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A NEW METHOD OF GENERATING OF TRAVELING WAVE 
SOLUTIONS FOR COUPLED NONLINEAR EQUATIONS*  
НОВИЙ МЕТОД ГЕНЕРУВАННЯ РОЗВ’ЯЗКІВ ТИПУ 
БІЖУЧИХ ХВИЛЬ ДЛЯ ЗЧЕПЛЕНИХ НЕЛІНІЙНИХ РІВНЯНЬ 
A new algebraic transformation method is constructed for finding traveling-wave solutions of complicated nonlinear wave 
equations on the basis of simpler ones. The generalized Dullin – Gottwald – Holm (DGH) equation and mKdV equations 
are chosen to illustrate our method. The solutions of the DGH equation can be obtained directly from solutions of the 
mKdV equation. Conditions under which different solutions appear are also given. Abundant traveling-wave solutions of 
the generalized DGH equation are obtained, including periodic solutions, smooth solutions with decay, solitary solutions, 
and kink solutions. 
Побудовано новий метод алгебраїчних перетворень для знаходження розв’язків типу біжучих хвиль для складних 
нелінійних хвильових рівнянь на основі більш простих. Для ілюстрації методу використано узагальнене рівняння 
Далліна – Готвальда – Холма та модифіковане рівняння Кортевега – де Фріза. Розв’язки рівняння Далліна – Гот-
вальда – Холма можна отримати безпосередньо із розв’язків модифікованого рівняння Кортевега – де Фріза. Наве-
дено також умови для отримання різних розв’язків. Отримано чисельні розв’язки типу біжучих хвиль для узагаль-
неного рівняння Далліна – Готвальда – Холма, серед яких періодичні розв’язки, гладкі розв’язки з запізненням, солі-
тонні розв’язки та кінк-розв’язки. 
1.  Introduction.  Nonlinear wave phenomena appear in a wide variety of scientific applications, 
such as fluid mechanics, plasma physics, biology, hydrodynamics, solid state physics and optical 
fibers.  These nonlinear phenomena are often related to nonlinear wave equations.  Investigation of 
the traveling wave solutions can make a better understanding of those phenomena and their applica-
tion in real life.  Although many methods have been developed to construct traveling wave solutions, 
it is still a difficult task to find traveling wave solutions of complicated equations with nonlinear 
terms. 

 The main purpose of this paper is to devise a new method to get traveling wave solutions of the 
complicated wave equations from solutions of simpler equations.  This method is different from the 
classic Miura transformation [1], that is, the classic Miura transformation is between two equations 
with a linear dispersive term, and our method has more advantages in that one can obtain abundant 
solutions of the aimed equation with a nonlinear dispersive term.   

 The generalized DGH equation 

 ut + 2!ux " #2uxxt + aumux + $uxxx ! = !#2 (2uxuxx + uuxxx )   (1.1) 

includes two separately integrable soliton equations for water waves.  If taking  m = 1   and  a = 3 ,  
Eq. (1.1) becomes the DGH equation [2] 

 ut + 2!ux " #2uxxt + 3uux + $uxxx ! = !#2 (2uxuxx + uuxxx ) , (1.2) 

which arises as a model for the unidirectional shallow water waves over a flat bottom.  Here  !2   
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and  !   are squares of length scales, and the constant  !   is the critical shallow water speed for un-
disturbed water at rest at spatial infinity.  Eq. (1.2) has been studied by many researchers.  The exis-
tence of several special solutions was proved in [3 – 6].  Those solutions include smooth solitary so-
lutions, peakons, global conservative solutions and low regularity solutions with continuously peri-
odic initial data.  In [7 – 11], the authors studied the solution properties of the DGH equation and its 
relative equations.  In this present letter, we will consider all possible integral constants. 

Letting  ! = 0 ,  m = 2  and  !2 " 0 ,  Eq. (1.1) becomes the famous mKdV equation 

 ut + au2ux + !uxxx ! = !0 , (1.3) 

which plays an important role in many nonlinear scientific fields [13 – 16].  Eq. (1.3) has been used 
to describe acoustic waves in certain anharmonic lattices and Alfven waves in a collisionless plasma.  
It also appears in the models of Schottky barriers transmission lines and traffic congestion.  Many 
solutions of (1.3) in integral form have been given for some special integral constants.  However, for 
any integral constants, all the possible solutions have not been determined. 

In view of the close relationship between Eq. (1.1) and Eq. (1.3), it is possibble to establish an 
explicit connection between solutions of these two equations.  If the connection does exist, one can 
easily obtain traveling wave solutions of Eq. (1.1) from the already known solutions of Eq. (1.3).  
This is one motivation of our work.  Another motivation is that, whether the generalized DGH equa-
tion still preserves the integrability, Hamiltonian structure and some important conservative laws, 
like the two integral equations (1.2) and (1.3). 

The remainder of the paper is organized as follows.  In Section 2, a kind of the generalized DGH 
equation is firstly proved integrable.  Meanwhile, the Hamiltonian structure and some important 
conservative laws of Eq. (1.1) are given.  In Section 3, under different parameter conditions, the 
classification of traveling wave solutions of the mKdV equation is given by a qualitative method in 
which all possible integral constants are considered.  In Section 4, motivated by the Fan subequation 
method [17], we verify directly an explicit connection between the mKdV equation and the general-
ized DGH equation.  Furthermore, abundant traveling wave solutions of the generalized DGH equa-
tion are determined from the known solutions of the mKdV equation, and some examples of explicit 
solutions are also given.  The last section is conclusion. 

2.  Painleve property and conservative laws.  An equation is called Painleve integrable when 
it has Painleve property which means its solutions are single valued about an arbitrary singular 
manifold.  In this section, we will study the Painleve integrability of the generalized DGH equa-
tion. 

According to the Kruskal method [18], we expand  u   in Eq. (1.1) by a local Laurent expansion 
in the neighborhood of the singular manifold  !(x, t) = 0   as 

 u ! = ! u j
j=0

!

" # j+$ . (2.1) 

Substituting (2.1) into (1.1) leads to conditions on  !   and recursion relation for the functions  u j .  
If  !   is a negative integer and the recursion relation is consistent, then we say the system (1.1) is 
integrable.   
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Substituting  u ~ u j!"   into Eq. (1.1), the leading order analysis implies  ! = "
2

m " 1
,  so we 

can deduce  m = 2   or  m = 3 .   
For  m = 2 ,  we obtain the recursion relation of the expansion coefficients  u j   as 

 ( j + 1)( j ! 6)( j ! 8)u j ! = !Fj ("x ,!"t ,…,!u0,!u1,…,!u j!1) , (2.2) 

where  Fj   is a function of  u0,!u1,…,!u j!1   and the derivatives of  ! .  Therefore the resonances 
occur at  j = !1,!6,!8 .  The resonance at  j = !1   represents the arbitrariness of the singular mani-
fold  !(x, t) = 0 .  For the integability of Eq. (1.1), we only prove the existence of arbitrary functions 
at the cases  j = 6,!8   with  m = 2 .  According to the Kruskal’s method, one can take  !  = 
= x + !(t) ,  where  !(t)   is an arbitrary function of  t .  After a lengthy computation, we obtain 

 u0 ! = !
24
a

,      u1 ! = !u3 ! = !u5 ! = !0 ,      u2 ! = !!
1
3
" t !

1
3
# , 

 u4 ! = !
1
20

! t "
w
10

"
a
180

! t
2 "

a#
90

! t "
a# 2

180
, (2.3) 

 u7 ! = !
13a
5760

! tt "
a2

8640
! t! tt "

a2#
8640

! tt . 

Substituting (2.3) into the recursion relations (2.2), one can find that (2.2) are satisfied identi-
cally.  Hence the generalized DGH equation (1.1) with  m = 2   is integrable. 

Similarly, for  m = 3 ,  we obtain the recursion relation of the expansion coefficients  u j   as 

 ( j + 1)( j ! 4)( j ! 5)u j ! = !Fj ("x ,!"t ,…,!u0,!u1,…,!u j!1) .   

When the resonance occurs at  j = 5 ,  we obtain 

 F5 ! = !! tt ("32 + 6a#! t + 3a! t
2 + 3a# 2 )! $ !0 .   

Therefore the generalized DGH equation (1.1) with  m = 3   is not integrable. 
The generalized DGH equation, combining the DGH equation and the mKdV equation, still pre-

serve the Hamiltonian structure and some important conservative laws.  Indeed, the generalized 
DGH equation, analogous to the case of the DGH equation, has the following conservative laws 

 
 
M (u)! = ! u

R
! dx ,      

 
Q(u)! = !1

2
(u2 + ux2 )

R
! dx , 

  
H (u)! = !! 1

2
2a

(m + 1)(m + 2)
um+2 + uux2 + 2"u2 ! #ux2

$
%&

'
()R

* dx
 

and the Hamiltonian structure  
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 ut ! = !!"x
#H
#u
! = !{u, H} ,   

where the Poisson bracket structure is defined as  {u(x), u(y)} = !x"(x # y) .   
3.  Classification of traveling wave solutions of the mKdV equation.  In this section, we will 

classify traveling wave solutions of the mKdV equation in different regions of parametric space by a 
qualitative method. 

For a traveling wave  u(x, t) = !(") = !(bx # ct) ,  Eq. (1.3) takes the form 

 !c"# + ab"2"# + $b3"### ! = !0 , (3.1)  

where  b   and  c   are constants to be determined.  Integrated twice with respect to  x ,  Eq. (3.1) 
turns to be the equivalent integrated form  

 !"
2 ! = !h1(!4 # h2!2 + d1!) + d2 , (3.2)  

where  h1 = !
"
6b2#

,  h2 =
6c
!b

,  d1   and  d2   are arbitrary constants of integration.  For some spe-

cial values of  d1   and  d2 ,  it is not difficult to obtain traveling wave solutions of Eq. (3.2).  How-
ever, for any integral constants, it is a hard task to determine the type of the solutions.  Fortunately, 
we can use a qualitative analysis method to deal with this problem, in which we consider Eq. (3.2) 
for all possible constants of integration.  Let 

 !x2 ! = !F(!)! = !h1(!4 " h2!2 + d1!) + d2  (3.3)  

for determining the solutions of Eq. (3.2).  Let the polynomial  P(!) = h1!G(!)   with a simple root 

at  ! = 0 ,  where  G(!) = !3 " h2! + d1 .  The solutions of Eq. (3.2) correspond to different behav-
iors of this polynomial.  Once the integral constant  d1   is fixed, a change in  d2   will shift the graph 
vertically up or down, accordingly change the zero points. 

Similar to the method in [12], we can obtain five qualitatively different cases of  P(!)   when  
h1 > 0   (see Figure), and we can also establish the following structure of traveling wave solutions of 
Eq. (3.2): 

Case 1.  When  h1 > 0 ,  any traveling wave solution falls into one of the following categories:  

(1)  If  d1 >
2 3
9

h23/2 ,  for some negative  d2 ,  there are smooth solutions with decay and peri-

odic solutions. 

(2)  If  0 < d1 !
2 3
9

h23/2 ,  there are smooth solutions with decay and periodic solutions for 

some positive  d2 .  For some negative  d2 ,  there are periodic solutions.   
(3)  If  d1 = 0 ,  there are kink solutions and periodic solutions for some positive  d2 . 
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 (1)  d1 >
2 3
9

h23/2  (2)  0 < d1 !
2 3
9

h23/2  (3)  d1 = 0    

   

 (4)  ! 2 3
9

h23/2 " d1 < 0  (5)  d1 < !
2 3
9

h23/2  

Five cases of  P(!)   as  h2 > 0 . 

 (4)  If  ! 2 3
9

h23/2 " d1 < 0 ,  there are periodic solutions for some negative  d2 .  For some 

positive  d2 ,  there exists smooth solutions with decay and periodic solutions. 

(5)  If  d1 < !
2 3
9

h23/2 ,  there are smooth solutions with decay and periodic solutions for some 

negative  d2 .   
For  h1 < 0 ,  we can obtain the following results. 
Case 2.  When  h1 < 0 ,  any traveling wave solution falls into one of the following categories:  
(1)  If  d1 ! 0 ,  for some negative  d2 ,  there are periodic solutions.  For some positive  d2 ,  

there are smooth solutions with decay and periodic solutions. 
(2)  If  d1 = 0 ,  there are solitary solutions for  d2 = 0   and periodic solutions for some positive 

or negative  d2 .   
Remark.  If  h2 ! 0 ,  there are no bounded solutions of Eq. (3.2).   
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4.  The new transformation method and traveling wave solutions.  For a traveling wave  
u(x, t) = u(!) ,  ! = bx " ct ,  Eq. (1.1) is reduced to 

 (2!b " c)u# + ($b + %2c)u### + abumu# ! = !%2b3(2u#u## + uu### ) , (4.1) 

where  b   and  c   are constants to be determined.  The purpose of this section is to find a transfor-
mation between Eq. (4.1) and Eq. (3.2).  Furthermore, by this transformation, we can obtain solu-
tions of Eq. (4.1) from those to Eq. (3.2).   

The main idea of our method is to expand a solution of Eq. (4.1) in the form 

 u ! = ! ai!i
i=0

n

" , (4.2) 

where  !   is a solution of Eq. (3.2).  Once the parameters  n   and  ai   are determined, one can ob-
tain the solutions of Eq. (4.1) from already known solutions of Eq. (3.2) easily.   

Firstly, to determine the parameter  n ,  we give the following results by (3.2): 

 d!
d"
! = !# h1(!4 $ h2!2 + d1!) + d2 , (4.3) 

 d
d!
!" !# h1($4 % h2$2 + d1$) + d2

d
d$

, (4.4) 

 d2

d!2
!" !#2 1

2
h1(4$3 % 2h2$ + d1)

d
d$

+ (h1($4 % h2$2 + d1$) + d2 )
d2

d$2
&

'
(

)

*
+ , (4.5) 

 ……………………………………………………………………………, 

where  ! = ±1 .  Substituting (4.2) together with (4.3) – (4.5) into Eq. (4.1) and balancing the highest 

derivative term with the nonlinear convection term, we can obtain  n =
2

m ! 1
.  Noting that the posi-

tive integer  n   implies  m = 2   or  3 ,  the parameter  n   must be taken  2   or  1   correspondingly.   
Secondly, to determine the parameters  ai ,  substituting (4.2) into Eq. (4.1) and setting coeffi-

cients of all powers of  !i   and  !i h1(!4 " h2!2 + d1!) + d2   to zero, we can obtain a system of 
algebraic equations from which the parameters  ai   can be found explicitly. 

Based on the above method, we obtain the following results with the aid of Maple. 
Theorem 1.  For  m = 2 ,  corresponding to the traveling wave solution  !   of the mKdV equa-

tion (1.3),  

 u ! = !2c!2 " c
3b

"
c
3!2

" !2#2  (4.6) 

is a solution of the generalized DGH equation (1.1), where  b ,  c   are arbitrary constants,  d1 = 0   
and  
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 d2 ! = !
9bc!4 " 16ab2 " 8abc!2 " ac2!4 " 18b2c2!8 " 18b2#!4

36b4!8
.   

Theorem 2.  For  m = 3   and  d1 ! 0 ,  corresponding to the traveling wave solution  !   of the 
mKdV equation (1.3),  

 u ! = !! 2
"2

!
c
4b

+
24c ! 24abc ! 48b# ! 6ac2"2

ab"2d1
$  (4.7) 

is a solution of the generalized DGH equation (1.1) with  m = 3 ,  where  d1   and  b   are arbitrary,  

d22 ! = !
1728(8abc2 + 16bc! + 2ac3"2 # 4c2 # 16b2!2 # 16ac!b2 # 4ab!c2"2 # a2b2c3"6 )

5a2b2"6  
and  c   satisfies  

 !2c2 + (8b!2 " 4b2!6 )c + 16b2 ! = !0 . (4.8)  

Theorem 3.  For  m = 3   and  d1 = 0 ,  corresponding to the traveling wave solution  !   of the 
mKdV equation (1.3),  

 u ! = !! 2
"2

!
c
4b

+ a1# , (4.9) 

is a solution of the generalized DGH equation (1.1), where  b =
4c ! a"2c2

4ac + 8#
  and  c   satisfies (4.8). 

Based on the above facts, combining with the results in Section 3, we can obtain that there exist 
periodic solutions, kink solutions and smooth solutions with decay to Eq. (1.1) under some parame-
ter conditions.   

In the following we will give some examples of explicit solutions.   
Example 1.  If  d1 = d2 = 0 ,  we can easily get the explicit solution of (3.2).  Then substituting 

the solution into (4.6), we obtain a smooth solution of Eq. (1.1) with  m = 3    

 u1 ! = !2b3! "2 #
1
3b

#
1
3"2

$
%&

'
() #

6!"2b2

a
sech2 (bx # b3!t) . (4.10) 

Furthermore, if  b =
!2

3!4 " 1
,  (4.10) becomes the solitary wave solution.  According to Theo-

rem 1, we find that the parameters of Eq. (1.1) should satisfy 

 9!b2"4 # 16a # 8a!b2"2 # ab4! 2"4 # 18b6! 2"8 # 18$"4 ! = !0 .   

Example 2.  If  d1 =
!32b3"

a
2"
a

  and  d2 = 0 ,  solving (3.2) and using (4.7), we obtain a pe-

riodic solution of Eq. (1.1) with  m = 3    



1372 JIULI YIN, SHANYU DING, LIXIN TIAN, XINGHUA FAN 

ISSN 1027-3190.  Укр.  мат.  журн., 2012, т.  64, № 10 

 u3 ! = !!
2
"2

! b2# +
8a#b3 + 6$ + 48a"2# 2b5 ! 31#b2

"2b2#
cos2 (bx ! 4b3#t)

3 ! 2 cos2 (bx ! 4b3#t)
,   

where the parameters of Eq. (1.1) satisfy 

 27a(4ab5! 2 + 2!"b2 + 4ab7! 3#2 $ 13b4! 2 $ 2ab3! "  – 

 – !2 " 2a!b5# 2$2 " 2a2$6b9# 3) " 5b6# 3$6 ! = !0 ,   

and  b   is determined by  !2" 2b4 # "!6b3 + 2"!2b2 + 1 = 0 .   

Example 3.  If  d1 = 0   and  d2 = !
3"b2

2a
,  solving (3.2) and using (4.9), we obtain a kink solu-

tion of Eq. (1.1) with  m = 3    

 u2 ! = !!
2
"2

!
c
4b

+ a1 tanh bx + 2b3#t$% &' , 

where  b =
4c ! a"2c2

4ac + 8#
  and  c   satisfies (4.8). 

5.  Conclusions.  A new method was devised to construct traveling wave solutions of the com-
plicated nonlinear wave equations from solutions of the simpler equations.  Abundant traveling 
wave solutions can be obtained by this method easily.  As an example, we obtained periodic solu-
tions, smooth solutions with decay, solitary solutions and kink solutions of the generalized DGH 
equation.  This new method is direct and efficient.  It can be widely applied to other nonlinear wave 
equations. 
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