family of all arcs of length ¢ on S having the same initial point and initial
direction as «. If Aa = A\; = 0 in the functional F, then the arc which is extremal of the functional
is a relaxed elastic line (see [2] and [3]).

Assume that the coordinate functions of .S be of class C° and that the equations of o, as functions
of s, be of class C° in these coordinates.

At a point «(s) of a, let T'(s) = o/(s) denote the unit tangent vector to « and let n denote the
unit normal vector field of S. Then the Darboux frame 7', ), n along « on S is the orthonormal
frame defined by

T(s) = d(s), Q(s) =n(s) x T(s), n(s) = n(a(s)).

So, the derivative equations of Darboux frame is

T’ 0 Kg kn\ [T
Q| = —kKyg 0 Ty Q 1, 2.2)
n' —Ky  —Tg 0 n

where kg, K, and 74 are the geodesic curvature, the normal curvature and the geodesic torsion of a,
respectively [1].
The square curvature x2 and the torsion 7 of & on S is given by

K2 = RZ + mfl (2.3)
and
K kg — Kyhn
T=Tg+—5 5 2.4)
kg + Ky
respectively.
Let

z: D C R? - R3,
(u,v) = x(u,v) = (x (u,v),y(u,v),z(u,v))

be a coordinate patch of S. The partial velocities of x are given by x, = . Then an

Oz~ _ 0Oz
o T o

arc « is expressed as
a(s) = z(u(s),v(s)), 0<s<Y,
with
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GENERALIZED RELAXED ELASTIC LINE ON AN ORIENTED SURFACE 1123

and
Q(s) = p(s)zu + q(s)y
for suitable scalar functions p(s) and ¢(s).
Now we need to define a variational field for constructing a family of the curves of length ¢,
which have the same initial point and initial direction. In order to obtain variational arcs of length 7,
we extend « to an arc a*(s) defined for 0 < s < ¢, with ¢* > ¢ but sufficiently close to ¢ so that

a* lies in the coordinate patch. Let p(s), 0 < s < £*, be a scalar function of class C, not vanishing
identically. Then it can be defined as

n(s) = uw(s)p*(s),  C(s) = u(s)g™(s)

and so we can write

1(8)Q(s) = n(s)zu + ¢(s)2y (2.5)
along «. We also suppose that y has only the restrictions
p(0)=0,  p'(0)=0. (2.6)
No further restrictions may be placed on p. By this way we define
B(:1) = 2(u(0).v () + t(n(0). {(0). @.7)

for 0 < o < ¢*. For |t| < &1 (where 1 > 0 depends upon the choice of a* and p), the point 5 (o; )
lies in the coordinate patch. Because of p has the restrictions (2.6), 5(o;t) gives an arc which is the
same initial point and initial direction at fixed ¢. For ¢ = 0, 5 (o;t) is the same as a* and o is arc
length. For ¢ # 0, the parameter ¢ has not arc length in general.

For fixed t, |t| < €1, let L*(¢) denote the length of the arc 5 (o;t), 0 < o < £*. Then

.
* g\ 98 98
L (t) _/ <60,6U>da 2.8)
0
with
LH0) = ¢* > ¢. 2.9)

It is clear in (2.7) and (2.8) that L*(¢) is continuous (even differentiable) in ¢. In particular, it follows
from (2.9) that

e
) > =F

>/ for [t| < e (2.10)

for a suitable ¢ satisfying 0 < ¢ < ¢;. Because of (2.10) we can restrict §(o;t), 0 < |t| < ¢, to an
arc of length ¢ by restricting the parameter o to an interval of 0 < o < A(t) < £* by requiring

<‘9ﬁ 86>da:£.

A(t

—~
=

00’ do

o

Note that A(0) = ¢. The function A(¢) need not be determined explicitly but we shall need.
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Lemma 1 [3].
dA /
— :/,tmgds. (2.11)
dt|,_,
0

Now, we will calculate some derivatives of 3(o;t). The partial derivative of (2.7) with respect to

parameter o is

a—ﬂ =T, 0<s<U. (2.12)
do |,y
By taking (2.2) into consideration, we calculate the partial derivative of (2.12) with respect to o
as
0?3
902 » = KgQ + Kpn (2.13)
and
836 _ 2 2 / /
993 , =— (Kg + /{n>T + (/{n + King) n 4+ (/ig + Iﬁ?nTg) Q. (2.14)
t=
Also we get
op
— = 2.15
2| e (2.15)

from (2.5). Further differentiation of (2.15) with respect to o gives
0?3 0?3

= = —uk,T ! 2.16
oo,y dodt|,_, Ml T HTan @ (2.16)
by using (2.2), and
a3ﬁ ! ! l / " 2 2
91952 = (—2u Kg — Phg — /mnrg) T+ (2,u Tg + Py — umgnn) n+ (u — pkg — ,uTg) Q.
t=0
2.17)
Finally we get
a4ﬁ _ " !l ! " / /
1003 o = (—3/1 kg + 3 kg + kg + Ky Tg + 2ukn T+
+3u' kin Ty — /m%ng — /mg — ,UKJng2>T—
— (3#’:%9/41” + 2,u/£'g/£n + ;mng — 3;/’79 — 3//7;—
— Ty + prgkl, 4 pTy + pm,%g)n—
— (3;//-@3 + 3//75 + 3/mg/£'g + 3m‘g7'; — //") Q. (2.18)
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GENERALIZED RELAXED ELASTIC LINE ON AN ORIENTED SURFACE 1125

Now let F (t) denote the generalized relaxed elastic line functional of arc B(0;t), 0 < o < A (),
|t| < e. Since o is not generally arc length for ¢ # 0, the functional (2.1) calculates as

P r08 a8\ j2s 25\ /08 98\ "2 /0% 05\’ ;
—/ <aa’aa> <aaz’aaa> <aa’aa> <ag2@a> ot

0

A <86 8B> < 98 %8 836>

0o’ Oo 902’ Ho3
A d
2!@%>Wwﬂ<w%<ww2ﬁ
do’ do <802’ do? do’ do do?’ 8o>

A(t)

T / <(90 8a> do.
0

.. . dF
A necessary condition that « be an extremal is that —

= 0 for arbitrary p satisfying (2.6). In
t=0

d
calculating d—;:, we give explicitly only those terms which do not vanish for ¢ = 0. The omitted

0%8 0p
002’ do

dF _dx [ /0B 0p\T? /2’8 %8 )
dt — dt 0o’ 0o 002’ Ho? 0

[ r08 98\ /8 08\ /58 0% .
<aa’aa> <8t80’80><&c2’&c2> o

A

terms are those with a factor < >, which vanishes at t = 0 since (T, 7") = 0. Thus, we get

—~

)
-3

o

—~

t)

2
+ 90" 9o 91902 902

. op 0p\"' Jop 95 0B\ [P 9B\
2 <ao— aa> <80X802’803><802’802> -
o=A(t)
’ o8 9B\ 2/ 928 0B\ /OB 2B 3B\ /28 928 ‘ld
<aa’aa> <atao—’aa> <80 X o2 803> <aaz’ ao—2> ot

A(t)
2 2 3 3 2 2 -1
+)\2/<6686> <66 8ﬁ+86 0°p 86><8686> do+
0

—3/2
(32 e 2

o

—~
=

t
—2X2

S

0o’ Oo Otbo = Oo?2  Oo  Otdo?’ do3 0c2’ Ho?
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A¢)
+A/ 9B ap\ " 08 OB 0'p \ /9?8 B\
2 90’ 0o 90 " 902 9tood | \ 902 D02 o
0
At)
o [(22.20)7 (0 P 0\ (5 BONE B8 0N
2 9o’ Do Do 002’ 93/ \ 002’ do? Otdo?’ Ho?
0

A(t)

08 op\ V/? a8 98\ %/ 928 0B
A1cl1t{<a aa> }:)\(t)_)\l/<00’80> <0t80’80>d0+

0

To make it easy, we will use left-hand sides of the equations (2.3) and (2.4). But, while we are
working on an oriented surface, we have to use the geodesic curvature, the normal curvature and the
geodesic torsion. So, we will use right-hand sides of the equations (2.3) and (2.4) on the surface.

Then, by using (2.11), (2.3), (2.4), (2.12), (2.16), (2.13), (2.17), (2.14) and (2.18), we obtain

a7
dt t=0

= /u(mgm2(f) + 3rgh? — 2/43 2/~£g7' + 2Kn T, — 2Kgk 2)ds+
0
+A2 /M(/igT (0) + 2647 + Tykig — BK2KNK™ 2 — BKDTyR ™) ds+
0
l
+ A2 /u (—H g2 — 2@7’5&72 — filng 24 4/<;n7'g7' K~ ) ds+
0
¢
+ Ao /,u (3I£n1£gl€;l{_2 — 3/@/{,2179/{_2 + IQQT;/K_2 + 2/@27’/{_2) ds+
0
0 0
+ A9 /,u, (2/<ag7927/<a_2 - QEnT;TH_Q + 2&%/197,%_2) ds 4+ 2\ /u/ﬁgds—i—
0 0

l
+4 u’mnngs + /\g/ul (—Hn — 2/497'9/(2 + 57'51%;(2) ds+
0

o

¢ ¢
+ A / w (3&975’7/{_2 — 47'9/-{”7'/{_2) ds + Z/MHHgdS—I-
0 0
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GENERALIZED RELAXED ELASTIC LINE ON AN ORIENTED SURFACE 1127

¢ ¢
+ A2 / ! (/@%/{_2 + 4/{9791-@_2 — 2/@97'11_2) ds — Ao /u"'mn/@_2ds.
0 0

However, with integration by parts and ( 2.6), we can write
¢
%‘t:a = /u(/ﬁg/@Q(f) + 3rgh? — 2/@3 — 2/<;g7'g2 — 2T, — Qkghs — 4Kl Ty + 2%+
0

+Xa(kgT(0) + 26T + KTy — Bk K> + K], — BKoTgR ™2 — 6Ky Tok 2=

3,.—2 /1, —2 /=2
—2RgTgk = = ORyTgk ™= — BRpTyTyk™ ~ + 3Kgk

/
g

2

Fink 2 — 3/<cg/<;nTg/<c_2+

) I =3 2,2 I =2 2 -2
F2RgTg k™" — 12K Tgh ™K + 2RgTg TR~ + 26 TyTR = + 26, RgTR “+

—1—6/1'9/7'9/{_2 + 2&27%_2 + 107g2/<;n/1_3/<a/ — 2/197;5_3/4 + 4Tg/<;n7/1<a_2+
" 2

4251572 — STgI{nT/i_3I€/ + 4/{%7'97'/@_2 — 10K k3K + 24Kk~ K%~

3 -3 .1

—8kp kPR — 267" + 8T RO — AR TR — 12kg7R TR + dkgTr TR+
8k TR K = 26y TR = 24knk K 4 18Kk KK — 260k K") + 2X1 ) ds+
+1(0) (46 (0)74(£) — 265 (£) + Ao (— i (£)—
—6ry (O)Tg () 2(€) + 577 (0)kn (D) (£) — kg () TH(0)K ™ (€) —

— 475 (0) K (O)T (€) K™2(€) — 2601 (0) k™ 2(€) + 65l (0) 3 (0)K (£) +
264 (07 (OK72(0) — 4rg(0)7 (£) k30K (0) + 2k, ()T (0)™2(0)—

—6kn (O) k(O (0) + 26, (O (O)K" () + 1/ (€) (264 (€) + A2 (265, (0) 2 (€) +
kg (O)Tg(0)k2(0) — 2k4()T (£) K2(0) — 2k, (O (0)K/ (£))) —

—Aakin (02 (D" (€) + Aakn (0)K~2(0) " (0).

dF . . o . .
In order that — = 0 for all choices of the function y(s) to satisfying (2.6), with arbitrary values

of u(¢) and ' (¢), the given arc o must satisfy three boundary conditions

4rin (0)74 (£) — 250 (0) + Aa(—rin (£) + (K2(0) + K2 (£)) ™" (—6K, (O)74(0)+
572 (0) ke (0) + kg (0)7)(0) — AT2(0) ki (€) — 474 (£) ki (£) k7, (€) g (£) (5 (0)+

FRZ(0) 7! + Ay (ORZ (R, () (K20 + K2 () = 2671(0) + 260 (O) (5, (€) kg (£) -
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1128 A. YUCESAN, G. OZKAN
—rn ()1 (0)(K2(0) = k(0K (0) (52 (£) + K2(0)) ™ = Ay (£) (17, (£)rig (£) -
—m’g(ﬁ)nn(ﬁ))(zng(e)m;(é) + 2k, (0) K, (€)) (53(6) + K2 (E))_2 + Qn;(ﬁ)rg(€)+

26 (0, () rg(€) (5 (0) + 2 (0) ™ = 2 () (0)* Rul) (o (O) + % () ™))+
+ (R (€7, (€) + reg (Ol (€)) (K2(6) + 3 (£) (67, (6) — A2 (O)rc, () (g (0)+

FRZ(0) 7!+ g (0K (Orn(0) (K2(0) + 52 () ) = 6ra(0) (K2(0)+

2

+1(0) 7 (1 (€) K1, (0) + g (0) 1 () + (260 (0) (1) (€) + 265 (D)1 (0)+

+2k,(0) (/4;'9)2 (0) + 2rp(0) kg (£) ﬁ'g'(f)) (ﬁi(f) + /{3(())72 —

— (2/@%(6)5% () + ZHn(E)Hg(E)/@'g(ﬁ)) (/ﬁ%(ﬁ) + ng(ﬁ)) 3) =0, (2.19)

26g(€) + Ao (K2 () + K2(0) ™" (20, (0) + Ay (0)7y ()
—2kg(0)T4(0)) + (/ﬂg(f) + ni(ﬁ))_2 (—2%3(5)/@%(6) — Ky(O)kn(l) — 2/<an(€))> =0, (2.20)

—1 —1
—Xotin(€) (52 (0) + K2(0) " 1" () + Aakin(0) (12 (0) + K2(0)) 1”(0) =0 (2.21)
and the differential equation
Kg (ng(ﬂ) + k2 (€)) + 3&2 + 3kgkZ — 2/{2 - 2/<cg7'g2 — 26,7, — 2kgk2 — KD T, + 2K+

+A2(kgTy (0) + Kighln (O)ig(€) (K2(6) + K2(0)) ™" = kgl (O)rn(£) (K2(6) + K2() " +

2 2\—1 / 2.1 3 ) I, 2
+2K4Tg + Tgkg + (Hg + Kn) (/{g/ﬂn/ﬁg — Kghp — KgTg — GHnTg — 10/~€ng — KgKpTgt
2 2\ —1 4.1 3.1 2 2 1 2 7 /o 2 1.
+ (Iﬁ:g + mn) (26 Ky, — 2K Kgkn + 2Ky Ty Ky — 2KgT  Kokin + 2Kn Tyl Kg — 2K, Ty g+

2.2/ 3 / " " !/ " " n. ./
+2Ky Kgky, — 2K, Kgkg + 4Tgkn (Fdn/ﬁ}g - Iiglﬂ',n) — 4k, (nnmg = ﬂgmn) — 2RgRpKg+

-2
+2/€;’l€lgl-€n) + 4/4;’9'79 + 4/-;;17'92 — 8Tgkn (/@%ﬁ;g - I{,glin) (H,gl-i; + mnm;) (/@3 + /@,21) +

+(4 (K/;)Q Tgkg — 4/-@;17'9/1;%” — 2kyg (I‘ig,l-{g + /{;;K,/g — Hgllin — K,/g,/%%)) (K; + H%)_l +
+2k0 + (/’ig + /1%)_2 (8kg(Kmkg — Kykin)(Kgky + Knky,) 4 4y (Knkg — Kykin) (K kg+

+ (KIQ)Q + Kl K + (/@%)2) + 8k, (K kg — Kyhin) (Kgky + Knky,)) — 8kg(pkig—
-3 -2
—Kykin) (Kgky + Fonki)? (/43 +K2) ) + Kl (K,nH;l + Kghy (k2 + /13) ) (—12ky7y+
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—}—107’5/-;” — 2597'; — 8Tg21-€n + (ng + ﬁi)il (—8Tyknkin kg + STin?LI{,g) — 10K+

+8/~€g7'; + 8kyg (K,;;Hg — ﬁ’g’mn) (/43 + ﬁi)_l — 16K4 (m;ﬁg — I{/gﬁn) (/{gH;+

+Knkl,) (113 + H%) 2 8Ky Ty + 8k kg (ch + n%)_l — 8kiykghin (/ig + HZ)_I)—F

+24k;, (knky, + ng/i;)Q (/13 + Hi) 3 85;((/1;)2 + Kkl + (n'g)2 + /ig/i/g/) (ng + mfl) 2y

—1—8/4” (Hnli;L + IigK;)2 (ﬁg + n%) 3 12k474 (nnn;@ + ng/i;)Q (Iiz + /ﬁ;i){)’ _

—1253/-{;1 (Knky + /ﬂg/ifq)Q (/{52] + /{721)74 + 1269 Ky kn (Knks, + I{gH;)z (/{3 + K2) 4

gy ()" + ]+ ()" gy ) (o 2) ™ 4 st () + s

+ (/1;)2 + Kghy) (/‘ig + /131) w3 Akgkykin ((/@%)2 + Knkp + (K,g)z + /ignfq’> (/@3 + /{i)_?’ _

—4£g7y (Knky, + /ig/@fq)Q (Hg + /1721)_3 — 4/@3@1 (Knkp, + HgH;)2 (K?] + H%) —y

—1—4,%9/@;/171 (/fnka; + Iig/i;)Z (/’ig + /‘&721)_4 — 24k, (nnm% + K?g/ﬁ?lg)g (K}g + Ii%)_4 +
+18%, ((K;Z)Z + Knkp + (n;)Q + /ﬁg/@fq’) (Knkp + kghy) (K2 + K2 = 18k (K, +

n

+rghy)® (K2 + K7) 2k (KL K + Kk "

-2
+ 3kyky + kghy ) (K2 + K2) +

60 ()" monriy + (1) rigrg) (nriy + igriy) (g +47) =

—6rn (Fntily + rghl) (K24 12) 1) + 2A1ky = 0. (2.22)

Then we can give the following theorem.

Theorem 1. The intrinsic equations for a generalized relaxed elastic line on a connected
oriented surface in three-dimensional Euclidean space E3 are given by the differential equation (2.22)
together with the boundary conditions (2.19), (2.20) and (2.21) at the free end. Here ky, K, and 7,
are the functions giving the geodesic curvature, the normal curvature and the geodesic torsion as
functions of arc length along the line.

It is clear that the solutions give us the relaxed elastic line in a special case Ao = A\; = 0. The
following expression is a natural conclusion of this theorem.

Corollary 1. The critical point of the functional

¢
Fla) = / r2ds
0
is an arc which satisfies two boundary conditions
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1130 A. YUCESAN, G. OZKAN

and differential equation

2k — 4K}, Ty — 26nT) + Kb + Kgkin — 26T, + gk (£) = 0,

for arbitrary value of the function p(¢) satisfying (2.6). Then, this differential equation with two
boundary conditions is the relaxed elastic line derived by Nickerson and Manning [3].

3. Applications. 3.1. Generalized relaxed elastic line in a plane. The critical point of the

functional (2.1) is a relaxed elastic line since plane curves have identically zero torsion. Then we can
give the following corollary.

Corollary 2. Geodesic of a plane is a generalized relaxed elastic line.
3.2. Generalized relaxed elastic line on a sphere. The geodesic torsion 7, vanishes for all curves

1
on a sphere of radius R and normal curvature x,, = & Then (2.22) reduces to

2Ky + ng + (;2 +rK (E)) Kg + A2 (ch/s;(é) (Rznf] ) + 1)—1 N
+(2-3R) Kok (R2m2 + 1) + 2R2m§m; (Rgnz + 1)_2 +
—|—2/€g (RQR2 + 1) 2 _9R? (1+R) Hglﬂlg// (R2/<a§ + 1) 2
—6R* (14 R) ryky (R?k2+ 1) = 18R’ kgryy (k) + kghy) (R*K + 1)_2 +
+2R" (4 — R) w2k,k!! (R2R2+ 1) +

+2R* (8 + 3R + 9RPK2) kg () (R22 +1) " +

+2R5 (R — 8) K3 ())? (R2K2 + 1)‘4) +2A1ky = 0.

(3.1
The boundary conditions (2.19), (2.20) and (2.21), which reduces to
—2(£) + A (; +2R* (1 - R) (kg(O)ky(0) + k7 (0)) (R*2(0) + )72+
+8RY(R — 1)k2(0) (k) (¢) (R*k2(0) + 1)3> =0, (3.2)
2k (0) + Aa2R% (R — 1) kg (), (0) (R22(0) +1) > = 0, (3.3)
and
/\QR/,L”(Z) _ )\QR/LH(O) _
R2:2(0)+1  R262(0)+1 0 (34)
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GENERALIZED RELAXED ELASTIC LINE ON AN ORIENTED SURFACE 1131

Then, a generalized relaxed elastic line on the sphere is given by the differential equation (3.1) with
three boundary conditions (3.2), (3.3) and (3.4). We know that geodesic on a sphere is a relaxed
elastic line, but the following expression gives us an important case.

Corollary 3. The geodesic of the sphere is a generalized relaxed elastic line in case of \a = 0,
but it is not a generalized relaxed elastic line in case of Ao # 0.

3.3. Generalized relaxed elastic line on a cylinder. Let the cylinder be parametrized by

x(u,v) = (Rcos %, Rsin E, U),

R
where R is radius of the circle. Then for an arbitrary arc o on the cylinder
do 1 1
Kg = s mn:—§00520 and Ty = EcostinG,

where = 6(s) is the angle between the u-coordinate curve through «(s) and the arc «. The
geodesics on the cylinder are characterized by § = constant and satisfy the generalized relaxed
elastic line differential equation (2.22) only if § = 0, § = +x and 0 = :l:g. But the boundary
conditions (2.19) and (2.21) (the boundary condition (2.20) is already zero)

4 A
I cos® 0(0) sin 6 (£) + ﬁ cos20(¢) =0

and

g WO =) =0,

Then, we clearly see the following corollary.

Corollary 4. If 0 = 0,0 = +7w or § = :I:g, the geodesics of the cylinder are generalized
relaxed elastic lines in case of Ay = 0, but they are not a generalized relaxed elastic lines in case of
Ay # 0.

Conclusion. In this work we generalize the notion of “relaxed elastic line” by using the definition
given in [2] and [3], and define the notion generalized relaxed elastic line”. Then we obtain the
formulation to determine a generalized relaxed elastic line on an oriented surface. We apply this
formulation to give results about generalized relaxed elastic line on various surfaces. We show that
the geodesic of a plane is always a generalized relaxed elastic line. The geodesic of a sphere and
geodesics of a cylinder are generalized relaxed elastic line only special cases, but they are not a
generalized relaxed elastic lines in case of A2 # 0.
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