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COMPARISON THEOREMS AND NECESSARY/SUFFICIENT CONDITIONS
FOR EXISTENCE OF NONOSCILLATORY SOLUTIONS
OF FORCED IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

TEOPEMM ITOPIBHSAHHSA TA HEOBXI/IHI/ITOCTATHI YMOBU ICHYBAHHA
HEOCIHWIANIMHUX PO3B’SA3KIB 35YPEHUX IMITYJIbCHUX
JUOEPEHIIAJIBHUX PIBHAHD I3 3AIIIBHEHHAM

In 1997, A. H. Nasr provided necessary and sufficient conditions for the oscillation of the equation

(1) + p(t) [2(g(1))|" sgn ((g(t))) = e(t),

where 7 > 0, p, and g are continuous functions on [0, oo) such that p(t) > 0, g(¢t) < t, ¢'(t) > a > 0, and lim—,oc g(t) =
= oo. It is important to note that the condition g’(t) > « > 0 is required. In this paper, we remove this restriction under
the superlinear assumption 77 > 1. Infact, we can do even better by considering impulsive differential equations with delay
and obtain necessary and sufficient conditions for the existence of nonoscillatory solutions and also a comparison theorem
that enables us to apply known oscillation results for impulsive equations without forcing terms to yield oscillation criteria
for our equations.

VY 1997 poui, A. X. Hacp oTpumaB HEOOXiHI Ta TOCTaTHI OCHWIALIIHI YMOBH JUIA PiBHSIHHS

(1) +p(t) [2(g(t))|" sgn (x(g(t))) = e(t),

nen > 0, p ta g — HenepepsHi QyHKii Ha [0, 00) Taki, mo p(t) > 0, g(t) < ¢, ¢'(t) > o > 071alim;_ o g(t) = co. Crin
3ayBaXKUTH, 110 HEOOXiHOW TyT € ymMoBa ¢’ (t) > « > 0. Y namiii crarti MU yCyBaeMo 11e OOMEKEHHS IPU CyTIEPITiHiiHOMY
npurymeHni 1 > 1. Hacnpapzi, MoXkHa OTpHMATH HaBiThb KpaIlUi pe3ynbTaT, PO3MIAAAI0OUH IMIYIbCHI JU(epeHITiaabHi
PIBHSHHSA 3 3ali3HEHHSAM, 1 BCTAHOBUTH HEOOXiJHI Ta JOCTAaTHI YMOBH iCHYBaHHS HEOCHMWIALIHHHUX PO3B’A3KiB, a TaKOX
TeopeMy IOPIBHSIHHS, SIKa Ja€ 3MOTY 3aCTOCYBATH BiIOMI OCIIHIIALIHHI pe3yJIbTaTH JUIsl IMITYIECHUX PIiBHSHB 0e3 30yprorounx
YJIeHiB, 100 OTPUMAaTH OCUWIALIIHI KpUTEpii [UI1 HAIIUX PiBHSHB.

1. Introduction. In 1997, A. H. Nasr in [1] provided necessary and sufficient conditions for the
oscillation of the equation

a"(t) + p(t) lx(g(£))" sgn (2(g(t))) = e(t), ()

where 1 > 0, p and g are continuous functions on [0, c0) such that p(t) > 0, g(t) <, ¢'(t) > a >0
and lim;_,, g(t) = oo. Under a nice assumption on the function e (that the solution z of (5) is
oscillatory and (22) holds), it is stated in reference [1] that the following conclusions hold: for n > 1,
o
equation (1) is oscillatory if, and only if, tp(t)dt = oo; and for 0 < n < 1, equation (1) is
0
[e.e]
oscillatory if, and only if / t"p(t)dt = oo. These conclusions extend those in [2] in which the well
0
known Emden — Fowler equation without delay is studied.

It is important to note that the condition “g’(¢) > « > 0” is needed in [1]. However, in [3], the
author removes the restriction for the sublinear case 0 < 1 < 1. In this paper, we intend to improve
the same restriction for the superlinear case n > 1 (see Corollary 3, or Theorems 1 and 4 below).

Indeed, we can do even better by considering impulsive differential equations with delay. More
specifically, we obtain necessary and sufficient conditions for the existence of nonoscillatory solutions
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and also a comparison theorem which enables us to apply known oscillation results (see, e.g., [4]) for
impulsive equations without forcing terms to yield oscillation criteria for our equations (an example
is illustrated in the last section).

To this end, we first recall some usual notations. R and N denote the set of real numbers and
positive integers respectively. R denotes the interval (0,+00). Assume I; and Io are any two
intervals in R, we define

ALC(L, I2) = {go: I — Is: ¢ is continuous almost everywhere (a.e.) in [
with discontinuities of first kind},
PC(I1,13) = {¢ € ALC(I1,15): ¢ is continuous in each interval I1 N (tx,tk11], k € No},
and
PC'(I1, ) = {gp € PC(1,15): ¢ is continuously differentiable a.e. in Il}.
We let
T ={t1,t2,...}

be a set of real numbers such that 0 = ¢ty < t; < t2 < ... and limg_,, tx = +00. Also, 2/(¢) will
be used to denote the left derivative of the function x(t) at ¢. We investigate the following nonlinear
delay differential systems ‘with impulsive effects’

(r(t)2'(t)) + F(t,2(g(1))) = e(t), t€[0,00\T, )
z(t)) = agz(ty), keN, 3)
xl(t;:) = bkx/(tk), ke N, (4)

under some of the following conditions:

(A1) For t > 0, the function F(¢, ) is continuous on R with puF(t,u) > 0 for u # 0, and
for u € R, the function F'(¢, i) belongs to ALC([0, 00), R). Furthermore, F'(t, o) > F(t, 1) for
t>0and py > uy;

(A2) g is a continuous function on [0, c0) with g(¢) < ¢ for ¢ > 0 and lim;_,~ g(t) = +o0;

(A3) 0 <t <tg <...are fixed numbers with limg_.. t = +00;

(A4) for each k € N, a > 0 and b > 0;

(A5) ris a positive and differentiable function on [0, 00);

(A6) e is a function on [0, 00) continuous a.e.;

(A7) there are M > 0 and m > 0 such that m < A(s,t) < M for t > s > 0 where

Hsgtk<t ap if [s,t)NT # @,
1 if [s,t)NYT =2.

A(s,t) =
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Let 0 > 0 be given. We define r, = min;>, ¢(¢) and

Hsgw b if [s,t)NY # @,
1 if [s,t)NT =0

B(s,t) =

fort > s> 0.
Definition 1. Let ¢ > 0. For any ¢ € PC'([r,,0],R), a function © € PC'([ry,0),R) is
said to be a solution of system (2)—(4) on [0,00) satisfying the initial value condition

z(t) = o(t), t€lro,0l,

if the following conditions are satisfied:

(i) ' € PC'([o,0),R);

(i) z satisfies (2) for a.e. t > o;

(i) z satisfies (3) and (4) for t > o.

Definition 2. Let x = x(t) be a real function defined for all sufficiently large t. We say that
x is eventually positive (or negative) if there exists a number T such that x(t) > 0 (respectively
x(t) < 0) for every t > T. We say that x is nonoscillatory if x(t) is eventually positive or eventually
negative. Otherwise, x is said to be oscillatory.

In the subsequent discussions, we assume that there exists a solution z of the system

(r(t)2' (1) = e(t), te[0,00\T,
z tg) = akz(tk)7 k€N, (%)
tl—:) = bkz'(tk), ke N,

on [1,00) for some 7 > 0. Let T > 0 and ¢ € PC([rr,T],R). For § € PC([T,0),R), we define
a function w,,(d) by

o(g(t)) if g(t) > T,

wy(6)(t) = '
e(g(t)) if rp<g(t)<T

fort > T.

This paper is mainly concerned with oscillation of impulsive differential equations, but for more
general background material, the reader is referred to [5—8].

2. Main results. We begin with a simple comparison principle.

Lemma 1. Assume that (Al)—(A6) hold, that the solution z of (5) is oscillatory, and

[ Bltos) ,
to/ A(to,s)r(s)d87oo ©)

for any ty > 0. Let x be an eventually positive solution of system (2)—(4). Then xz(t) > z(t) and
2/ (t) > 2/(t) eventually.
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Proof. Without loss of generality, we may assume that 7 = 0, and z(¢) > 0 for ¢ > ro. Let
y(t) = x(t) — z(t) for t > 0. So the function y satisfies

(r@®y' 1) + F(t,z(g(t)) =0, ae. t>0, )
and
y(tr) = ay(ty)  and  y'(t) =by/(te), keN. ®)
By (7), we see that (r(t)y'(t)) < O for ae. t > 0. Assume that there exists 7 > 0 such that
(r(T)y'(T))" exists and y/(T) < 0. By (8),
r(t)y'(t) < B(T,t)r(T)y'(T) <0, ae t>T. )

Dividing (9) by r(t)A(T, t), and then integrating the subsequent inequalities from 7" to ¢, we obtain

B(T,s)

y@<ﬂiﬂﬂﬂ+%ﬁﬂﬂ/MT&@w,t>T
T

In view of (6), y(t) < 0 eventually. This is a contradiction since z(t) > 0 eventually. So y'(¢) > 0
eventually. We note that it is impossible that y(¢) < 0 eventually because of z(¢) > 0 eventually. So
there exists sufficiently large 75 such that y(7%) > 0, then

y(t) Z A(T27 t)y(T2) > Oa t Z T2a

which implies that y(¢) > 0 eventually.

Lemma 1 is proved.

Remark 1. 1If e(t) = 0 eventually, we may assume without loss of generality that the function
z is the trivial function. By Lemma 1, we may see that the derivative of any eventually positive
solution of system (2)—(4) is eventually nonnegative.

Theorem 1. Assume that (A1)—(A7) hold, that the solution z of (5) is bounded, and that

F(v,
B(s,

[/

)

) duds < o0 (10)
v)

[e.e]
S

for any ¢ > 0 and some € > 0. Then system (2)—(4) has an eventually positive solution x which is
bounded.
Proof. Without loss of generality, we may assume that |z(¢)| < M for ¢t > 7. Let

a=n (M),

Clearly, d > 1. By (10), there exists T € Y such that 7' > max {7,e} and

T OOF(v,d)
/7"(S)/B(s,v)dvds< 1. (11)
T s

Let
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X1 ={0€ PC([T,00),R): 1 <4(t) <d for t >T}. (12)

Let p(t) = 1 for rp <t < T. We define the operator H; on X; by

o0

Hy(0)(t) :A(T,t)Mnjl Ta(t) + / Als, 1) / P, w0 (0)®) 4.4 (13)
T

t
r(s) B(s,v)
for t > T. Obviously, Hi(6) € PC([T,0),R). By the definition of w,(J), we may see that
1 <w(0)(t) <dfort>T. By (11),

and

- r(s) ) B(s,v)

s

t [e¢)
Hy(6)(t) <MM?;rl —i—M—i-M/l/F(v’d)dvdng(Mnjl +2> =d (14)
T

fort > T. So H1(X1) C X;. We shall use the Knaster — Tarski fixed point theorem to prove that
Hy has a fixed point in X;. We first define a relation in X;. If §; and J2 belong to X1, let us
say that 6; < Jy if and only if 6;(¢) < d2(¢) a.e. on [T, 00). Clearly, X; is a complete lattice.
Given 01,02 € X1 with 61 < 2. Then w,(61)(t) < wy(d2)(t) for a.e. ¢ > T, which follows that
F(t,wy(01)(t)) < F(t,wy(02)(t)) for a.e. t > T. Then H(01)(t) < Hi(d2)(t) for a.e. t > T. So
H, is increasing in X;. By the Knaster— Tarski fixed point theorem, there exists #; € X7 such that
H1(01) =0,. Let

01(t) if t>T,
z(t) =
1 if T >t>rp

Clearly, z € PC'([T,0),[1,d]). Let T1 > 0 such that r7; > T. We note that z(g(t)) = w,(61)(¢)
for t > T. In view of Hi(0;) = 61, we have

v B(TLE) [ F(s,a(g(s)
() = /1) + o / s =, (15)

which leads us to 2’ € PC'([T1,0), R) and
(r()2'(t)) + F(t,z(g(t)) = e(t), ae. t>Ti.
For any t;, > Ty, by Hi(61) = 61 and (15),
z(th) = apz(ty) and 2/ (t)) = bea' (tg).

Then z is a bounded and positive solution of system (2)—(4) on [T}, c0).
Theorem 1 is proved.
As a direct consequence, we have the following dual conclusion.
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Corollary 1. Assume that (A1)— (A7) hold, that the solution z of (5) is bounded, and that

T T~

£ S

for any T < 0 and some € > 0. Then system (2)—(4) has an eventually negative solution x which is
bounded.
Lemma 2. Assume that (A1)—(A6) hold. If the system

(r()/(8))" + F(t,u(g(t)) <0, ¢ €[0,00\T,
u(t)) = agu(ty), keN, (17)
u’(t;:) = bku'(tk), k€N,

has an eventually positive solution u with u(t)u'(t) > 0 eventually, then

(r(t)d' () + F(t,u(g(t))) =0, t€[0,00\T, (18)
u(t)) = agu(ty), keN, (19)
W () = by (ty), k€N, (20)

has an eventually positive solution solution w with u(t) u'(t) > 0 eventually.
Proof. There is T > 0 such that u(¢) > 0 and «/(t) > 0 for ¢t > rp. Forany d > t > T, we
divide (17) by B(T,t), and then integrate from ¢ to d. We have

r(d)u'(d)  r(t)u'(?)
B(T,d)  B(T,t)

_l’_

w\&
T
—~
\_CI.)
I~
—~
<
—~
0
~—
~—
SN—
IS
V2]
VAN
o

Since u/(d) > 0 and d is arbitrary, we may see that

, 1 [ F(s,u(g(s)))
wlt) 2 1 / Blis) =

for ¢t > T. Again, we divide the above inequality by A(7',t) and then integrate from 7 to ¢. Then we
have

t 00
1 F
u(t) > AT, 1) | w(T) + / AT ) / (1;1(;(95;’ D) guas Q1)
T s
fort > T. Let
Xy ={6€ PC([T,0),R): AT, t)u(T) < 6(t) < u(t) for t >T}
and we define an operator H> on X by
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[e.9]

F(v,wy(6)(v)))
/ Bls,0) dvds

Hg((s)(t) - A(T7 t) u<T) + / A(T,i)r(s)
T

S

for t > T. Clearly, X2 is nonempty because u € Xo. We impose in X, the same order relation
imposed in the set X;. Then X5 is a complete lattice. Given d1, 09 € X5 with §; < J5. We note that

0 < wy(01)(t) < wu(d2)(t) < ulg(t))
for t > T. By assumption,
F(t,wa(01) (1)) < F(t, wa(62)(t)) < F(t, u(g(t))),
where ¢ > T. By (21),
A(T, t)u(T) < Ha(01)(t) < Ha(d2)(t) < u(t)

for t > T. So Ha(X3) C X, and Hj is increasing on X5. By the Knaster—Tarski fixed point
Theorem, there exists 3 € X5 such that Ha(02) = 6. Let

O2(t) if t>T,
u(t) if T >t>rp.

Similar to the proof of Theorem 1, we may check that ;i is an eventually positive solution of
system (18)—(20) with z(¢)i’(t) > 0 eventually.

Lemma 2 is proved.

We now compare forced impulsive equations and unforced impulsive equations.

Theorem 2. Assume that (Al)—-(A6) and (6) hold and the solution z of (5) is oscillatory.
Assume that there exist two sequences {s,}, . and {3,}, cn such that

z(sn)_inf{Af;:t):tzsn} and z(évn)—sup{A(Zg?t):tZgn}. 22)

If the system (2)—(4) has a nonoscillatory solution x, then the system

(rt)d' (t)) + F(t,u(g(t))) =0, te[0,00)\T, (23)
u(t)) = agu(ty), keN, (24)
u/(t;:) = bku'(tk), keN, (25)

has a nonoscillatory solution u such that u(t)u'(t) > 0 eventually. Furthermore, u(t) is bounded if
x(t) is bounded and (A7) holds.

Proof. We first assume that z is an eventually positive solution of (2) - (4). By Lemma 1, x(t) >
> z(t) and 2'(t) > 2/(t) eventually. Without loss of generality, we may assume that 7 = 0, x(¢t) > 0,
x(t) > z(t) and 2/(t) > 2/(t) for t > s1. Let y(t) = x(t) — 2(¢) and v(t) = y(t) + A(s1,t)z(s1)
for ¢t > s1. Clearly, v,v" € PC'([s1,00),R). By Lemma 1, we see that y/(¢) > 0 for ¢ > s1. So
y(t) > A(s1,t)y(s1) for t > s1, from which it follows that
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() = y(t) + A(s1,t)2(s1) > A(s1,t) (y(s1) + 2(s1)) = A(s1,t)x(s1) > 0 (26)
for ¢ > s1. We note that
v'(t) =y'(t) >0, 27)
and by (22)
2(t) = y(t) + 2(t) > y(t) + A(s1,1)2(s1) = v(?) (28)

for t > s;. In view of (A3), there exists 7 > s; such that r7 > s;. By (28), then z:(g(t)) > v(g(t)) >
> 0 and

F(t,z(g(t)) > F(t,v(g(1)))
for t > T. By (27) and (28), we see that
(rOv' (1) + Ft,0(g(t) < (rt)y' (1) + F(t,2(g(1))) =0, ae. ¢>T.

We observe that v(t]) = axv(ty) and v/(t) = byv'(ty,) for tx > T. In view of (26), the function v
is an eventually positive solution of system

(r(®)d' ()" + F(tu(g(t) <0, ¢ €[0,00)\T,
u(t)) = agulty), keN, (29)

u/(tZr) = bkul(tk)a k€N,

such that v/(¢) > 0 for ¢ > T. By Lemma 2, the system (23) —(25) has an eventually positive solution
u such that v(t) > wu(t) and u/(t) > 0 eventually. Assume that z is bounded and (A7) holds. By (22),
we note that the function z is bounded. Then the function v is bounded. So the function « is also
bounded.

Lastly, we assume that x is an eventually negative solution of (2)—(4). Let G(¢,x) = —F(t, —x)
for x € R. Let z(t) = —x(¢t) and z(t) = —=z(t) for sufficiently large t. Then Z is an eventually
positive solution

(rt)2' (1) + G(t,2(g(t)) = —e(t), t€[0,00\T,
x(t:) = arz(ty), k€N,
l’/(tl—:) = bkx’(tk), ke N.

By (22), we note that

3('.5”):—z(gn):—sup{A(Z;Zt):tzgn}:inf{ (1) :tz'gn},

for n € N. By the former case, we see that the system
(r(t' (1)) + G(t,u(g(t)) =0, t€[0,00\T,
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u(tZr) = (IkU(tk), keN,

u’(t,":) = bku'(tk), ke N,

has an eventually positive solution u(t) such that u’(¢) > 0 eventually. Furthermore, @ is bounded if
Z is bounded and (A7) holds. Let u(t) = —u(t) for sufficiently large ¢. So the system (23)—(25) has
an eventually negative solution u such that «/(¢) < 0 eventually, and u is bounded if = is bounded
and (A7) holds.

Theorem 2 is proved.

Theorem 3. Assume that (A1)— (A7) hold and the solution z of (5) satisfies limy_, . z(t) = 0.
If the system (23)—(25) has a nonoscillatory solution u with u(t)u'(t) > 0 eventually, then the
system (2)—(4) has a nonoscillatory solution .

Proof. Assume that u is an eventually positive solution. Without loss of generality, we may
assume that u(¢t) > 0 and «/(t) > 0 for ¢t > ry. Then

w(T) > A0, T)u(0) > mu(0) for any > 0. (30)

Since limy_,oo 2(t) = 0, there exists 7' > 0 such that |2(¢)| < m2u(0)/3 for ¢t > T. By the same
reasoning for obtaining the inequality (21), we have

t o]

1 [ F(v,u(g(v))) 2
u(t) > A(T,t) | u(T) + dvds | > m~u(0) (31
T/T ) /

fort > 0. Let

u(0)

X3 = {5 € PC ([T, >),R): m?T < 6(t) <wult) for t > T} :

Clearly, X3 is nonempty because u € X3. We impose in X3 the same order relation imposed in X;.
Then X3 is a complete lattice. We define an operator H3 on X3 by

Hs(6)(t) = A(T, t)QQ‘i())T) Yot + / :ié)t [Fe 7“”“ >dvds
T

for t > T. In view of (30),

2u(T
H3(5)(t) > m “é ) s w29 s
for any 6 € X3. Given d1, 02 € X3 with §; < J5. We note that

0 < wy(01)(t) < wu(d2)(t) < u(g(t))
for t > T. By assumption, (30) and (31), we have

H3(61)(t) < H3(d2)(t) <

< A(T,1) QUéT) +1200)] / / Flv D dvds <
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dvds <

[ s

<A(T7t)2ui())T) D) +/A(s,t)/F(%zti,gi;))))dvdsgu(t)

fort > T. So H3(X3) C X3 and Hsj is increasing on X3. By the Knaster — Tarski fixed point theorem,
there exists 03 € X3 such that H3(03) = 63. Let
93(t)a > Tv
x(t) =
u(t), T Z t Z rr.
Let 77 > 0 such that rp, > T. We note that z(g(t)) = w,,(63)(¢) for t > T}. In view of Hs(03) = 03,
we have

from which it follows that ' € PC’([T1,00),R) and
(r()2' 1)) + F(t,2(g(t)) = e(t), ae. t>Ti.
For any t;, > Ty, by H3(03) = 03 and (15),
z(th) = apz(ty) and o' (tF) = b ().

Then z is a positive solution of system (2)—(4) on [T}, ).

Theorem 3 is proved.

We remark that in the proof of Theorem 3, we see that in the condition (A7), we only need
“A(s,t) >mfort > s >0".

The following result offers a necessary and sufficient oscillation theorem for (2)—(4).

Corollary 2. Assume that (Al)— (A7) and (6) hold, and the solution z of (5) is oscillatory
and limy_,~, z(t) = 0. Then the system (2)—(4) has a nonoscillatory solution x if, and only if,
system (23)—(25) has a nonoscillatory solution u.

Proof. We first show that there exist two sequences {s,}, . and {5,}, .n such that (22) holds.
Let z(t) = 2(t)/A(T,t) for t > 7. Clearly, z(¢) is continuous on [7,00) and is oscillatory. By (A7)
and lim;_,~ 2(t) = 0, we see that lim;_,~ 2(t) = 0. In view of oscillation, there exists s; > 7 such
that Z(s1) < z(t) for ¢t > s, which implies that

z(t)
< 1 t > s7.
z(s1) < A0 D) or t> s
There exists s > s1 such that Z(s9) < Z(t) for ¢t > s1, which implies that
z(t)
< fe t > so.
z(s9) < A2, 0) or t> so
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By induction, we can take sequence {s;},n such that (22) holds. Similarly, we can also take the
sequence {5y}, n such that (22) holds. By Theorem 2, the necessary condition holds. Conversely,
assume that u is nonoscillatory solution of system (23) —(25). By Lemma 1, we see that u(¢)u/(t) > 0
eventually. By Theorem 3, the sufficient condition holds.

Corollary 2 is proved.

We have another necessary and sufficient condition for the existence of bounded nonoscillatory
solutions of (2)—(4).

Corollary 3. Assume that (A1)—(A7) and (6) hold and F(t, ) = p(t) f(u) where p € ALC(]0,
00),[0,00)) and f is nondecreasing on R with (f () > 0 for p # 0. Assume that the solution z of
(5) is oscillatory, and there exist two sequences {sn}, cn and {8, }, o such that (22) hold. Then the
system (2)—(4) has a bounded and nonoscillatory solution if, and only if,

p(v)
B(s,v)

o o0

/ L / dvds < oo (32)
r(s)

g S

for some € > 0.

Proof. Assume that (32) holds. Clearly, (10) and (16) holds. By (A7) and (22), we note that the
function z is bounded. By Theorem 1 and Corollary 1, the necessary condition holds. Conversely, we
see that by Theorem 2, the system (23)—(25) has a nonoscillatory solution w such that u(t)u/(t) > 0
eventually, and u is bounded. Assume that u is eventually positive with «/(¢) > 0 eventually. Then

there exists 7' > 0 such that u(¢) > 0 and u/(¢) > 0 for t > T. We observe that
M, > u(t) > AT, t)u(T) > mu(T) > 0

for t > T and some M, > 0. So the function « has a positive lower bound. Since f is nondecreasing
on R, there is my > 0 such that f(u(t)) > m; for ¢ > T. We observe that

rOU @Y (rOu @Y p0f ) my
( ult) >‘< u(d) >§ W) M,

for t > T. We divide the above inequality by B(T',t)/A(T,t) and then integrate from ¢ to d where
d>1t>T. We have

p(t)

ds

_ <
= M,J] B(Ts)

AT, d)r(d)u'(d)  A(T,t)r(t)u'(t) my /d A(T, s)p(s)
B(T, d)u(d) B(T, t)u(t)

ford >t > T. Since v/(d) > 0 and d is arbitrary, we see that

u(t) my 7 A(t, s)p(s)
u(t) = Mur() / Blts) ©

for t > T, from which it follows that

u'(t) = u'(t)

)ds.

mu(T) _ m*u(T)my 1 T p(s)
wt) = M, r(t)t/B(t,s
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We divide the above inequality by A(T,t), and then integrate from 7 to ¢. Then

m2u(Tym; [ A(s,t) T p(s)
u(t) > A(T, t)u(T) + T/ ) t/ S)ds >

M, r(s B(t,
>m u(T)+mu§§3mf / 5 / éfl ds (33)

for ¢ > T. Since u is bounded, we may easily see that (32) holds. Assume that u is eventually
negative with u/(¢) < 0 eventually. Then —u is an eventually positive solution of system

(r(Hu'(1) +p(t) Flulg(t))) =0, te[0,00\T, 34
u(t)) = agu(ty), keN, (35)
u’(t;:) = bku'(tk), k € N, (36)

where f(p) = —f (—u) for pn € R. Similarly, the function —u has a positive lower bound. We note
that the function fsatisﬁes all assumption of f. So the condition (32) holds.

Corollary 3 is proved.

Theorem 4. Assume that the hypotheses of Corollary 3 hold except for the condition (A7), and
that g'(t) > 0 for t > 0, a, > 1 for k € N, and

/f(l,u)d'u < oo forany € >0. (37

If the system (2)—(4) has a nonoscillatory solution, then (32) holds.

Proof. Since the system (2)—(4) has a nonoscillatory solution, by Theorem 2, we see that sys-
tem (23)-(25) has a nonoscillatory solution u with u(¢)u'(t) > 0 eventually. Assume that u is
eventually positive with «'(¢) > 0 eventually. There exists 7" > 0 such that u(¢) > 0 and «/(¢) > 0
for t > t7. For any 17 >t > T, we integrate (23) from ¢ to 77, and we obtain

T
r(T)u'(Ty)  r@)v'(2) p(s)f(ulg(s))) ,
BET, Tl)1 " B(T,¢) +/ B(T,s) =0 (38)
Since T is arbitrary, by (38), we see that
rO() [ p()f (ulg(s)))
m > /st, t>1T. (39)

Since ¢/(t) > 0 for ¢t > 0 and a, > 1 for k € N, we may see that g(s) > g¢(¢) and A(t,s) > 1 for
s >t > T, from which it follows that

u(g(s)) = Alg(t), g(s))u(g(t)) = u(g(t)) (40)
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for s >t > T. Since f is nondecreasing on R, we may further see that

f(u(g(s))) = f(u(g(t))) >0 (41)
for s >t > T. We divided (39) by f(u(g(t))). Then

Wiglt) 1 7’ p(9)f(ulg(s) -

from which it follows that, by (41),

u'(g(t)) 1 p(s)
Flalg®) = (9(®) / B( ds (42)

g(t)

for t > T. We multiply (42) by ¢'(¢), and then integrate from 7" to co. We obtain

Fwe)) ,  Fow (T o N F (T ),
T/ Flalglo)) ™ / (9(5)) % ol el e U e

g(T) s

By (37), (40) and (43), we see that

/T(ls) /Bp(ii))v)dv d8</;1(1(t ;2, / d,u<oo

9(T) s u(g(T))

So (32) holds. Assume that u(t) is eventually negative. Let f(u) = —f(—p) for p € R. By (37),
we have

o0

1
/Nd,u<oo forany ¢ > 0.
f(w)

€

We note that —u(¢) is eventually positive solution of system (34) —(36). Similarly, we may verify (32).

Theorem 4 is proved.

Recall now the equation (1) under the condition i > 1. For the ease of discussion, we state the
result in [1].

Corollary 4 [1]. Let n > 1 be given and let e, p and g be continuous functions on [0, 00) such
that limy_,o g(t) = 00, p(t) > 0, g(t) < t and ¢'(t) > o > 0 for t > 0. Assume that there exists
a bounded function z(t) on [0,00) such that 2" (t) = e(t) for all sufficient large t, and that z is
oscillatory and (22) holds. Then

o0

/sp(s)ds < 00 (44)

0

if, and only if, the equation (1) has a nonoscillatory solution.
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Because the equation (1) has no impulsive effects, ar = bp = 1 for all k. That is, A(s,t) =
= B(s,t) =1fort > s> 0. Letr(t) =1 for t > 0. Clearly, (6) holds and

[,

0

o0

dvds = /sp(s)ds.
0

So either condition (10) or (32) is equivalent to (44). We have the following conclusions.

(1) Assume that we replace the condition “¢’(t) > a > 0 for t > 0” by ¢/(t) > 0 for ¢ > 0. By
Theorem 1 and 4, we can obtain the same Corollary in [1].

(2) Assume that we remove the condition “g’(t) > «a > 0 for ¢ > 0”. By Corollary 3, we can
see that (44) holds if, and only if, the equation (1) has a nonoscillatory and bounded solution. We
note that if the equation (1) has a nonoscillatory and unbounded solution, the condition (44) may not
be true. So this result is sharp without the condition “¢’(¢t) > 0 for ¢ > 0.” We give an example to
illustrate it. Let £ (t) = t'/3 (2 4 sint) for t > 0. Clearly, there exists a > 0 such that £ (t) < t for
t > a. Let

ei(t), t=a,
g(t) =

ga(t), a>t>0,
where £2 is a nonnegative and continuous function on [0,a] with ea(t) < ¢ for 0 < ¢ < a, and
e1(a) = e2(a). By simple computation, we can see that lim; ,~ g(t) = oo and g(t) < t for t > 0,
and it is impossible that ¢'(t) > 0 for sufficiently large ¢. We consider a special equation

2" (t) + #xz(g(t)) =0, t>0. (45)
(1) -

Then the function z(¢) = /¢ is an eventually positive solution of (45) and is unbounded. But we can
see that

/OO ! dt—71dt>71dt—oo
432g(t) ) 456 (24sint) T ) 12656

Hence we have indeed made an improvement by avoiding the condition “¢’(t) > « > 0”.
3. Example. Assume that (A2) and (A3) hold. Let @ € R and the function
t* if t >0,
p(t) =
0 if t=0.

Consider the Klein— Gordon equation (c.f. Example 2.6.3 in [5])

2"(8) +p(t) [2(g(t))| exp(|2(g(t))]*) = e 'sint, € [0,00)\T, (46)
z(t)) = apx(ty), keN, (47)
2 (t)) = ax2’(tx), k€N, (48)
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where ay, are positive constants for £ € N such that (A7) holds. We can easily check that

t s
o ,
2(t) = A(0,1) /GA(OSlz)vdvds, t> %
2 4

3m 31
is a solution of the system
Z'(t) = e 'sint, t€[0,00)\T,
z(t;:) = arz(tp), k€N,

2 () = ar?'(t), k€N,

t s
—t
z(t) > m/ /e_” sinvdvds > m <€2 cos t)

3m 3w
2 4

t s
—t
z2(t) < M/ /e_” sinvdvds = M <e2 cost)
3
2

Since

and

3
4
for ¢t > 37/2, we may see that z(¢) is oscillatory and lim;_,, z(¢) = 0. Before stating the following
conclusions, recall that a function ¢ defined for all sufficiently large ¢ is oscillatory if ¢ is neither
eventually positive nor eventually negative.
(1) It is easy to check that all hypotheses of Corollary 3 are satisfied. We first note that o < —2

if, and only if,
oo oo
" vd
[ ] et <
1 s

By Corollary 3, we can see that « < —2 if, and only if, the system (46)-(48) has a nonoscillatory
solution = which is bounded.
(2) It is easy to check that all hypotheses of Corollary 2 are satisfied. Assume that m > 1 and

« > —1. Then
p(t) / to / e
dt = dt > | —dt = oo.
/ A(0, %) A0, =) M =™
1 1 1

Since

0 ti

1 e
T IT = /p(t)dt—/A(O’t)dt—oo.
0

aj
i=1 1<t <t i1
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By Theorem 1 in [4], then every solution of system

(1) + p(t) |2 (g(t)) | exp(|z(g(t))[*) = 0, ¢ € [0,00)\T, (49)
z(t)) = agz(ty), keN, (50)
2 (t)) = ag2’(tg), k€N, (51)

is oscillatory. By Corollary 3, we can further see that every solution of system (46) —(48) is oscillatory.
(3) Assume that ¢'(¢t) > 0 for t > 0, a, > 1 for k € N. Since

[e o]

/du < - /e“du < oo forany e>0,

£

by Theorem 4, we see that if & > —2, then every solution of system (46)—(48) is oscillatory.

1. Nasr A. H. Necessary and sufficient conditions for the oscillation of forced nonlinear second order differential
equations with delayed argument // J. Math. Anal. and Appl. — 1997. — 212. — P. 21-59.
Wong J. S. W. Second order nonlinear forced oscillations // SIAM J. Math. Anal. — 1988. — 19, Ne 3. — P. 667-675.

3. Sun Y. G. Necessary and sufficient condition for the oscillation of forced nonlinear differential equation with delay //
Pure and Appl. Math. — 2002. — 18, Ne 2. — P. 170-173.

4. Peng M. S., Ge W. G. Oscillation criteria for second order nonlinear differential equations with impulses // Comput.
Math. Appl. - 2000. — 39. — P. 217-225.

5. Agarwal R. P, Grace S. R., O’Regan D. Oscillation theory for second order dynamic equations. — Taylor & Francis,
2003.

6. Lakshmikantham V., Bainov D. D., Simeonov P. S. Theory of impulsive differential equations. — Singapore: World
Sci., 19891.

7. Perestyuk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V. Differential equations with impulsive effects:
multivalued right-hang sides with discontinuities. — Berlin: de Gruyter, 2011.

8. Samoilenko A. M., Perestyuk N. A. Impulsive differential equations. — Singapore: World Sci., 1995.

Received 16.09.11

ISSN 1027-3190. Ykp. mam. sxcypn., 2012, m. 64, Ne 9



