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ON IMPULSIVE STURM -LIOUVILLE OPERATORS
WITH SINGULARITY AND SPECTRAL PARAMETER
IN BOUNDARY CONDITIONS

ITPO IMITYJIBCHI OIIEPATOPH HITYPMA - JITYBIJIJIA
I3 CUHI'VJIAPHICTIO TA CIIEKTPAJIBHUM ITAPAMETPOM
Y TPAHUYHHUX YMOBAX

We study properties and the asymptotic behavior of spectral characteristics for a class of singular Sturm-Liouville
differential operators with discontinuity conditions and an eigenparameter in boundary conditions. We also determine the
Weyl function for this problem and prove uniqueness theorems for a solution of the inverse problem corresponding to this
function and spectral data.

JlocIikeHO BIACTHBOCTI Ta ACHMIITOTHYHY MOBEIIHKY CIICKTPAIbHUX XapaKTePUCTUK [UIS KIIacy CHHTYISIPHHUX JAu(epeH-
mianpHUX oneparopis Lltypma—JliyBiuis 3 pO3pHBHUME YMOBaMH Ta BIaCHHM MapaMeTPOM y TPaHHYHHUX YMOBax. Bu3Ha-
4yeHo (yHKIio Beiins s i€l 3a1adi Ta JOBENEHO TEOPEMU PO €NUHICTH PO3B 3Ky 0OCpHEHOT 3a/1adi, IO BiIIOBIaE il
(GyHKILIT Ta CIEKTPaTbHUM JaHUM.

1. Introduction. In spectral theory, the inverse problem is the usual name for any problem in which
it is required to ascertain the spectral data that will determine a differential operator uniquely and a
method of construction of this operator from the data. This kind of problem was first formulated and
investigated by Ambartsumyan in 1929 [1]. Since 1946, various forms of the inverse problem have
been considered by N. Levinson [2], B. M. Levitan [3], G. Borg [4], and now there exists an extensive
literature on the [5]. Later, the inverse problems having specified singularities were considered in [6].

Spectral functions are important for determining the operators, that is, for solving the inverse
problem for differential operators. However, in finite intervals, the integral representations for the
solution of differential equations which generate the operator with initial conditions are more useful
for investigating the spectral properties of the operator.

In case of g(x) = 0, since this operator is the singular Sturm—Liouville operator, linearly inde-
pendent solutions of this kind of differential equation could be given with hypergeometric functions
and this integral representation is also a representation for hypergeometric functions. For this rea-
son, obtaining this kind of integral representation is so important. Therefore, when it is obtained,
these integral representations can be used for asymptotic behaviours of hypergeometric functions as
T — +00.

In interval (a, b), i.e., when the given interval is finite, Sturm - Liouville operator which is gener-
ated by the differential expression ¢(y) := —y” (x) +¢(x)y(z) satisfies the condition ¢(z) € L; (a,b)
in general. In singular case, i.e., when interval (a, b) is infinite or the function ¢(x) has nonintegrable
singularity in extremity points of interval, the condition of ¢(x) € L1 joc (a, b) is given.

When ¢(x) is a first order singular generalized function, singular Sturm — Liouville operator which
has a potential as ¢ = u’ by using concept of generalized derivative such that u € Lo (0, 1) has been
defined in [7, 8].

On the other hand, one-dimensional Schrodinger operators S = —d?/dx? + ¢ with real-valued
distributional potentials ¢ in Wy, 1}>C(R) are studied in [9]. The operator S can then be rigorously
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defined e.g. by the so-called regularization method that was used in [10] in the particular case
g(x) = 1/x and then developed for generic distributional potentials in W, (R) by Savchuk and
Shkalikov [8, 11]; see also recent extensions to more general differential exp’ressions in [12, 13].
Moreover self-adjoint extensions of differential operators generated by differential expression
{(y) which has a potential ¢(z) = u/(z) such that u € L9 (0,1) are studied in [8]. When a #

# 2,4,6, ..., generalized functions can be corresponded to the functions |z|™“sgnx by using the

method of canonical regularization [14]. When a < o generalized functions which are obtained
by this way can be shown as generalized derivative of functions from the space Ly and therefore
Sturm - Liouville operator which is given by the differential expression ¢(y) is defined such that
it has a potential like g(z) = || “sgnz. In [15], when ¢(z) = Cz~® and a < 2 C eR, a
regularization of constructing boundary-value problem for Sturm - Liouville equation which has this
type of potential has been given.

As in this studies of [16] and [17], when ¢(z) = Cz~* and a € [1,2), all self-adjoint extensions
of operators generated by the differential expression ¢(y) which has this type of potential according
to boundary conditions have been given and therefore when a € [1,2), regularization of constructing
boundary-value problems for Sturm- Liouville equation which has this type of potential has been

investigated. Regularization in the [8] and [16] coincides only when a < 5

Let’s consider the differential expression

(o) = (@) + () +aly(e), 0<w<m (i

where C' is a real number, ¢(x) is a real valued bounded function.

We shall define an operator Lj,: Ly = ¢(y), on the ¢ set of D{, = C5°(0, 7). It is obvious
that the operator L{, is symmetric in the space of Ly[0, 7]. We say that the operator Ly which is the
closure of Lj, is the minimal operator generated by the differential expression (1.1). The conjugate L
of the operator L is said to be the maximal operator generated by the differential expression (1.1).

In [16], all maximal dissipative and accumulative and also self-adjoint extensions of the operator
Ly have been studied according to the domain and boundary conditions of minimal and maximal
operators generated by differential expression (1.1).

We define Ty by (Toy) () = ¢/ (z) — u(z)y(x), where u(x) = C1 —

It has been shown in [16] that if y(z) € D (L§) then the function (I'oy)(x) has a limit as
x— 0T, ie.,

xl—a

lim (Fay)(x) = (Fay)(o)'

z—0t

Hence the domain D (Lg) of minimal operator Ly generated by differential expression (1.1)
contains only functions y(z) € D (Lf) such that function y(x) satisfies the conditions y(0) =

=y(m) = (Fay) (0) = ¢/ () = 0.
Let us consider the boundary-value problem L for the equation

() = " () + (o) +alaly(e) = M(e), A= (12

on the interval 0 < < 7 with the boundary conditions
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Ul(y) == y(0) =0, V(y) := (ak® + a2) y(m) + (B1k* + B2) o/ (7) = 0 (1.3)

and with the jump conditions
y(a+0)=Py(a—0),

y' (a+0)= 8"y (a—0),

where A is spectral parameter; o € (1,3/2), C, 8, a1, ag, 81, B2 are real numbers, a8 — Py > 0
and a € <g,7r>, B # 1,5 >0,q(z) is a real valued bounded function and ¢(z) € Lo(0, 7).

The boundary-value problems that contain the spectral parameter in boundary conditions linearly
were investigated in [18—20]. In [18, 21], an operator-theoretic formulation of the problems of the
form (1.2)—(1.4) has been given. Oscillation and comparison results have been obtained in [22 —24].
In case of a; # 0, problem (1.2)—(1.4) is associated with the physical problem of cooling a thin
solid bar one end of which is placed in contact with a finite amount of liquid at time zero (see [18]
and also [25] in it). Assuming that heat flows only into the liquid which has un-uniform density
p(z) and is convected only form the liquid into the surrounding medium, the initial boundary-value
prolem for a bar of length one takes the form

up = p()uga, (1%)
g (0,8) = 0, (2%)
—kAug (7, t) = gM @1’) + ki Bu(t)  forall t, (3%)
u(z,0) = up(z)  for = €[0,7], (4*)
v(0) = vg

after factoring out the steady-state solution where

1, O0<z<a,

px) =
ozg, a<x<Tm.

Assuming that the rate of heat transfer across the liquid-solid interface is proportional to the
difference in temperature between the end of the bar and the liquid with which it is in contract
(Newton’s law of cooling) and applying Fourier’s law of heat conduction at x = 7, we get

v(t) = u(m,t) + ke tug (771 ) for t>0,

where ¢ > 0 is the coefficient of heat transfer for the liquid. If we put u(z,t) = y(x)exp(—At)
then the problem (1.2)—(1.4) will appear to be consequence of the above problem. Indeed, the

condition (1.3) is obtained from (2*) and the condition (1.4) is obtained from (3*) easily. Here

A+ kB
= %, B2 = _0;\41 and a = _qlwkc:' Finally, if we put
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z, 0O0<z<a,
t =
ar, a<z<m,

then the discontinuity conditions (1.4) and a particular case of (1.2) will appear. This corresponds to
the case of nonperfect thermal contact. Since the density is changed at one point in interval, both of
the intensity and the instant velocity of heat change at this point. Hence, (1.2)-(1.4) will appear to
be consequence of the above problem.

Boundary-value problems with discontinuities inside the interval often appear in mathematics,
mechanics, physics, geophysics and other branches of natural properties. The inverse problem of
reconstructing the material properties of a medium from data collected outside of the medium is of
central importance in disiplines ranging from engineering to the geo-sciences.

For example, discontinuous inverse problems appear in electronics for constructing parameters of
heterogeneous electronic lines with desirable technical characteristics [26, 27]. After reducing corre-
sponding mathematical model we come to boundary-value problem L where ¢(x) must be constructed
from the given spectral information which describes desirable amplitude and phase characteristics.
Spectral information can be used to reconstruct the permittivity and conductivity profiles of one-
dimensional discontinuous medium [28]. Boundary-value problems with discontinuties in an interior
point also appear in geophysical models for oscillations of the Earth [29]. Here, the main discon-
tinuity is cased by reflection of the shear waves at the base of the crust. Further, it is known that
inverse spectral problems play an important role for investigating some nonlinear evolution equa-
tions of mathematical physics. Discontinuous inverse problems help to study the blow-up behaviour
of solutions for such nonlinear equations. We also note that inverse problem considered here appears
in mathematics for investigating spectral properties of some classes of differential, integrodifferential
and integral operators.

It must be noted that some special cases of the considered problem (1.2)—(1.4) arise after an
application of the method of seperation of variables to the varied assortment of physical problems. For
example, some boundary-value problems with discontinuity condition arise in heat and mass transfer
problems (see, for example, [31]), in vibrating string problems when the string loaded additionally
with point masses (see, for example, [25]) and in diffraction problems (see, for example, [30]).
Moreover, some of the problems with boundary conditions depend on the spectral parameter occur
in the theory of small vibrations of a damped string and freezing of the liquid (see, for example,
[32, 33, 25]).

Furthermore, representation with transformation operator was shown in [17], as in [34] and [35].

In this study, properties of characteristic function of Ly and asymptotic behaviours of spectral

characteristics of considering operator have been given such that the remaining parts are in the space
{9 as in [35].

Moreover three statements of the inverse problem of the reconstruction of the boundary problem
from the Weyl function, from the spectral data {\,,, a, },,~ and from two spectra {\,,, 1, },,~ have
been studied. These inverse problems are generalizations of the well known inverse problem§ for the
Sturm — Liouville operator (see [36, 37]).
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2. Representation for the solution. We define

() =y@), @)=y (@) =y(@) -u@)y), uz)=C
and let’s write the expression of left-hand side of equation (1.1) as follows:

Uy) = = [(Tay) ()] = u(@) Tay) (z) — v*(x)y + g(x)y = F?y. @.1)
Then equation (1.1) reduces to the system
1 — Y2 = u(z)y1,
(2.2)
Yo + K2y = —u(z)ys — u*(2)y1 + q(z)y
with the boundary conditions

y1(0) =0, (a1k2 + Oég) yp(m) + (5114:2 + ﬁg) ya(m) =0 (2.3)
and with the jump conditions
y1 (a+0) =By (a—0),
2.4)
Y2 (a +0) = B ys (a — 0) — 28 u(a)y; (a — 0).

Y1 ' u 1 Y1
= (2.5)
(w) (—k2 —u’+q —U> (@/2)

;L B u(x) 1 () o
or y = Ay such that A = <—k2 —u2(x) + q(2) —u(:c))’ Yy = (y2>. Since x = 0 is a regular

singular end point for equation (2.5), Theorem 2 in [38] (see Remark 1.2, p. 56) extends to interval
[0, 7]. For this reason, by [38], there exists only one solution of the system (2.2) which satisfies the
initial condititons yy(£) = vy, y2(€) = vy for each & € [0,7], v = (v1,v2)" € C2, especially the
initial conditions y1(0) = 1, y2(0) = h.

Definition 2.1. The first component of the solution of system (2.2) which satisfies the initial
condititons y1(§) = v1, y2(§) = (Tay) (§) = vy is called the solution of equation (1.2) which
satisfies the same initial conditions.

Matrix form of system (2.2)

It was shown in [17] by the successive approximations method that (see [37]) the following
theorem is true.

Theorem 2.1. FEach solution of system (2.2) which satisfying the initial conditions <zl) (0) =
2

= (;{) and the jump conditions (2.4), has the form:

forz <a

x
yp = et 4 /Kll(x,t)eiktdt,
—x

x x
Yo = ke 4 b(x)e*® + /Kgl (z,t) eFldt + ik / Koo(x, t)edt,
—z —z
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forxz >a
Y1 = /B+eikx + Bfeik@afr) + /Kll(ﬂf,t)eiktdt,
Yo = Z’kﬁ+eikx _ ikﬁ—eik@a—m) +b (.’E) [ﬁ+6ikx + B—eik(2a—m)] +
- / Koy (x,t)e™dt + ik / Koo(x,t)edt,
where

+
K (z,z) = %u(x),

xT x

Ko (z,2) =V (x) — % [3+/ [u? (s) — q(s)] K11 (s, s)ds + /u (s) K11 (s,s)ds ¢,

0 0

X
Ko (2.2) = -2 u(a) - 4¥b(a), A= <B : ;)

3. Properties of the spectrum. In this section, properties of the spectrum of problem L have
been given.

Let us denote problem L as Ly in the case of C'= 0 and ¢(x) = 0.

When C' = 0 and ¢(z) = 0, it is easily shown that solution ¢o(z,k) satisfying the initial
conditions ¢g (0, k) =0, (Iawo) (0, k) = k and the jump conditions (2.4), is shown as

sin kx for = < a,

(Pﬁ(ka) =
Bt sinkx + B~ sink (2a —xz) for x> a,

3.1)

kcoskx for x < a,

(Tapo) (2, k) =
kBt coskx — kB~ cosk (2a —x) for z > a.

We denote characteristic function, eigenvalues sequence and normalizing constant sequence by
A(k), {kn} and {a,}, respectively. Denote

A(k) = <¢(.%', k)a (p(x, k)) ) (3.2)

where
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We define normalizing constants by

™

o = / 2, k) + ; 010 (7, ) + Br (Tag) (m, ka2

0

where p = as 51 — a1 5s.

According to the Liouville formula, (¢(z, k), ¢(x, k)) does not depend on x.

We shall assume that ¢(z, k) and ¢ (z, k) are solutions of equation (1.2) under the following
initial conditions:

¢ (0,k) =0, (Taw) (0,k) =k, Y (m k) = Ble + B2, (Lat) (m, k) = _(ale + az).
Clearly, for each x, functions (¢ (z, k), p(z, k)) are entire in k and
A(k) = V(‘P) = U(¢) = (a1k2 + 042)‘10 (7T7 k) + (51k2 + 2) (Foz‘p) (’n’, k) = ¢(07 k). (3.3)

By using the representation of the function y(x, k) for the solution p(x, k):
o(x, k) = @o(z, k) + /ffn (7, ) sin ktdt (3.4)

is obtained.
Lemma 3.1 (Lagrange’s formula). Let y,z € D (L{). Then

a—0

0

(L3w.2) = [ dw)ts = (1.L52) + 10,7 (
0

* :+0>’
where [y 2] (|57 + [7,) = [(T0?) @) — Cow) @)2@)] (|27 + |7,

Proof. We have

™ ™

(Liy, ) :—/(y/—uy)/qu:—/u(y/—uy)zdx—/ﬂ(uQ—q(x)) yEds =

0 0 0
™
—"— pu—
a+0

/y—uy z' — uz) /u —q(x yzdx—(Tay)(ﬂf)Z(OC)(
0 0
Z+o>'

_ /Wyg (2)dz + [y, 7] ( + ;0> = (y,L{z) + [y, 2] (
0

Lemma 3.2. The zeros {k,} of the characteristic function coincide with the eigenvalues of the

a—0

0

a—0 a—0

+

0 0

boundary-value problem L. The functions o(x, ky) and 1(x, ky,) are eigenfunctions and there exists
a sequence {~y,} such that

1/1(3?, kn) = ’Yn‘P(wv kn)v Tn 7é 0. (3-5)
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Proof. 1. Let ko be a zero of the function A(k). Then by virtue of equation (3.2) and (3.3),
Y (z,ko) = vop (x, ko) and the functions ¢ (x, ko) , ¢ (x, ko) satisfy the boundary conditions (1.3).
Hence, ko is an eigenvalue and ¢ (x, ko) , ¢ (x, ko) are eigenfunctions related to ko.

2. Let ko be an eigenvalue of L, and let yy be a corresponding eigenfunctions. Then U (yg) =
= V (yo) = 0. Clearly yo(0) = 0. Without loss of generality, we put (I',yo) (0) = ik. Hence
yo(x) = ¢ (z, ko). Thus, from equation (3.3), A (ko) =V (¢ (z,ko)) = V (yo(z)) = 0 is obtained.

Lemma 3.3. FEigenvalues of the problem L are simple and separated.

Proof. Since p(x, k) and ¢ (x, k) are solutions of equation (1.2), it is obtained that

" (z, k) + [u(z) + q(2)] Y(z, k) = k* (2, k),

—¢" (@, kn) + [ (2) + q(2)] (. kn) = kpo(z, kn).-
If first equation is multiplied by ¢(z, ky,), second equation is multiplied by v (z, k) and substracting
them side by side and finally integrating over the interval [0, ], then the following equality is
obtained:

e R (k) = (2 = 2) (e, g, ),

a—0
+

™

(W, k), ol k) [

0 a+0

] = (K — k) / (e, K, h)d.
0

r 1
If jump conditions (1.4) and «,, = /@2(:c,kn)dx + = [on (7, kp) + B1 (Da) (, kn)]? are
p

0
considered, it is obtained that

/ B, k) (2, ko) dr + ; oo (7, k) + Bi (Ta) (1, K]
0

(a1 (k) + B1 (Do) (1, kn)] = A (kn)  as &k — ky.
From Lemma 3.2, we get that
v = —A (kn) . (3.6)
It is obvious that A (k) # 0.
Since the function A(k) is an entire function ok k, the zeros of A(k) are separated.

Lemma 3.3 is proved.
Now, let problems be

—y" + [ (2) + q(2)]y = My,

(Tay) (0) — hy(0) =0,

L: § (BiA+ B2) (Tay) (7) + (a1 A + a2)y(m) = 0,
y(a+0)=PBy(a—0),

(Cay) (a+0) = 87" (Tay) (a = 0) — 28~ u(a)y(a - 0),
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(" + [/ () + q(2)] y = ny,

(Tay) (0) — hy(0) =0,

L: § (B + B2) (Tay) (7) + (@1 + d2)y(w) = 0,
y(a+0)=pBy(a—0),

{(Fay) (a+0)= 8" (Tay) (a —0),

where a1§1 = a9, alﬁg = a1, a2§1 = 1 9. Let {)‘n}nzo and {Mn}nzo be the eigenvalues of
the problems L and L respectively.
Lemma 3.4. The eigenvalues of the problems L and L are interlace, i.e.,

An < n < A1y if of <@2fs and  py < Ay < pipg1, if aofo > Gafa, 1 >0,
(3.7
where ai1aip > qipop and B1§2 > glﬁg.
Proof. As in the proof of Lemma 3.3, we get that

Lo o) = (- ) (X o (ap)

and from here

<A—u>/¢<x,A>@<x,mdm=<so<x,A>,so<x,u>>[
0

= (71', )‘) (Fa@) (71', M) - (Faso) (7Tv )‘) ¥ (77’ :u) =

_ w()\ — w)p(m, A)p(m, )+
afy — a2
| 1P = 5iBa

A — 1) (L) (m, N)(Top) (T,
04252—&262( 1) (La@)(m, M) (Lap) (T, 1)+

1 ~ ~
— AN A () — A () A(N)].
s [AWAW-Aw AR

Hence
a1 — aan

~ P A)o(r,
By &252( p)e(m, N)p(m, p)+

(A—m/so(x,A)go(x,md:c:
0

DB 3 ) (T X)) (7, 1)+
agfly — a2
) AN =A@, AN -Awg
asfo — Gofa [ A . - "
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As p— A
[ 1
2@ N do = —————
0/90 N~k
X [(&1a2 — alag) QDQ (7'(', >\) + <5162 - 6152) (FW)Q (71', )‘) +
FAWAN) —ANA W], (3.8)
where A (\) = %A (N, A (N = %ﬁ (A) . From equation (3.8), for —oco < A < oo, if A (A) # 0,
1 /} o) do - (@102 = 18206 (5.3) + (Bafy = BB (e ) |
AZ(N) |4 232 — 232

o 1 d (A(A))
(@22 — azfl) AX \ A (N)

1s obtained.

~ A
If e By < P then X () is monotonically decreasing in the set of R\ {p,,n > 0}. Thus it is
AN
obvious that lim ~( ) = to0
A—),u%o A ()\)

When a2§2 > 39, if we write the equality (3.8) as

1 [/ oy e (@102 = 0132)? (5.0) + (Bua = 51) L), A)]

AZ(N) 2Pz — G2
. 1 d (AW
2By — G IA \A (V) )
AW . .
for —oco < A < 0o, A(A) # 0, we get that the function AQ) is monotonically decreasing in
- A .
R\ {\,,n >0} and it is clear that lim —— = +o0. From here, we obtain (3.7).
A-aE0 A (A)

Theorem 3.1. The eigenvalues k,, eigenfunctions p(x, ky) and the normalizing numbers o,
of problem L have the following asymptotic behaviour:

dp  6n
\/An:kn=k2+@+@, (3.9)
o(x,ky,) = BT sinklx + 87 sink(2a — 2) + % + ZE, (3.10)

a 2 N\N2] (T —a _ Tn n
o=+ [0+ 6] (T50) - ) () eosmar 2 2 ey
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where 8, sp, &n € £2, b, dn, Yn € oo and kO are roots of Ag(k) := k3 [6+ coskm — B~ cosk(2a —
— ﬂ)} and kO = n + hy, hy € loo.
Proof. Using (3.1), (3.3) and (3.4), we get

A(k) = (a1k® + a2) o (7, k) + (B1k* + B2) (Daspo) (7, k) +

+(a1k?® + ag) /f(ll (m,t) sin ktdt+
0

+(Brk? + B2) /f(gl (m,t) sin ktdt+/f<22 (m,t) cos ktdt | =
0 0

= (1k* 4+ o) (Bt sinkr + 8~ sink (2a — 7)) +

+(B1k* + B2) (kBT coskm — kB~ cosk (2a — 7)) + kO <exp]1mk\7r>

K|

= B1A0(k) + (a1 k® + ) (B sinkr + B~ sink (2a — 7)) +

I
+Bak (BT coskm — B~ cosk (2a — 7)) + kO <exp\mk]7r>

k|
Denote

G = {k:: k| = [0 +%, n:o,ﬂ,iz,...},

Gs={k: [k—k)| >6, n=0+1,42,...,6 >0},
where ¢ is sufficiently small positive number (5 < %)

Since |Ag(k)| > E3Csel™H™ for k € G5 and |A(k) — Ao(k)| < % |k|? e k™ for sufficiently
large values of n and k € G,,, we get

|Ag(k)| > Csk3elmH™ > |A (k) — Ag(K).

It follows from that for sufficiently large values of n, functions Ag(k) and Ag(k) + (A(k) —
— Ag(k)) = A(k) have the same number of zeros counting multiplicities inside contour G,,, accord-
ing to Rouche’s theorem. That is, they have the (n + 1) number of zeros: ko, k1, . . ., ky.

Analogously, it is shown by Rouche’s theorem that for sufficiently large values of n, function
A(Fk) has a unique of zero inside each circle |k — k3| < 4.

Since J is sufficiently small number, representing of k, = k + &, is acquired, where
lim,_yso € = O.

Since numbers k,, are zeros of characteristic function A(k),
A (kn) = (041]{37% + ) (ﬁ+ sin k,m + ~ sink, (2a — 77)) +
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+(B1k? + Bo) (k‘nﬁ+ cos kypm — kn3~ cosky, (2a — 7[‘)) +0 (k‘%)

From the last equality, we get

Bt coskn,m — B cosky, (2a — ) + (BT sinknm + B sinky, (2a — 7) |+

a1
B1k2

a2 . .
—i-ﬂlk% (BT sinknm + 87 sinky, (2a — 7)] +

+ b [BT sink,m — B~ cosky (2a — )] + O 1y 0.
Blk% k'n

If we write k) +¢,, instead of k,, and use Ag (k3 + &,,) = Ao (k9) en+ 0 (en) and also the study
[39] ( see also [40]) is used then we get that kO = n + h,,, where sup,, |h,| < M. Therefore,

d 0
En = — + =, Op € Lo, dp € lo.
n n
Thus, asymptotic formula (3.9) is true for the eigenvalues k,, of the problem L. Now, let’s try to find

the asymptotic formula for the eigenfunction

o(z,ky) = BT sink,z + B~ sink, (2a — x) + /I?H (x,t)sinkyt dt =
0

= Btsin (k) +e,) x+ B sin (k) +¢,) (20 — ) —

1
KO+

5 /f(ll(%t)d [cos (kg +ep)t] dt =
"0
= BT sinkdz 4+ B sinkL (20 — x) —

T
+ ) +
2a—z+0

xX
1 K 0
+;€2T6n /Kht (x,t) cos kptdt.
0

2a—x—0

! [l?ll(a:,t) cos kgt] ( .

_k2+6n

Since

BJr

K (z,2) = 7u(x), K (2,20 —x +0) — K11 (2,20 —z — 0) = ﬁ—u

u(a),

€T
/f({lt (z,t) cos kXtdt € L.
0

It is obtained that

o(x, ky) = BT sinkz + 7 sink (2a — ) +

ISSN 1027-3190. Yxp. mam. xcypu., 2012, m. 64, Ne 12



1622 Y. GULDU, R. KH. AMIROV, N. TOPSAKAL

~cosk?(2a — x) — BT cos k? b
—I-B cos k(20 — z) = B cos ”xu(:c) + =+ an, Sp €0y and b, € lo.
2k9 noon
Then we get the asymptotic formula (3.10). Finally, in order to show that (3.11) is true, using
(3.1) and (3.4), we obtain that

™

an=3/¢Puamodx+—;kn¢<wxm>+¢x<ra¢>@nknﬂ2=
0

a

- 2
:/ {sin2 knxdx + (/ f(ll(x,t) sink:ntdt) :| +
0

0

a x

+2/sinknx/l?11(m,t) sin kptdtdr+
0 0

™ K 2

+ / (8%)?sin? kpz + (57)° sin? ky, (2a — z) + / / Kii (z,t) sinkptdt | | do+

a a

+2B+B/sinknxsinkn@a—x)dx+2/8+/sinknx/l~{11(x,t) sin k,tdtdx+

a

iy X _ 1
+26~ /sin kn (2a — x) /KH(Q:, t) sin kptdtdr + ; [are (7, ky) + 81 (Cay) (7, kn)]2 =

2 ) Tn 66007 571 662.
n n

- [(5+)2 + (ﬁfﬂ (W 3 a) i % — BB cos2hpat 4 5
4. Inverse problem. Let ®(z, k) be solution of (1.3) under the conditions
U(@)=2(0,k)=1, V(®) = (ank®+a2)® (m, k) + (B1k* + B2) Ta®)(m, k) =0

and the jump conditions (1.5). C(z, k) be solution of (2.2) with the conditions C (0,k) = 1,
(T'oC)(0,k) = 0 and the jump conditions (2.4). It is clear that the functions ¢(x, k) and C(z, k) are
entire in k. Then the function ¢(z, k) can be represented as follows:

9l ) = 1 (D) (0 8) ol ) + ARIC (2, )
or
Azk)w, k) = Ww(:ﬂ, k) + O, k). @1
Denote
 (Tay) (0,F)
M) =5 4.2)
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It is clear that
O(x, k) = M(k)p(z, k) + C (x, k). 4.3)

The function ®(x, k) is called the Weyl solution and the function M (k) is called the Weyl function
for the boundary-value problem L.

The Weyl solution and Weyl function are meromorphic functions with respect to k£ having poles
in the spectrum of the problem L.

It follows from (4.1) and (4.2) that

and (T'a®) (0,k) = (

Oz, k) = NG NG = M(k). 4.4
Note that by virtue of equalities (C'(z, k), p(z,k)) = 1, (4.2) and (4.3) we have
(@@, k)o@, k) =k, (e, k)¢ (@, k) = RA(K). 4.5)
Theorem 4.1. The following representation holds:
1 . 1 1
M= = * Zl {an =) agkg} | (4.6)

Proof. Let’s write a representation solution ¥(z, k) = —(B1k?+82)C(x, k) + (1 k*+ag)S(x, k)
as ¢ (x,k):
forz > a

Y(x, k) = —(ﬁle + B2) cosk (T — x) + (a1k2 + ag) sink (r — x) +
+ / ]\711(56, t) [— (ﬂlk‘2 + 52) coskt + (Oélki2 + 012) sin k:t] dt,
0

(Lo)) (x, k) = =k [(ﬁle + ,82) sink (r —z) + (alkz2 + ag) cosk (m— m)] —

—b(x) [(61k2 + B2) cosk (m — x) — (oqk:2 + ap) sink (7 — x)] +

mT—x
+ / ]%1(33, t) [— (51k:2 + 62) cos kt + (a1k2 + 042) sin k‘ﬂ dt+
0

m™T—X

+ / kNag (. t) [(B1k? + B2) sinkt + (a1 k® + ) cos kt] dt,
0

forz <a
U(x, k) = BT [~ (Bik® + B2) cosk (m — 2) + (a1 k® + ap) sink (7 — )] +
+87 [- (Ble + B2) cosk (7 — 2a + x) + (a1k2 + ag) sink (7 — 2a + )] +
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/ N11 (x,t) ﬂlk‘Q + 52) cos kt + (oqk: + az) sin k:t] dt,

(Ta¥) (z,k) = —kB™" [(ﬁ1/€2 + ﬁQ) sink (m —z) + (oqk:2 + 042) cosk (m— ZL')] +
+kB~ [(Ble + B2) cosk (7 — 2a + z) — (a1k2 + ag) sink (7 — 2a + z)| +
+b(z) BT [~ (Bi1k* + B2) cosk (m — z) + (a1k® + az) sink (7 — z)] +

+b(x)B~ [(ﬂle + B2) cosk (7 — 2a + z) — (a1k2 + ag) sink (7 — 2a + z)] +

/Nm z,t) [— (B1k* + B2) coskt + (ark? + ) sin kt] dt+

T

+ / kNoo (z,t) [(B1k? + B2) sin kt + (a1k?® + az) cos kt] dt,

where ]\Nfij(x,t) = Nij(x,t) — Njj (z,—t), i,j = 1,2. In the case of C' = 0 and ¢(x) = 0, denote
the solutions with g1 (z, k) and ¥g2(x, k), so we have

(x, k) = Yor(x, k) + f1,

(FaT/))(JC, k) = (Fa\IIOQ)(-'E, k) + fo,

where
= / Nii(z,t) [~ (81K + B2) coskt + (a1k® + as) sin kt] dt,
fa = b(a) B[ = (B1k* + B2) cosk (m — ) + (o1 k? + ag) sink (7 — x) |+ .
o +B7[ = (B1k? + B2) cosk (m — 2a + ) + (a1 k? + a2) sink (7 — 2a + z) |

/ Noi (z, t) — (B1k? + B2) coskt + (a1 k® + as) sin kt] dt+

+ / kNoyo (z,1) [(BlkZ + ﬁ2) sin kt + (a1k2 + ag) cos kt] dt.
0
On the other hand, we can write

(o) (0,k)  (Tato) (0,k)  f f
M{(k) = Mo(k) = kv (0,k) kwoo(o,k) _kA?k)_A(lk)Mo(k)'
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Since limg| o0 e~ IMmklm | £:(E)| = 0 and A(k) > Cse™ k™ for k € G, the equality

B B

kA(K)  A(k) Mo(k)
yields

limsup |M(k) — My(k)| = 0. 4.7)
k| —o0 keGs

Weyl function M (k) is meromorphic with respect to poles k,,. Using (3.3), (4.1) and Lemma 3.2,
we calculate that

ResM(k) = Lo (Okn) 1
=kn knA (k) Qn
(4.8)
0
Re s Mo(k) = —(Fa¢q) (0. %) = —io.
ke=kj, KOA (K9) Qp

Consider the contour integral

1 [ M(p) — Mo (p) :
I(k) = — du, kcintT,.
(k) 27ri/ k—p a cm
I'n

By virtue of (4.7) , we have lim,, o I,(k) = 0. On the other hand, the residue theorem and (4.8)
yield

In(k) = =M (k) + Mo(k) + > M‘ > M

kn€intl'y K €intl'y,

Therefore, as n — oo, we get

n=-+oo n=-+oo
1 1
M(k) = My(k _ _
D D (o D Dy iy

It follows from the form of the function My (k) that

o0

1 1 1 1
=t 3 e (2 )

The composition of the last two equalities yields (4.6).

Theorem 4.1 is proved.

Let us formulate a theorem on the uniqueness of a solution of the inverse problem with the Weyl
function. For this purpose, parallel with L, we consider the boundary-value problem L of the same
form but with different potential ¢(x). It is asumed in what follows that if a certain symbol « denotes
an object related to the problem L, then & denotes the corresponding object related to the problem L.

Theorem 4.2. [f M(k) = M(k) then L = L. Thus the specification of the Weyl function
uniquely determines the operator.
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Proof. Let us define the matrix P(x, k) = [Pj(z, k)] by the formula

j,k=1,2

> d P
Pz, k) < v ~) _ ( v ) 4.9)
Lap Ta® Fap Ta®

Using (4.9) and (4.5) we calculate

P k) =~ [o(e,b) (0a) (2 ) — B B) (Ca) (2, B)],

P12(33, k) = _% [(I)((L', k)&(wv k) - Sp(wv k)(AI;('% k‘)],

(4.10)

P, ) = 1 [(Tae) (2. 8) (Ta®) (2,5) — (Ta®) (2, F) (Ta) (2, )]

Paali ) =~ [(Fa®) (2, )30, ) = (Cap) (2, 1)L, 1)
and

(p(l‘, k) = Pll(x7 k)@(xv k) + P12(x’ k) (Fa@ (x’ k)’

(Taw) (@, k) = Por(z, k)p(x, k) + Poz(, k) (Ta®) (2, k),
4.11)

®(x, k) = Pii(z, k)®(x, k) + Pra(z, k) (raii) (2, k),

(Ca®) (2, k) = Poi(, k)®(z, k) + Pao(z, k) (raci) (2, k).

It follows from (4.10), (4.2) and (4.5)

Pua(ek) =1+ 575 [planh) (o) (@) = (0a9) (0 1)) =

— (2, k) (Cad) (0, k) = (Tap) (2, 1) |

1 ~ ~
Pral, k) = gz gy [V W3, R) = ol TG, )
Pa(ek) = 135 [(To) (@) (Ta) (2.0) = (C0®) (0.) (Co) 2. 8)|-

Paa(r. k) =1+ g [(Ca®) (2 8) (B ) = 1) = (o) () (Bl ) = W) |

With respect to (4.10) and (4.2), for each fixed x, the functions Pjj(x, k) are meromorphic in &

with poles in the points k, and %n It follows from the representations of the solutions ¥(z, k) and
o(z, k) that
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lim max |Pii(z, k) — 1| = hm max |P12 (x, k)| =

k—oo 0<z<m —00 0<

keGs kecé

= lim max |Py(x,k) — 1] = lim max |Py (x,k)| =0. (4.12)
k—oo 0<z<m k—o0 0<z<m

keGg keGg

According to (4.2), (4.3) we have

Pu(, k) = —% (ol k) (Ta0) (2.k) — C(a, k) (Ta) (. F) +
+ (M (k) = ME)) ol k) (Taf) (. 8)

Pio(a, k) = —% |8, K)C (. k) = Cla, k)plw, k) + (M(k) = M(K)) oz, F)3(, k)]

(4.13)

[u——y

Por(e,k) = =7 | (Cap) (,k) (FaC) (@,k) = (LaC) (2. k) (Tad) (2, k)| -
o [(F0) = M) (Tag) (2,1) (Ta) 2,

[ 1) () (2.1) — Ol ) (Tae) (2, )+

+ (M(k) = M(K)) (Tatp) ()P, K)

Thus if M (k) = M (k) then the functions Pji(z, k) are entire in k for each fixed x. Together
with (4.12) we get that

Pyi(x, k) =1, Pio(x, k) =0, Py (x,k) =0, Py (x, k) = 1.
Substituting into (4.11), we get

p(a, k) = ¢z, k), (Lap)(@,k) = o) (@, k),

Oz, k) = d(z, k),  (Tad)(z,k) = (raé) (z, k)

for all x and k. Consequently L = L.
Theorem 4.2 is proved.
Theorem 4.3. Ifk, = k,, oy = &, n > 0, then L = L. Thus, the specification of the spectral

data {ky, o}, ~q uniquely determines the operator.
Proof. Since

1 =, 1 1
M(k):ao(k—ko)+z {an(k—kn)+a0k0}’

n=

h >, 1
M(k) = — (k k0>+;{ (kk:n)+&2753}

ISSN 1027-3190. Yxp. mam. xcypu., 2012, m. 64, Ne 12

—_

(4.14)




1628 Y. GULDU, R. KH. AMIROV, N. TOPSAKAL

under the hypothesis of the theorem and in view of (4.13), we get that M (k) = M (k) and conse-
quently by Theorem 4.2, L = L .
Theorem 4.4. [fk, =ky, tin =fin,n >0, then L =1.
~ A
Proof. In view of properties of functionsA(k) and A(k), it is clear that limy_ oo AEZ; =
Under the hypothesis k, = k, , A(k) and A(k) functions are entire we get that A(k) = A(k).

From Lemma 3.2, we have 1; (x,%n> = Y@ (x,%n> = Ynp(x, ky) and U (1’,%”> = \T/(x, k) =
= Ynp(x, ky). It follows that ~,, = 7,, and so a,, = &,,. Consequently by Theorem 4.3, L = L.
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