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DELAYED FEEDBACK MAKES
NEURONAL FIRING STATISTICS NON-MARKOVIAN

3ATPUMAHUM 3BOPOTHHUM 3B’SI30K
CIIPUYMHSIE HEMAPKOBICTH CTATUCTHUKHU IMOCTPLIIB HEMPOHA

The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of
impulses in communication lines between the neurons. In neurophysiological experiments, the neuronal firing moments are
registered, but not the state of communication lines. However, future spiking moments depend substantially on the past
positions of impulses in the lines. This suggests that the sequence of intervals between firing moments (interspike intervals,
ISI) in the network can be non-Markovian. In this paper, we address this question for a simplest possible neural “network”,
namely, a single neuron with delayed feedback. The neuron receives excitatory input both from the input Poisson process
and from its own output through the feedback line. We obtain exact expressions for the conditional probability density
P(tns1 | tny...,t1,t0)dtny1 and prove that P(tn41 | tn,...,t1,t0) does not reduce to P(tnt1 | tn,...,t1) for any
n > 0. This means that the output ISI stream cannot be represented as a Markov chain of any finite order.

CraH HEHpOHHOI MepeXi CKIANAEThCS K 3 BEIMYMHU 30yIKEHHS B KOXKHOMY 3 HEMPOHIB, TaK 1 31 3HAYCHb MOJIOKEHHS
IMITYJIBCIB Y JIIHISX 3B’s13Ky. B Helpodi3ionoriqHux ekcriepuMeHTax peecTpyroThCs MOMEHTH IIOCTPLIIB OKPEMUX HEHPOHIB,
a He CTaHW JiHiH 3B’A3Ky. AJle MOMEHTH HACTYITHUX HOCTPLTIB iCTOTHIM YHHOM 3aJIeXKaTh Bifl IOJI0KEHHS IMITYJIBCIB Y JIIHISX
3B’S13Ky B monepexHi MoMeHTH. lle HaBOOWTH Ha AYMKY, IO IMOCHIZOBHICTH IHTEPBAJIB MiX MOCTIJOBHUMH HOCTpilaMU
OKpeMOro HelpoHa B Mepexi (MixcmaiikoBi iHTepBanmu, MCI) Moxe CKiTagaTh HEMapKOBCHKHH TOYKOBHH CTOXaCTHYHHI
nporiec. Y mid pobOTi TOCTIIKYETHCS Taka MOXIHBICTh U1 HAWMPOCTIIIOT 3 MOXIHUBHX HEHPOHHOI ,,Mepexi’, a came,
HOOJMHOKOT0 HEHPOHA 3 3aTPUMaHUM 3BOPOTHUM 3B’ s13k0M. HefipoH OTpHMYE B SKOCTI CTHMYJTy 30y1KyBallbHi IMITYJIbCH Bijt
ITyaCCOHIBCHKOT'O BX1THOTO MpOIIeCy i BIacHI BUXiIHI 30y KyBajbHI IMITyIbCH Yepe3 JiHiI0 3BOPOTHOTO 3B 13Ky OneprkaHo
TOYHI BUpasu [UIs MILTBHOCTI YMOBHOT UMOBIPHOCTI P(tn41 | tn,- . -, t1,t0)dtn+1 i HOBeneHo, o P(tn+1 | tn, ..., t1,t0)
He 3BOAUTECA 10 P(tnt1 | tn,...,t1) ams Gyge-sxoro n > 0. Lle o3nadae, mo Buxiguuit motik MCI HemMoxHBO mogatu
SIK MAPKOBCHKHH JIAHIIOT CKiIHUCHHOTO MOPSIKY.

1. Introduction. Activity of many central neurons is seemingly random. This fact allows to describe
the firing activity as stochastic process [1, 2]. If a single neuron is considered, which is stimulated
with a point renewal process, then the firing activity will be as well renewal'. We now put a question:
Is it feasible that a neuron embedded into a recurrent network will have an activity, which is as well
renewal?

In a neural network, the main component parts are neurons and inter-neuronal communication
lines — axons [3]. These same units are the main ones in most types of artificial neural networks [4].
If so, then the instantaneous dynamical state of a network must include dynamical states of all the
neurons and communication lines the network is composed of. The state of a neuron can be described
as its degree of excitation. The state of a line consists of information of whether the line is empty or
conducts an impulse. If it does conduct, then further information about how much time is required
for the impulse to reach the end of the line (time to live) describes the line’s state.

In neurophysiological experiments, the triggering (spiking, firing) moments of individual neurons
but not the states of communication lines are registered. The sequence of intervals between the

"We do not take into account adaptation mechanisms here.
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consecutive moments (interspike intervals, ISIs) is frequently considered as a renewal [5] or Markovi-
an [6-8] stochastic process. For a renewal process, the consecutive ISIs are mutually statistically
independent. Moreover, all statistical characteristics of a spike train must be derivable from the
single-ISI probability distribution. Additionally, those characteristics must be the same for a shuffled
spike train, obtained by randomly reordering the ISIs, since shuffling does not change the single-ISI
probability distribution. On the other hand, the experimentally obtained spike trains in auditory [9]
and visual [10] sensory systems do not support the ISIs’ mutual independence. This is revealed by
calculating the correlation coefficient between the adjacent ISIs, which appeared to be nonzero for the
experimental spike trains, while it must be zero for any renewal process. Also, such characteristics as
Fano factor curve and firing rate distribution calculated for shuffled spike trains differ qualitatively
from those obtained for the intact ones. These observations can be associated with memory effects in
the ISI sequence which arise from an underlying non-renewal process. Recently [11], such a possi-
bility was studied experimentally for weakly electric fish electrosensory afferents using high-order
interval analysis, count analysis, and Markov-order analysis. The authors conclude that the experi-
mental evidence cannot reject the null hypothesis that the underlying Markov chain model is of order
m or higher, or maybe non-Markovian. The limited data sets used in [11] allow to establish a lower
bound for m as m > 7 for some neural fibers.

What could be possible sources of such non-renewal, or even non-Markovian, behavior in a real
neural network? First, this behavior could be inherited from non-renewal (non-Markovian) character
of the input signal. Second, intrinsic neuronal properties, such as adaptation, could be responsible.

In this paper, we show that the presence of delayed recurrent neuronal interconnections represents
the natural cause of the non-Markovian behavior. For this purpose, we consider the simplest possible
neural “net”, namely, a single neuron with delayed feedback, which is driven with Poisson process.
As neuronal model we take binding neuron as it allows rigorous mathematical treatment. We study
the output ISI stream of this system and prove that it cannot be presented as Markovian chain of any
finite order. This suggests that activity of any network with delayed interconnections, if presented in
terms of neuronal firing moments, should be non-Markovian as well.

2. The object under consideration. 2.1. Binding neuron model. The understanding of mecha-
nisms of higher brain functions expects a continuous reduction from higher activities to lower ones,
eventually, to activities in individual neurons, expressed in terms of membrane potentials and ionic
currents. But the description of the higher brain functions in terms of potentials and currents in parts
of individual neurons would be difficult, similarly as it would be difficult to describe execution of
computer programs by a CPU in terms of Kirhgoff’s laws. In this connection, it would be helpful to
abstract from the rules by which a neuron changes its membrane potentials to rules by which the input
impulse signals are processed in the neuron and determine its output firing activity. The “coincidence
detector”, and “temporal integrator” are the examples of such an abstraction, see discussion in [12].

One more abstraction, the binding neuron (BN) model, is proposed as signal processing unit [13],
which can operate either as coincidence detector, or temporal integrator, depending on quantitative
characteristics of stimulation applied. This conforms with behavior of real neurons, see, e.g., [14, 15].
The BN model describes functioning of a neuron in terms of discrete events, which are input and
output impulses, and degree of temporal coherence between the input events, see [16] for detailed
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Fig. 1. Binding neuron with feedback line under Poisson stimulation. Multiple input lines with Poisson streams are joined
into a single one here. A is the delay duration in the feedback line.

description. Mathematically, this model can be realized as follows. We expect that all input impulses
in all input lines are identical. Each input impulse is stored in the BN for a fixed time, 7. The 7 is
similar to the “tolerance interval” discussed in [17]. All input lines are excitatory. The neuron fires
an output impulse if the number of stored impulses, 3, is equal or higher than threshold value, Ng.
After that, BN clears its memory and is ready to receive fresh inputs. That is, every input impulse
either disappears contributing to a triggering event, or it is lost after spending 7 units of time in the
neuron’s internal memory.

The BN model is not general, but somewhat inspired by neurons as integrators up to a threshold.
Its name is suggested by binding of features/events in large-scale neuronal circuits [18—20]. Its
operational simplicity is provided by the fact that trace of each input impulse entirely disappears after
finite time 7. This is in the contrast to more familiar models where the traces (excitatory postsynaptic
potentials, EPSP) decay exponentially. E. g., in the leaky integrate-and-fire model, EPSP is mimicked
as pure exponential function the traces of which can disappear only after triggering. In the BN model,
the EPSP is mimicked as box function of width/duration 7 and the traces are stored in the neuron no
longer than 7 units of time.

Further, we expect that input stream in each input line is the Poisson one with some intensity ;.
In this case, all input lines can be collapsed into a single one delivering Poisson stream of intensity
A= Zl A, see Fig. 1.

For analytic derivation, we use BN with Ny = 2 in order to keep mathematical expressions
shorter. It seems, that cases with higher thresholds might be considered with the same approach, but
even Ny = 3 without feedback requires additional combinatorial efforts, see [21]. Therefore, cases
of higher threshold are tested here only numerically.

As regards real biological neurons, the number of synaptic impulses in the internal memory
which is necessary to trigger a neuron, varies from one [22], through fifty [23], to 60— 180 [24], and
100-300 [25].

2.2. Feedback line action. In real neuronal systems, a neuron can form synapses from its
axonal branches to its own dendritic tree [26 —33]. Synapses of this type are called autapses. Some
of the neurons forming autapses are known to be excitatory, see [26, 27, 29, 30, 33] for experimental
evidence. As a result, the neuron stimulates itself obtaining an excitatory impulse after each firing
with some propagation delay. We model this situation assuming that output impulses of BN are fed
back into BN’s input with delay A. This gives the BN with delayed feedback model, Fig. 1. Impulses
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from the feedback line have the same excitatory action on BN as those arrived from the input Poisson
stream. Namely, each one of them is stored in the BN’s memory for time 7, after which it disappears
completely, if not involved in triggering and generating a spike, see Subsection 2.1.

The feedback line either keeps one impulse, or keeps no impulses and cannot convey two or more
impulses at the same time. Biological correlates, which support to an extent this assumption, could be
a prolonged refractory time and/or short-term synaptic depression. The latter can have the recovery
time up to 20 s [34]. If the feedback line is empty at the moment of firing, the output impulse enters
the line, and after time interval equal A reaches the BN’s input. If the line already keeps one impulse
at the moment of firing, the just fired impulse ignores the line.

Any output impulse of BN with feedback line may be produced either with impulse from the line
involved, or not. We assume that, just after neuronal firing and sending output impulse, the line is
never empty. This assumption is self-evident for output impulses produced without impulse from the
line, or if the impulse from the line was involved, but entered empty neuron. In the letter case, the
second (triggering) impulse comes from the Poisson stream, neuron fires and output impulse goes
out as well as enters the empty line. On the other hand, if impulse from the line triggers BN, which
already keeps one impulse from the input stream, it may be questionable if the output impulse is
able to enter the line, which was just filled with another impulse. We expect it does. This means
that the refraction time of biological axon modelled as feedback line does not exceed A. Thus, at
the beginning of any output ISI, the line keeps impulse with time to live s, where s € ]0; A], or
0 < s < A. In this paper, we consider the case

A<t (1)

in order to keep expressions shorter.

3. Statement of the problem. The input stream of impulses, which drives neuronal activity is
stochastic. Therefore, the output activity of our system requires probabilistic description in spite of the
fact that both the BN and the feedback line action mechanisms are deterministic. We treat the output
stream of BN with delayed feedback as the stationary process?. In order to describe its statistics, we
introduce the following basic functions:

the joint probability density P (¢, tym—1,...,to) for m + 1 successive output ISI durations;

the conditional probability density P(t,, | tm—1,...,%0) for output ISI durations; P(t,, |
tm—1,--.,to) dty, gives the probability to obtain an output ISI of duration between t,,, and ¢,,, + dt,
provided the previous m ISIs had durations ¢,,_1,tmy—2, ..., to, respectively.

Here we reproduce definition from [35].

Definition 1. The sequence of random variables {t;}, taking values in Q, is called the Markov
chain of the order n > 0, if

vm>nvt0€§2 .. -vtmEQ: P(tm | tin—1,--- ,t()) = P(tm | tin—1,--- 7tmfn)a

and this equation does not hold for any n' < n. In the case of ISIs one reads ) = RT.

>The stationarity of the output stream results both from the stationarity of the input one and from the absence of
time-dependent parameters in the BN model, see Subsection 2.1. In order to ensure stationarity, we also expect that system
is considered after initial period sufficient to forget the initial conditions.
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In particular, taking m = n + 1, we have the necessary condition
P(tpy1 | tn,---st1,t0) = P(tns1 | tny -5 t1), t; €Q, i=0,...,n+1, )

required for the stochastic process {¢;} to be the n-order Markov chain.

In the next sections we prove the following theorem.

Theorem 1. The output ISIs stream of BN with delayed feedback under Poisson stimulation
cannot be represented as a Markov chain of any finite order.

4. Proof outline. In order to prove the Theorem 1, we are going to show analytically, that the
equality (2) does not hold for any finite value of n, namely, in the exact expression for conditional
probability density P(ty+1 | tn, ..., t1,t0), elimination of ¢p-dependence is impossible.

For this purpose we introduce the stream of events (¢, s)

tS:{...,(ti,Si),...},

where s; is the time to live of the impulse in the feedback line at the moment, when ISI ¢; starts.
We consider the joint probability density P(t,t1,Sn+1;tn,Sn;---;to,So) for realization of n +
+ 2 successive events (¢, s), and the corresponding conditional probability density P(t,11, Sn+1 |
tn, Sn; - - - to, So) for these events.

Lemma 1. Stream ts is the 1st order Markovian:

v7120v2€0>0v506 JO;A] - - - vtn+1 >0vsn+1€ 10;A] -

P(tnt1,8n+1 | tnysns .-+ 3t0,50) = P(tng1, Sntt | tnySn), 3)

where {to, ..., tnt1} is the set of successive ISIs, and {so, ..., snt+1} are the corresponding times to
live.

Proof. In the compound event (¢,,41, Sp+1), the time to live s, always gets its value before
than the ¢,,; does. The value of s,,41 can be determined unambiguously from the (¢, s,,) value (see
Subsections 2.2 and 5.2):

Sp — tny tn < Sn,y
Spn+1 =
A, tn > Sn.
The only two factors, which determine the next ISI duration, ¢, 1, are (i) the value of s,41, and
(ii) the behavior of the input Poisson stream under the condition (¢,, sy; . . . ; to, So) after the moment
0, when the ¢, starts. The s,41 value does not depend on (t,—1,8p—1;-..;t0,50), see above.
As regards the input Poisson stream, condition (¢, sp;. . .;to, So) imposes certain constraints on its

behavior before the 6. Namely, if ¢; # s; for some 0 < ¢ < n, then one can conclude that an input
impulse was obtained just at the end of ¢;. In the opposite situation, when ¢; = s;, one can conclude
that in the course of ¢; exactly one impulse was obtained from the Poisson stream. But what do we
need in the definition of the P(t,, 41, Snt1 | tn, Sn;- - - to, So), is the conditional probability to obtain
input impulses at definite moments after the 6. For a Poisson stream this conditional probability does
not depend on conditions before the 8. For example, conditional probability to obtain the first after 0
impulse at § + ¢ equals e~ \dt, whatever conditions are imposed on the stream before the 6.
Lemma 1 is proved.
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In order to find the conditional probability density P(t,+1 | tn,-..,t1,t0), the following steps

should be performed:
Step 1. Use the property (3) for calculating joint probability density of events (¢, s):
P(thrl’ Sp+13tn, Sn; - - -5 to, 50) =
= P(tn_H, Sn+1 ’ tn, Sn) e P(tl, S1 | t(), So)P(to, So), (4)

where P(t,s) and P(t,, s, | tn—1,5n—1) denote the stationary probability density and conditional
probability density (transition probability) for events (¢, s).

Step 2. Represent the joint probability density for successive output ISI durations as marginal
probability by integration over variables s;, ¢ = 0,1,...,n + 1:

P(tps1,tn, ... to) =

A A A
—/dso/dsl /d8n+1p tnt1, Snt1; tn, Snj - - -5 05 80)- (5)
0 0 0

Step 3. Use the definition of conditional probability density

P(tpt1,tn, ..., to)

P(tpt1 | tn, ... t1,t0) = Pl o)
My

(6)
Taking into account the Steps 1 and 2, one derives for the joint probability density P(¢,1,...,to)

n+1
P(tpyi,tn, ..., /dso /d8n+1p to, 50) Hptka3k|tk 1, 8k—1)- (7

In the next section, we are going to find the exact analytic expressions for probability densities
P(t,s) and P(ty, sy | tg—1, Sk—1), and perform the integration in (7). Then we will apply the Step 3,
above, to find expressions for the conditional probability density P(t,,+1 | tn, ..., t1,%0). It appears,
that the conditional probability density has a singular part of the Dirac’s J-function type. This is
because the system’s dynamics involves discrete events of obtaining impulse by neuron (see below).
The presence of d-functions in (7) requires more exact definition of the integration domain. Namely,
it follows from what is said at the end of the Subsection 2.2, that event (¢,0) has zero probability,
whereas event (¢, A) has positive probability for any ¢ > 0. Therefore, each integration in (7) should
be performed over the half-open interval ]0; A].

In order to prove that the equality (2) does not hold for any n > 0, we use the singular parts only.

5. Main calculations. 5.1. Probability density P(t, s) for events (t, s). The probability density
P(t,s) can be derived as the product

P(t,s) = F(t]s)f(s), ®)

where f(s) denotes the stationary probability density for time to live of the impulse in the feedback
line at the moment of an output ISI beginning, F(¢ | s) denotes conditional probability density for
ISI duration provided the time to live of the impulse in the feedback line equals s at the moment of
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Fig. 2. Output ISI probability density P(¢) (a) and probability density f(s) for times to live of the impulse in the feedback
line (b), found analytically in [36]. Here 7 = 10 ms, A = 8 ms, A = 150 s~1, Ny = 2. The presence of §-function
in both densities is clearly visible.

this ISI beginning. Exact expressions for both f(s) and F'(¢ | s) are given in [36] (Egs. (5), (6) and
(31)). In this paper we need only singular parts of those expressions, which read:

FSM8(t | ) = Ase *6(t — s), 9

462)\A

sing — _ —
Fo(s) = ad(s — A), where a EFEIVNEZrwE (10)

where a gives the probability to obtain the impulse in the feedback line with time to live equal A at
the beginning of an arbitrary ISI, A is the input Poisson stream intensity.

The presence of d-functions in F'(¢ | s) can be explained as follows. The probability to obtain
an output ISI of duration ¢, which exactly equals s, is not infinitesimally small. Due to (1), it equals
to the probability to obtain exactly one impulse from the Poisson stream during time interval ]0; s,
which is Ase=*. The second impulse comes from the line and triggers the neuron exactly s units of
time after the previous triggering. So, we have the non-zero probability to obtain an output ISI, which
duration equals exactly s. This gives the d-function at t = s in the probability density F'(¢ | s).

The probability to have time to live, s, exactly equal A at the moment of an output ISI beginning
is not infinitesimally small as well. Every time, when the line is free at the moment of triggering,
the impulse enters the line and has time to live equal A. For the line to be free from impulses at
the moment of triggering, it is necessary that ¢ > s for the previous ISI. The set of realizations of
the input Poisson process, each realization satisfying ¢ > s, has non-zero probability a, see (10) and
[36], and this gives the §-function at s = A in the probability density f(s).

The output ISI probability density P(t¢) can be obtained as the result of integration of (8) (see
[36] for details):
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A
P(t) = /F(t\s)f(s) ds. (11
0

Examples of P(t) and f(s) graphs are given in Fig. 2.

5.2. Conditional probability density P(ty, sk | tkx—1,Sk—1). Here we find the conditional
probability density P(ty, sk | tk—1,sk—1) for events (ty,si), which determines the probability to
obtain the event (ty,sy), with precision dtj dsy, provided the previous event was (tx_1,Sg—1)-
By definition of conditional probabilities, the probability density wanted can be represented as the
following product:

P(ti, sk | tk—1,s6—1) = F(te | Sk tr—1, 5k—1)f(sk | th—1, Sk—1), (12)

where F'(tx | Sk,tx—1,5k—1) denotes conditional probability density for ISI duration, ¢, provided
1) this ISI started with time to live of impulse in the feedback line equal to s, and ii) previous
(t,s)-event was (tx_1,Sk—1); the f(sg | tx—1, sk—1) denotes conditional probability density for times
to live of impulse in the feedback line under condition ii). It is obvious, that

F(ty | Skoth—1,86—1) = F(tr | sk), (13)

because with sy being known, the previous event (¢;_1, Sx—1) does not add any information, useful
to predict ¢, (compare with the proof of Lemma 1).

In order to find the probability density f(sy | tx—1, sk—1), let us consider various possible relations
between t;_1 and sg_1. If tx_1 > sp_1, the line will have time to get free from the impulse during the
ISI tx—. That is why, at the beginning of the ISI ¢, an output spike will enter the line and will have
time to live s, = A with probability 1. Therefore, the probability density contains the corresponding
d-function:

f(sk | the1,86—1) = 0(sk — A), th—1 > Sk—1- (14)

Ifty_1 < sk_1, then the ISI ¢;_; ends before the impulse leaves the feedback line. Therefore, at the
beginning of the ¢y, the line still keeps the same impulse as at the beginning of ¢;_1. This impulse
has time to live being accurately equal to s = sp_1 — tx_1, SO

fsk | th-1,86-1) = 0(sk — Sp—1 + k1), tp—1 < Sp-1. (15)
Taking all together, for the conditional probability density P(t, Sk | tk—1, Sk—1) one obtains

Fty | sk)d(sk — A), tg—1 2 Sg—1,
P(ty, sk | th—1,85k—1) = (16)
F(ty | sk)0(sk — Sp—1 + th—1), th—1 < Sgp—1,

where exact expression for F'(¢ | s) is given in [36] (Egs. (5), (6)).
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5.3. Joint probability density P(tn41,...,t0). In this section, we are going to find the exact

analytic expression for the joint probability density P(tn+1, ..., to) at the following domain:
Dlz{to,..., } (17)
It is worth to notice, that the set of n + 1 successive ISI durations %, . . . , ¢, has non-zero probability,

pa > 0, to fall into the domain (17). Indeed, BN with threshold Ny = 2 requires 2(n + 1) input
impulses within time window ] 0; A[ to be triggered n + 1 times within this window (condition (1)
ensures that no input impulse will be lost). BN receives impulses both from the Poisson stream and
from the feedback line. But no more than one impulse from the line may have time to reach BN’s
input during time interval less than A. Therefore, the other 2n + 1 impulses must be received from
the Poisson stream. On the other hand, if as much as 2(n + 1) input impulses are received from
the Poisson stream during the time interval |0; A[, the inequality (17) holds for sure, no matter was
an impulse from the feedback line involved, or not. Therefore, pao > p(2n + 2, A) > 0, where
p(i, A) gives the probability to obtain ¢ impulses from the Poisson stream during time interval A
[37]: p(i, A) = e 2 (AA) /).

For a fixed (n + 1)-tuple (o, ...,t,) € D1, let us split the integration domain for s in (7) in the
following way:

10; A] = ]0;t0] Ultos to +t1] Ut +tisto +t1 + 2] U ... Ulto+t1 + ...+t A,

or
A " A
/ dsg = / dso + Z / dso + / dsg,
0 0 ?_0 tj
and introduce the following notations:
; OtJ A A
Ii / 80/ dSl / d8n+1p<t0,80>><
Yisoti 0 0
n+1
X HP(tkHSk ’tk‘—l)sk‘—l)a i207172)"'7n7 (18)
k=1
a 4 n+1
Iny1 = / dso/ dsy .. / dsni1P(to,50) [] P(tes sk | tr-1, s5-1), (19)
"ot 0 0 k=1
where we assume, that Z = 0 for j; > j2. Domain of sg values covered by I;, ¢+ = 0,...,n,
=i

corresponds to the scenario, when impulse, which was in the feedback line at the beginning of ISI ¢
(with time to live sg), will reach BN during interval ¢;, see Fig. 3. In this process, after each firing,
which starts ISI ¢;, & < ¢, the time to live of the impulse in the feedback line is decreased exactly by
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Fig. 3. Ilustration of relations between (to,...,tn) and (So,...,Sn+1) contributing to the I;: so € } Z o L
=

@ n
E o tj}, E - t; < A. The time to live s, decreases steadily with every output firing for k = 0,...,7—1
J= J=
until it becomes that s; < ¢;. Then, during the time interval ¢; the line discharges its impulse to BN input, and at
the beginning of ¢;41 starts to convey the new one with time to live s;4+1 = A. After that, times to live s, are

again decreased by corresponding ¢i with each firing, k =i+ 1,...,n.
tr—1. This means, that variables of integration {so, ..., S,+1}, above, are not actually independent,
but must satisfy the following relations:
k—1
sk=s0— 3 tj, k=1,...,i, (20)
Jj=0

which are also ensured by J-function in the bottom line of (16). Next to s; time to live must be
equal A:

siv1 = A, ey
and this is ensured by J-function in the top line of (16). The next to s;41 times to live again are

decreased by corresponding ISI with each triggering. Due to (17), this brings about another set of

relations
k—1

sk=A— > t, k=i+2,...,n+1, (22)
j=i+1

which are again ensured by §-function in the bottom line of (16). Relations (20), (21) and (22) together
with limits of integration over sqg in (18) ensure that at D the following inequalities hold:

sp>tp, k=0,...,1—1,
si < ti,
sp>ty, k=i4+1,...,n. (23)
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Inequalities (23) allow one to decide correctly which part of rhs of (16) should replace each transition
probability P(tg, sk | tk—1,Sk—1) in (18), and perform all but one integration. This gives

] Ot]

A A
Iz' / dSo/ d81 .. / dSn_HF(to ‘ So)f(S())X
0 0

Si—ly
j:O tj

i

X H F(tk ’ Sk)(s Sk — So + th F(ti_;,_l | 814.1) 5(81'_;,_1 — A)X

k=1
n+1 k—1
< [I Ftelse)d |se—a+ >t ] =
k=i+2 j=i+1
=F | tp | A— Zt o F(tigo | A —tig1)F(tigr | A)x
Jj=i+1
Sty
« / Pl 50— Zt] F(t1 | 50— to) Pt | s0)f(s0) dso, i=0,1,2,... .. (24)
j=ots

The last expression might be obtained as well by means of consecutive substitution of either top,
or bottom line of (16) into (18), without previously discovering (20)—(23).

Finally, integral I, corresponds to the case, when at the beginning of interval ¢,1, the line
still keeps the same impulse as at the beginning of ¢y. Therefore, I, comprises the rest of scenari-
os contributing to the value of P(t,11,...,t0) in (5). Proceeding as in the preceding terms, the
contribution [, 1 reads

A A A
L1 = / dso/dsl /d8n+1F to | s0)f(s0)x
?:otj 0 0

n+1

k—1
XHF(tk|8k)5 Sk—So-l-th =
k=1 7=0

A n—1
/ F tn+1‘80—zt] F tn’SO—Zt]‘
=0

Z] ot
F(tl ’ S0 — to)F(to ‘ So)f(S()) dS(). (25)
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Taking into account (24) and (25), one obtains the following expression for joint probability
density P(ty41,...,t0):

n+1 n n+1
P(thrl»"'atO):ZIi:ZF i+1 | A) H Flte] A Z
1=0 =0 k=i+2 Jj=i+1
Zé:otj
X / to’So 80 HF tk‘SO—th dsg +
im1
j:Otj
A n+1
+ / F(to | so) f(so HF tk|30_ztj dso,
j=0ti

(26)

Zn:ti<A, n=0,1,...,

J2 J2 . .
where we assume, that Zj:jl =0and I_Ijzj1 =1 for j; > jo.

The expression (26) gives the joint probability density P(t,,+1,...,to) for consecutive ISI durati-
ons at the domain D; for an arbitrary n. Therefore, the conditional probability density P(t,+1 |
tn,...,to) at Dy can be obtained readily, see equation (6).

5.4. Singular part of P(tp41,...,%t0). In order to obtain the singular part of expression,
defined in (26), let us first derive singular parts for all I;, 2 = 0, ..., n, and I, separately. In order
to keep the expressions shorter, we represent I; as follows:

Li(to, .- tng1) = Xi(to, - .- t)Yiltivt, .o tng1), i=0,1,...,nm, 27)
where
Siots i
X, = / Fltdso—St; | F (e 1|30—th . F (t1]s0 — to) Fl(tolso) f(s0) dso, (28)
S0t =
Vi=F ta |[A= D 4| FltalA- th o Fltiga | A —ti)F(tiv1 | A). (29)
j=i+1 Jj=i+1

n
At the domain considered, namely, for Z

t; < A, the expressions for F' (tn | A —
-1

— Zn " tj>, ooy F(tivo | A —tiy1) and F'(t;41 | A) have no singularities, see (9). Therefore
Jj=ti

ysine — ping 4 IA - th FltnA— th L F(tigo] A —tig 1) F(tiq|A). (30)
Jj=t+1 Jj=i+1
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sing

At the same time, integration limits in (28) ensure that X, ° = 0. Indeed each integral X; (and,

ty, I}), i = 0,1 the half terval }Z Z }Th I

originally, I;), i« = 0,1,...,n, covers the half-open interval sg € _ ; e on

g Yy, 4 P ' 0 = t; y
1

singularity of integrand in (28) at this domain is § (Z o tj — so> which is provided by F(ti |
]:

i—1
S0 — ZZ, 0 tj>, see (9), and it disappears after integration. Therefore
J:

Ismg Fslng t +1‘A Z t ... F(ti+2|A — ti+1)F(ti+1|A) X
Jj=i+1

Si—ots
X / F t; ’ S0 — Zt . tl | So—to) (to | So)f(SO)dSO, i:O,l,...,n. (31)
SiTht

Now, consider the singular part of I,41, expression (25). Within the integration domain, the
integrand contains two singularities: one for F’ (tn+1|so — ijo tj) at tp,41 = So — ijo t; and
the other one for f(sg) at sp = A, see (9) and (10). After integration over so, the only d-function

. . . . n n
survives, which is provided by F<tn+1 |A — ijo tj) and located at ¢, 1 = A — ijo tj:

n
LN =aF™ by [A=D "t | F(tn| A= Zt L Fti|A—t)F(tg| A), (32)
§=0
where a is the J-function’s mass in f(s), see (10).
Taking into account (9), (31) and (32), for the singular part of the probability density P(t,,+1,- .., %0)
one obtains
n+1

PSing( n+17 o lemg
n n+1
= Ai(tig1,...,tyg1)d Z tj — + Apyi1(to, .- tnp1)0(to + ... Ftpy1 — A),
=0 Jj=i+1
(33)
n
Zti < A,
i=0
where A; and A, denote regular factors, defined by the following expressions:
n—1
Ai(ti+1, . ,tn+1) = )\tn+1 eiAt"JrlF tn | A — Z tj Ce F(tH_g | A — ti+1)F(ti+1 | A)X
j=i+1
=0t
X / F ti ’ SO_th ...F(tl | So—to)F(to | SQ)f(SO)dSO, i:(),l,...,n, (34)
ot N
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An+1(t0’ s 7tn+1) =a- )\tn+1 e_)‘tn+1 X

n—1
XF [tn |A=) "t | ... F(t1 | A—to)F(to | A). (35)
j=0

The presence of d-functions in joint probability density P(t,1,...,%p) can be additionally
explained as follows. If at the beginning of (i + 1)-th ISI, the impulse enters the line, then output
interval ¢,, 1 will start with that same impulse in the feedback line with time to live equal s, 41 = A—
— Z::Hl t;. To trigger BN after time exactly equal s, after that, it is necessary to obtain one
impulse from the Poisson stream during time interval s,4;. This event has non-zero probability,
therefore we have the non-zero probability of an output ISI exactly equal to sp41: thy1 = A —
_ Z::Hl tj. This gives the corresponding J-functions in ISI probability density. The term with
O(tp+1 + ...+ to — A) corresponds to the case, when the impulse enters the line at the beginning
of to.

From (6) and (33) one can easily derive the following expression for the singular part of the
conditional probability density:

| . n n+1
Psmg(tn—l-l‘tna'--atO):izAi.(s Z tj_A "
P(tq-“ cee 7t0) i=0 Jj=i+1
4 n
n+1
I S(to 4ty — A ti<A 30
+P(tm_..,t0) (to + + tht1 )s ; i ) (36)

where A; and A, are defined in (34) and (35). It should be outlined, that the joint probability
density P(ty,...,tp) has no singularities at the domain ¢,, < A — Zj:ol t;, see (33) with (n — 1)
substituted instead of n.

As one can see, function P(ty41 | tp,...,to) contains singularity at t,,1 = A —t, —t,—1 —...
... — to. The dependence of the singular part of function P(t,11 | tn,...,%0) on ¢y cannot be
compensated by any regular summands, therefore, the whole conditional probability density P(t,11 |
tn,...,to) depends on ty. It means, that the condition (2) does not hold for any n for the output
stream of BN with delayed feedback.

Theorem 1 is proved.

6. Particular cases. In the previous sections, we have proven the impossibility to represent the
stream of output ISI durations for BN with delayed feedback as a Markov chain of any finite order.
In particular, output ISI stream is neither a sequence of independent random variables, and therefore
is non-renewal, nor it is the first-order Markov process.

In the course of proving Theorem 1 (see Sections 4 and 5), we have obtained the expression for
P(tp41,tn,-..,to) at the domain Zj—o t; < A in general case of an arbitrary n, see (26). This
allows to calculate the conditional probability density P(t,41 | tn,...,to) for Zj_o t; < A and
n=201,....

In this section, we consider the two particular cases of P(t,11 | tp,...,t) when n = 0 and
n = 1, namely, the single-ISI conditional probability density P(t; | to) and the double-ISI conditional
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probability density P(t2 | t1,%0) and obtain the expressions for P(t; | to) and P(t2 | t1,to) for
domain (17), as well as for all other possible domains, which were not used in the proof of Theorem 1.

6.1. Conditional probability density P(t1 | to). In order to derive the exact expression for
conditional probability density P(¢; | to) for neighbouring ISI durations, we take Steps 1-3, outlined
in Section 4, for n = 0. In the case of P(¢; | to), there are only three domains, on which the
expressions should be obtained separately, namely cases to < A, o > A and ¢ty = A. Performing
integration in (7), one obtains the following expressions for P(¢1,ty) at these domains:

F(t, | A)P(to), to > A, (37)
to
F(ty | 8) [ Fito | so)f(s0) dsot
P(tl,to) == 0
A
+ [ Fitr o= t)Flto | 50)f(s0) dso o < A (38)
to

Then, by definition of conditional probability densities, one obtains:

(F(t1 | A), N o)
1 fo
Plto) (F(tl | A)/F(to | 50)f(s0) dso+
P(t1 | to) = 9
A
+/F(t1 | so —to)F(to | so)f(so)dso>, ty < A. 40)
to

It should be outlined, that the output ISI probability density P(¢y) has no singularities at the domain
to < A. Indeed, due to (9)—(11), the only d-function contained in P(tp) is placed at tg = A, see
Fig. 2 (a).

In the vicinity of the point £y = A, the single-ISI conditional probability density can be derived

A+e
/ dtoP(tr, 1)
P(ty | tg = A) = lim Z8= =

e—0 A+te
/ dtoP(to)
A—e

A+e
/ dtoP(t1,10)
= lim A—c . 41

€ 0 A-‘re
- / dty arAe 26ty — A)
A—e

as

The integrand in the numerator of (41) also contains singularity at ty = A due to the term P(t()
in (37). Integration in (41) just gives §-functions’ masses both in numerator and denominator, and
delivers
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P(t, | to), 1/s : : : : P(t,to). 1/s
300 1 300
200 r 1 200
100 " 1 100 1
. s TV . MMMMWWW‘M’WWWWM
0 0.003 0.006 0.009 0.012 ty,s 0 0.003 0.006 0.009 0012 t,s
a b

Fig. 4. Conditional probability density P(t1 | o) for 7 = 10 ms, A = 8 ms, A = 150 s™*, No = 2, to = 6 ms (a)
and to = 11 ms (b), found numerically by means of Monte-Carlo method (the number of firings accounted,
N = 30000). Different course of P(t1 | to) for different to values is clearly visible.

P(ti|to) = F(t1 | A),  to=A. (42)

Expressions (39), (40) and (42) can be understood as follows. Since ¢ty > A, one can be sure
that the line has time to get free from impulse during t(, therefore at the moment of next firing (at
the beginning of ¢1) the impulse enters the line and has time to live equal A. In the case of ty < A,
see (40), two possibilities arise. The first term corresponds to the scenario, when the feedback line
discharges conveyed impulse within time interval £y, and the second one represents the case when at
the beginning of ¢; the line still keeps the same impulse as at the beginning of #.

It can be shown, that the following normalization conditions take place:

/ dtlp(tl | to) =1 and / dtop(tl,to) = P(tl).
0 0

The singular part of P(¢; | tp) can be easily extracted:

e MAAS(t — A), to = A, (43)
to
Aty e M1
| o | [ Fto s dsidtes - 8) +
PPE(t [ 1) = 7\
+a F(t() | A)(S(to +t — A) , to < A. (44)

Obviously, expression (44) could be obtained directly from (34)—(36) by substituting n = 0.

As it can be seen from (43) and (44), the number of J-functions in P(¢1 | tp) and their positions
depend on ¢, therefore the conditional probability density P(¢; | ¢9) cannot be reduced to output ISI
probability density P(t;). Therefore, the neighbouring output ISIs of BN with delayed feedback are

correlated, as expected.
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Examples of P(t; | tg), found for two domains numerically, by means of Monte-Carlo method
(see Section 7 for details), are placed at Fig. 4.

6.2. Conditional probability density P(tz | t1,to). In order to derive the exact expression for
conditional probability density P(ts | t1,to) for the successive ISI durations, we take Steps 1-3,
outlined in Section 4, for n = 1. In the case of P(tq,t1,%p), there are six domains, on which the
expressions should be obtained separately, namely, the domain

Dy = {t1,to | t1 +to < A},
which was already utilized in Section 5, and five remaining:

Do={ti,to| to>A and t > A},
D3 ={t1,to| to<A and t; > A},
Dy={ti,to| to>A and t; <A},
Ds ={ti,to] to<A and A —ty<t; <A},

dZ{tl,to‘ to—l—tl:A}.

In the case, when the exact equality ¢y + ¢; = A holds, namely, if (¢1,%9) € d, the product
P(ty | t1,to) dto gives the probability to obtain an output ISI of duration within interval [to; t2 + dia],
provided the overall duration of two previous ISIs accurately equals A.

Expressions for P(ty | t1,t0) can be found exactly on each domain:

P(ty | ty,t) =
F(ta | A), (to.t1) € D2,  (45)
F(t2 | A), (to,t1) € D3,  (46)
F(t2 | A), (to, 1) € d, 47)
F(ta| A —ty), (to.t1) € Da,  (48)
1 ?
Pt to) (F(t2 |A—t)F(t1]A) /F(to | s0).f(s0) dso+
R 0
_ +F(t2\A)/F(t1\30 - to)F(tofso)f(So)d%), (to,t1) € D5,  (49)
1 ) ?
Plivto) (F(t2 | A—t)F(t1] A) /F(to | s0).f(s0) dso+
to+t1 0
FF(t | A) / Flty | 50— to)F(to | 50)f(50) dsot
A o
+ / F(ta|so — to — t1)F(t1]s0 —tO)F(t0|80)f(so)dso>, (to,t1) € D1,  (50)
to+t1

ISSN 1027-3190. Yxp. mam. xcypu., 2012, m. 64, Ne 12



1604
P(ty|ty, ty), 1/s
300
200 r
100
0 \ \ \ \

0 0.003 0.006 0009 0.012 t,s
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Fig. 5. Conditional probability density P(ts | t1,to) for 7 = 10 ms, A = 8 ms, A = 150 s™', No = 2, t; = 13 ms,
to = 13 ms, (t1,t0) € D2 (a), and t1 = 6 ms, to = 13 ms, (t1,t0) € D4 (b), found numerically by means of

Monte-Carlo method (N = 30 000).

where

to

A
P(ty,to) = F(t1 | A) / F(to | s0)f(s0)dso + / F(ty | so — to)F(to | s0)f(s0) dso,

0

according to (40).

to

The probability density P(¢1,ty) contains J-function at the domain d, see (44). In (47), the
double-ISI conditional probability density was derived as

A—to+e
/ dth(tQ,tl,tO)

A—tg—e

P(tz [ t1,t0) = lim

/A—t0+€
A—tg—e

dt1P(t1,t0)

P (t()atl) edv

(51

compare with (41). It can be shown, that the numerator in (51) also contains singularity at to+t; = A.

Integration in (51) just gives §-functions’ masses both in numerator and denominator, which gives (47).

It is worth to notice, that P(¢1,to) is regular function on both D; and D5, see denominators in
(49) and (50). Indeed, from (43) and (44) one can see, that P(t1,ty) may include singularities only

at the points £t = A and ¢; = A — ¢y. None of these points belongs to D1, or Ds.
It can be shown, that the following normalization conditions take place:

o0

/ dtQP(tQ ‘ tl,to) =1 and / dtoP(tQ,tl,to) = P(tg,tl).
0

0

The singular part of the conditional probability density P(ts | ¢1,t9) can be derived as follows:

o0
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Pt ]ty to), 1/s

Ptz ]ty to), 1/s
300 | 300 |
200 | 200 |
100 ] 100 MWWMW ]
o WMMMMMWWWMM o ‘ Ll Y
0 0003 0006 0009 0012 t.s 0 0003 0006 0009 0012 t.s

b

a

Fig. 6. Conditional probability density P(ts | t1,to) for 7 = 10 ms, A = 8 ms, A = 150 s™!, Ny = 2, t; = 6 ms,
to = 3 ms (a) and t; = 6 ms, to = 1 ms (b), found numerically by means of Monte-Carlo method (N = 30 000).

Different course of P(t2 | t1,t0) for different ¢o values is clearly visible.

PS8 (ty | t1,tg) =

(to,t1) € D2 U D3Ud, (52)

(67”2)\@(5(752 — A),
e M2\t 0 (ty 4 ta — A), (to,t1) € Du, (53)
to
B_AtQ)\tQ
i (Pl 18) [ Bt | sobfls) dsod(ts + 22— A)+
P(t1,10)
A
Jr/F(tl | so —to)F(to | s0)f(s0)dsod(ta — A))» (to,t1) € Ds, (54)
= to
¢ Ay tOHIF F dsod(ty — A
i / (1150 — t0) F(tols0) f(s0) dsod (12 — A)+
0 o
(] ) [ Plto ] 50)f(s0) dsod(ts + 12— A)+
0
+aF(t1 ’ A — to)F(to ‘ A)(S(to + 1+t — A) , (to,tl) € D;. (55)

Obviously, expression (55) could be obtained directly from (34) —(36) by substituting n = 1.

As one can see, the singular part of P(ty | t1,%0) depends on ty, therefore P(ty | t1,ty) cannot
be reduced to P(tq | t1), which means that the output stream is not first-order Markovian.

Examples of P(t3 | t1,t), found numerically for different domains, are placed at Figs 5 and 6.

ISSN 1027-3190. Yxp. mam. xcypu., 2012, m. 64, Ne 12



1606 A. K. VIDYBIDA, K. G. KRAVCHUK

P(ty|ty, ty), 1/s ' ' ' ' P(t|ty, to), 1/s
300 | ] 300 |
200 | 1 200
100 1 100 r
0 N N N lload 0 | | )
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Fig. 7. Conditional probability density P(t2 | t1,to) for 7 = 10 ms, A = 8 ms, A\ = 800 s™*, Ny = 4, t; = 6 ms,
to = 3 ms (a) and t; = 6 ms, to = 1 ms (b), found numerically by means of Monte-Carlo method (N = 30 000).
Different course of P(t2 | t1,to) for different ¢ values is clearly visible.

7. Numerical simulation. In order to check the correctness of obtained analytic expressions, and
also to investigate whether the output ISIs stream is non-Markovian for BN with higher thresholds
as well as for Ng = 2, numerical simulations were performed. A C++ program, containing class,
which models the operation manner of BN with delayed feedback, was developed. Object of this
class receives the sequence of pseudorandom numbers with Poisson probability density to its input.
The required sequences were generated by means of utilities from the GNU Scientific Library® with
the Mersenne Twister generator as source of pseudorandom numbers.

Program contains function, the time engine, which brings system to the moment just before the
next input signal, bypassing moments, when neither external Poisson impulse, nor impulse from the
feedback line comes. So, only the essential discrete events are accounted. It allows one to make exact
calculations faster as compared to the algorithm where time advances gradually by adding small
time-steps.

The conditional probability densities, P(¢; | to) and P(t2 | t1,%0), are found by counting the
number of output ISI of different durations and normalization (see Figs 4-7). For calculation of
conditional distributions only those ISIs are selected, which follow one or two ISIs of fixed duration,
namely, {to} for P(t1 | to) and {t1,to} for P(t2 | t1,t9). The quantity, the position and the mass of
d-functions, obtained in numerical experiments for BN with threshold 2, coincide with those predicted
analytically in (43), (44) and (52) — (55).

For Ny > 2, conditional probability densities P(t1 | to) and P(t2 | t1,to) are similar to those,
found for Ny = 2. In particular, both the quantity and position of J-functions coincide with those
obtained for BN with threshold 2, as expected, compare Figs 6 and 7.

8. Conclusions and discussion. Our results reveal the influence of delayed feedback presence
on the neuronal firing statistics. In contrast to the cases of BN without feedback [38] and BN with
instantaneous feedback [39], the neighbouring output ISIs of BN with delayed feedback are mutually

Shttp://www.gnu.org/software/gsl/
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correlated. It means that even in the simplest possible recurrent network the output ISI stream cannot
be treated as a renewal one.

The non-renewalness of experimentally registered spike trains was observed for neuronal activity
in various sensory systems in mammals [9] and fish [10, 11]. The simplest stochastic processes which
are not renewal are the Markov processes of various order. The order of underlying Markov process
was estimated in [11] for activity in the weakly electric fish electrosensory system. It was found in
[11] that for some neural fibers the Markov order should be at list seven, which does not exclude that
the genuine order is higher, or that the activity is non-Markovian.

Actually, for proving based on experimental data that a stochastic activity has Markov order
m, one needs increasing amount of data with increasing m. If so, it seems impossible to prove
experimentally that a stochastic activity is non-Markovian. Similarly as it is impossible to prove
experimentally that a number is irrational. We prove here that the output ISI stream of BN with
delayed feedback is non-Markovian based on complete knowledge of the mechanism which generates
the output stream. In a sense, to have this knowledge is equivalent as to have unlimited amount of
experimental data.

The main cause of non-Markovianness in our case is the delayed feedback presence. In this
connection, it would be interesting to compare our results with recently appeared paper [42], where the
discrete time recurrent model network of leaky integrate-and-fire (LIF) neurons is considered. In that
model, the inter-neuronal communication lines have zero delays and external input is deterministic,
but synaptic weights are subjected to uncorrelated random fluctuations. For that model, it is established
that the stochastic process of neuronal firing states will be non-Markovian as well. What could be
the reason of non-Markovianness if there are no delays in this model? The answer is that LIF neuron
has infinite memory unless its state is reset by firing. The instantaneous firing state of the network
specifies which neurons are in the firing state at the given moment of discrete time, but says nothing
about the excitation level of neurons, which are quiescent at that moment. This unknown level of
excitation is due to firing of neighbouring neurons at earlier moments of time. Therefore, knowledge
of the firing states at more and more early moments can more and more improve our predicting
ability as regards states of the quiescent neurons at the given moment, and finally, as regards the
network firing state at the next moment. Any neighbouring neuron could have its last firing moment
infinitely far in the past and this explains why a network without communication delays can as well
demonstrate non-Markovian behavior.

Given that in the considered system of single neuron with delayed feedback the non-Markovian
character arises exclusively from delayed communication, it is natural to consider that this property
(non-Markovianness) will be present in any single neuron, whenever delayed feedback constitutes an
important input, independently on the specific neuronal model at hand. In a network composed of
more than single neuron with feedback, the delayed feedback can be mediated with inter-neurons, and
our finding suggests that behavior of such a network will be non-Markovian as well. One should take
this facts into account during analysis of neuronal spike trains obtained from any recurrent network
with delayed inter-neuronal communication.
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