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FUNCTIONS OF ULTRAEXPONENTIAL
AND INFRALOGARITHM TYPES AND GENERAL SOLUTION
OF THE ABEL FUNCTIONAL EQUATION

®YHKLIT YJIbTPAEKCIIOHEHIIIAJIBHOI'O
TA IHOPAJTOTAPU®MIYHOI'O TUIIB I 3ATAJIbHUIA
PO3B’A30K ®YHKINIOHAJIBHOI'O PIBHAHHSA ABEJIA

We propose generalized forms of ultraexponential and infralogarithm functions introduced and studied by the
author earlier and present two classes of special functions, namely, ultraexponential and infralogarithm f-type
functions. As a result of present investigation, we obtain general solution of the Abel equation a(f(z)) =
= «a(z) + 1 under some conditions on a real function f and prove a new completely different uniqueness
theorem for the Abel equation stating that the infralogarithm f-type function is its unique solution. We
also show that the infralogarithm f-type function is an essentially unique solution of the Abel equation.
Similar theorems are proved for the ultraexponential f-type functions and their functional equation 3(z) =
= f(B(x — 1)) which can be considered as dual to the Abel equation. We also solve certain problem being
unsolved before, study some properties of two considered functional equations and some relations between
them.

3anponoHOBaHO y3arajabHeHi pOpPMHU yIBTPACKCIOHEHIIATbHUX Ta iH(panorapudmivanx QyHKUil, mo Oynu
BBEJICHI 1 BUBUCHI aBTOPOM PaHillle, Ta HaBEJCHO JBa KJIaCH CHeLiabHUX (QYHKIIN — yJIbTPaeKCIIOHEHIIaTbHOTO
ta indpanorapudmivaoro f-tumy. B pesynsrari 10CITiKEHD OTPUMAHO 3arajJbHUN PO3B’SI30K PIBHIAHHS AGers
a(f(z)) = a(x) + 1 32 neBHUX yMOB WIS peanbHOi (QYHKII f 1 ZOBeIEHO HOBY LIIKOM iHIIY TeOpeMy
€IMHOCTI JJIs PIBHSHHS AGest 3 TBEpPKEHHAM PO Te, o GyHKIs iHdpanorapuMidHOro f-THITY € €HHHM
PO3B’SI3KOM 1L[bOTO PiBHAHHS. TakoX MokasaHo, 1o (yHKLis iHppanorapuMidHOro f-TUITY € CYyTTEBO €UHUM
po3B’sizkoM piBHsHHSA Abernst. [logibui Teopemu noBemeHo s GYHKIIN YIBTPACKCHOHEHI[AIBHOTO f-THITY
Ta ix ¢yHskuionansHoro piBusuus 3(z) = f(B(x — 1)), ke MOKHA BBaXaTH IYaJIbHUM JUIS PiBHAHHS
Abenst. Takoxx po3B’si3aHO 3ajady, 1110 He OyJa po3B’si3aHa JI0 TEHEePIilIHBOr0 Yacy, BUBYCHO BIACTUBOCTI JBOX
PO3IIAAYBAaHUX (YHKIIOHATEHUX PIBHSHD Ta JCSKi CIIBBIAHOIICHHS MK HHUMH.

1. Introduction and preliminaries. In [2] we solve the following functional equation
completely and obtain its general solution

al@®) =alz)+1, z€R\[d,d].

In fact this equation is a special case of the Abel’s equation (equation (7.14) in [3]),
where f = exp,, 0 < a # 1, §; < &, are the two zeros of g(z) = a®" — z with this
assumption that 6o = +o0 if a > 1, and

R, a>elle,

(—00,01), 1<a<elle,
B0l = R\ {61 = 62}, (i)e sa<h

(=00, 61) U (82, 400), 0<a< C)
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It is very important to know that the general solution does not need any conditions

on a and «, and it is new. The general solution is a = ¢ Tog, +[], = (¢)1 Tog, +[],,
where log,, is the infralogarithm function as the dual of the ultraexponential function:
uxp, (v) = a”, [], ultra power part function, ( ), decimal part function, ¢, every 1-
periodic function and ¢ is any function defined on [0, 1). For this reason we call the above
equation infralogarithm functional equation. Moreover, we proved that the equation is
equivalent to f(a”) = f((x)1) + [x] + 1, namely co-infralogarithm functional equation,
if x is restricted to (R\[01, d2]) N Dyyp, - Also, we prove a uniqueness theorem that
states log,, is a unique solution of the Abel’s exp,-functional equation (infralogarithm
equation), under some conditions. Of course, similar theorems for the ultraexponential
functions and their related functional equations (5(x) = a®(®~1) that is dual of the
equation) are proved in [4].

Now, to generalize the above results for the Abel’s equation in general (for a given
real function f: R — R), we first introduce ultraexponential and infralogarithm f-type
functions and then obtain its general solution (by using the two classes of functions),
under some conditions on f that is completely different to the previous assumptions in
the main references such as [3, 5].

If f, ¢ are real functions and p is an integer valued function (p: R — Z), then we
define the function f£ by

Fh(@) = 4 (p(x)), (L.1)

and call it y-composition of f at o or p-iteration of f at . The domain of f£ is dependent
on invertibility of f and the domains of each functions f, ¢ and p. Therefore if f is not
invertible, then Dyx C p~' ([0, +00)). Also f4(x) = ¢(z), for every z € =" ({0}).
Notice that f;' = f* and f} = AL (I is the identity function), also if 4 = n is a
constant function, then f# = f™ (n-composition of f).
If u(x + k) = p(xz) + k and ¢ is k-periodic, where k is an integer, then

fh(x 4+ k) = fPO (e + k) = () = fH(FL (), (1.2)

for every x such that z,x + k € Dyu (of course if f* is defined). Especially if k = 1
and g = f£, then g(z + 1) = f(g(x)).

Denote by [z] the largest integer not exceeding x and put (z) = x — [z]. Then, for
any fixed real number r # 0, we set

T

() =7 (7>, [x], =7 {%} Vr € R

r
and call (z), r-decimal part of x and x|, r-integer part of x. Since (x); = (z) (to
prevent any confusion between decimal and parentheses notation) sometimes we use the
symbol (z); instead of (z). Clearly z = [z], + ()., and

[x] € (r) =71Z, (z), €7[0,1) =[0,7) or (r0].

We call (z),, [x], r-parts of x. It is easy to see that the r-decimal part function ( ), is
r-periodic (especially the decimal part function ( ) = ( ); is periodic of period 1).

Note. Every r-periodic function ¢ has the form ¢ = ¢o( ), where ¢ is a function
defined on r[0,1). Since the composition of every function and a periodic function is
periodic, the r-decimal part function is the basic r-period function. In fact ¢ = ¢o( ),
is the general solution of the functional equation ¢(x + r) = ¢(x).
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2. Ultraexponential f-type functions. Here we generalize the ultracxponential
function that is a unique extension of the Tetration.

Definition 2.1. We call the function f([ ])H “semi-ultraexponential f-type function”
and denote by upt .

Recall that if 0 < a # 1, then exp,(xz) = a” and exp(z) = exp.(x) = e* (for
~!. Therefore upte,,
ultraexponential function, and uxp = uxp, is the natural ultraexponential function.
Hence uxp, (z) = expi ™ ((2)1) = a® (see [4]).

Now let f be a function defined on f™([0,1)), for every non-negative integer n.
Then upt ; is defined on [~1, +00) and we have

all x) and exp,! = log,, In = exp = uxp, which is called

r+1, -1<z <0,
f(@), 0<z<l1,

upt () = fAH ((2)) =
fPlz—1), 1<z<2,

fPr—2), 2<z<3,

Note that if f is invertible, then the domain of upt; may be larger than [—1,+00). In
fact with the mentioned hypothesis we have

Dupt, = [~1,400) U ([=2,~1) N (Dy1 —2) U... = [-1,400) US;1,  (2.1)

where Sp-1 C (—o0,—1) and Sy-1 = @ if f is not invertible.
The function upt satisfies the following well known functional equation

Blx) = f(Bxz —1)), (22)

for every x > 0. For this reason we call (2.2) “ultraexponential f-type functional
equation”.

Example 2.1. If f = exp,, then upt; = f([ })H = uxp, . Now if @ > 1, then (in
(2.1) Sg-1 = (—2,—1) 50 Dyyp, = (—2,+00) and we have

uxp, (z) = exp, (uxp,(z — 1)), x> -1

In this case the values of z in (2.2) are extended from x > 0 to z > —1.
But if 0 < a < 1, then

Sp1 = (=2, —1)U(=3, —2)U(—4+a, —3)U(—5+a, —5+a®)U(—6+a®", —6+a®)U. . .,
and
uxpa(x) = eXpa(uXpa(m - 1))5 -1 7& x> 2.

In fact the above equation holds for all = such that z,z — 1 € Dyyp, (see [4]).

In [4] we proved the first uniqueness theorem about the Tetration that one of its
corollaries states if a = e, then there is no any convex function on [—1,400) except
that f = uxp, such that satisfies the functional equation
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Bx) = exp,(B(x — 1)), x> -1,

with the initial condition f(0) = 1. But for a > e it was left as an unsolved problem as
follows:

Question. Let a > e. Is there any convex function on [—1,+00) except that
f = uxp, which satisfies the ultraexponential functional equation?

Now we claim that the answer is positive. Because, putting

2x4(—1+In a)x?

pl)=a e f(z) = expl((z — [2]) V> -2,

one can see that f satisfies the all conditions of the question (considering Corollary 2.3,

3.5 and Theorem 3.2 of [4]) and clearly f # uxp, . In fact there exist infinitely many

—1+1
solutions for it. For if 0 < ¢ < %, o(x) = a1=e)z+ee” then the function f
na

defined by the above equation satisfies the all conditions.

The following lemma gives us general solution of the ultraexponential f-type equation
for an arbitrary given function f.

Lemma 2.1. Let ¢ be a constant real number and f a given real function. Then,
general solution of the functional equation

Blx) = f(B(x—1)), z=>c, (2.3)
is
Bx) = fr (), z>c—1, (2.4)

where @ is every 1-periodic real function.

Proof. Considering (1.2) if 8 has the form (2.4), then satisfies the equation. Converse-
ly let S satisfies the equation and fix z. Then S(z) = f"(68(z — n))), for every
non-negative integer n such that x — n > ¢ — 1. Putting n = [z — ¢] + 1 and
o(x) = B((x — ¢)1 + ¢ — 1), we have B(z) = fl*=+1(p(x)) and ¢ is 1-periodic.

Note. 1f f is defined on f"([0,1)) for every integer n > 0, then upt; satisfies the
equation (2.3), when ¢ = 0. If f is invertible, then it may be satisfied the equation for
some ¢ < 0. For example if f = exp,, then upt, satisfies the equation for ¢ = —1
(see [4]).

But it is important to know that the function upt f(x — c¢) satisfies (2.3), for every
constant ¢ (put () = (z — ¢)1), and so always it is a solution of the equation.

An important problem about the ultra f-type equation is that when upt  is its unique
solution? (under which conditions?). To answer the question, in the following theorem
we introduce a unique solution for the ultraexponential f-type equation.

Theorem 2.1 [A uniqueness conditions for the ultraexponential f-type functions].
Let f be a function defined on f™(|0,1)) for every integer n > 0 and differentiable on
0,1), £(0) = 1, f1.(0) #0.

Then 8 = upty is the unique solution of the ultraexponential f-type equation on
[—1,400) for which is increasing and differentiable on [—1,0) and ' is monotonic
(non-decreasing or non-increasing) on it and

B =0, lim f(a) = £L(0) lim f'(a). 25)

z—0t
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Proof. Clearly upt satisfies the conditions. Now if 8 = g satisfies the conditions,
then g is differentiable on [—1, 0], (0, 1) and continuous at zero (lim,_,0 g(z) = g(0) =
= f(g(=1)) = f(0) =1). Therefore 0 < g(z — 1) < 1 and ¢'(z) = ¢'(z — 1) f'(g(z —
— 1)), for every 0 < = < 1, hence

£4(0) Im ¢'(2) = lim ¢'(z) = lim ¢'(e —1)f"(g(e —1)) = f1(0) lm ¢'(t).

So lim,_,o- ¢’(x) = lim,_,_;+ ¢’(x) thus ¢’ is constant on (—1,0), because ¢’ is
monotonic on (—1,0). Now considering lim,_,o- g(z) = 1, lim,_,_1+ g(x) = 0 we
conclude that g(z) = z + 1 on [—1, 0] and so the Lemma 2.1 completes this proof.

Now considering the above theorem and (2.5) we have the following corollary:

Corollary 2.1. Suppose f is a function defined on f™([0,1)) for every integer n > 0
and differentiable on [0,1) and f', (0) = f(0) = 1.

Then [ = upt; is the only solution of the ultraexponential f-type equation on
[—1,400) such that 3(—1) = 0, 8 is increasing and differentiable on [—1,0) and [’
exists at zero and is monotonic on (—1,0).

3. Infralogarithm f-type functions; a unique solution for the Abel functional
equation. An interesting property of the ultraexponential f-type functions is that its
inverse function (if exists) satisfies the Abel’s equation

a(f(z)) = a(z) + 1.

Let f be a function defined on f™(]0,1)) for every integer n > 0 and f(0) = 1.
Then f is defined on f™([0, 1]) for every integer n > 0 and

o) = (1) = upt;(n), n=0,1,2,....

Now if f is continuous and increasing on f™([0,1]) (Vn > 0), then the sequence f™(1)
is increasing and lim,,_, o f(1) = f*°(1) =, where 1 < ¢ < oo, and

Uf"Ol [0,0) C Dy.

Also f: [0,0) — [1,6) is increasing, continuous and invertible. Therefore f~1: [1,4) —
— [0, §) is continuous, increasing and invertible too. In this case the function upt -1,
+00) — [0, 0) is increasing, continuous and bijection too. So uptf :[0,0) = [-1, +00)

is continuous and increasing and we have

z—1, 0<z<1,
), 1<z < f(1),

L+ f72(2), f(1) <2< A1),
2+ f73(x), (1) <z < A,

upt; ' (z) =

Of course the domain of upt]?1 may be larger than [0, ) if the domain of f~1 is larger
than [1,6) (e.g. see Iog, in [2]).
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Definition 3.1. Let f be a continuous and increasing real function on f"([0,1]),
Jor every integer n > 0, and f(0) = 1. Then we call upt s “ultraexponential f-type
Junction” and denote by uxp . Also, denote UXpJT1 by logy and call it “infralogarithm
f-type function”.

Note thatif @ > 1 and f = exp,, then uxp; = uxp, and log; = uxp;1 =uxp, ! =
= log,.

Theorem 3.1. The functions log; and [log | satisfy the Abel’s equation

alf(x))=alz)+1, 0<z<d (3.1

(where 6 = f*°(1) and [log,] = [Jolog, ). Also, there exists an integer valued function
p such that Togy = p+ =+~ (on [0,0)) and [Tog;] = i, (Tog) = f~+~ 1.

Proof. Put g =uxp;and p = [¢g7']. If 0 < x < 4, then = = g(y) for some y > —1.
So

u(f(@) =g (f@)] =g flew)] =g gy +1)] = [y] + 1 = p(x) + 1.

Therefore yu = [log ] satisfies (3.1). Now putting h = p + f~#~!, we have
hy(w) = plg(x)) + 9D g(a) = [ + fH (I (@)) = [2] + (@) = o,
for every z > —1. Now if 0 < z < §, then pu(z) < g~ !(x) < pu(z) + 1 thus
9(p(x) < @ < g(p(x) +1) = fOH0) Sz < fHOF2(0) =0 < fHO <L
Hence (h) = f~#~1 [h] = pand if 0 < = < 4, then
gh(z) = fIOFY(h(@)) = OO (@) = @

Now we have

log(f(2)) = h(f(2)) = p(f(x)) + f*UEDT(f(2)) = 1+ Tog ().

Theorem 3.1 is proved.

Note. The above theorem shows that we can consider the Abel’s equation as an
infralogarithm functional equation when f(0) = 1, f is continuous and increasing on
1™([0,1]) (Vn > 0). In this case we introduce general solution of the equation and proof
a uniqueness theorem about it at the end of this section.

Now we proof a theorem that states an interesting relation between the ultraexponential
f-type and Abel’s equation.

Theorem 3.2. (i) If a and (3 satisfy the Abel’s equation and ultra f-type functional
equation respectively, then (Ba)f = f(Ba) and there exists I-periodic function ® such
that af(x) = x 4+ ®(x) (of course it holds for all x such that the compositions are
possible).

(ii) If p, h are two solutions of the (3.1) (Abels equation on [0, f*°(1))) such that
(h) = f~", then general solution of the equation is o = p + ph, where @ is every
1-periodic function.

Proof. (i) Let o, [3 satisfy the equations, then

(Ba)f(x) = Baf(z)) = Bla(z) + 1) = f(Bla(z)) = f(Be(x)).
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Also, we have
aB(z) = a(f(Ba 1)) = a(Bz — 1)) + L.

So a3 satisfies the difference equation x () = 1+ x(z—1) and so there exists 1-periodic
function ® such that af(z) = = + ®(z).
(ii) Let « has the mentioned form, then

a(f(x)) = p(f (@) + e(h(f(2))) = 1+ p(@) + ¢(h(z) + 1) = 1 + ().

Conversely if « is an arbitrary solution of the equation, then a(f"(z)) = a(x) + n,
for every integer n such that f™ exists. Now considering the hypothesis we can put
n = —u(xg), when xg is fix, and we have

a( ) (20)) = a(z0) — p(wo) = al(h(z0)) = alzo) — p(zo).

So putting ¢ = aj,1y0( )1 we have a(x) = pu(x) + @h(z) and ¢ is 1-periodic.
Theorem 3.2 is proved.
Corollary 3.1 [General solution of the Abel’s equation]. If f is continuous and inc-
reasing on ([0, 1]), for every n > 0 and f(0) = 1, then the general solution of the (3.1)
is

a = [logs] + ¢ logy, (3.2)

where ¢ is every 1-periodic function.

Proof. Note that if h is a solution of the equation, then h + ¢ is so (¢ is constant).
Now we get this result by Theorems 3.1, 3.2 (ii).

Remark 3.1. Theorems 3.1, 3.2 and Corollary 3.1 state some important facts for
the Abel’s equation (for real functions) that one of them says the general solution can be
gotten from the mentioned essential solutions (% and p in Theorem 3.2 (ii)). Theorem 3.1
grantees that log, and [log,] (infralogarithm f-type function and its bracket) are the
essential real solutions for the Abel’s equation (under the conditions on f). On the other
hand, replacing ¢ by a and putting ¢ = 1 in the equation (1.48) of [3] we get (7.1) of
[3] that is the Abel’s equation o(f(z)) = a(z) + 1. Now comparing Theorem 1.9 of
[3] about this equation and our results, we can see some similarities between the given
form o = ph + p of Theorem 3.2 (ii) and o = @pa + d of [3] (the original form is
a = pola(x)] 4+ d(z)c). Indeed, in these two similar forms both p and d are integer
valued functions and o = ph+ p gives general solution of the equation but o = ppa+d
gives a unique corresponded solution for the given function ¢, with some conditions.
Of course the conditions of the theorems are completely different (see [3] and [5]).

The above theorem states some interesting relations between the general solutions of
the Abel’s equation and the ultraexponential f-type equation specially when we consider
the (3.1) (0 <z < f°°(1)). If ¢ = 0 in (3.1), then it may o = S~ 1, e.g., a = log; and
B = uxp;. Also, putting ¢ = ()1 in the general solution (part (ii)) implies p + f~# is
a solution of the equation.

Now we are ready to introduce a uniqueness conditions for the infralogarithm f-type
function regarding to the (3.1) and similar to Theorem 2.1.

Theorem 3.3 [A uniqueness theorem for Abel’s equation]. Let f be continuous and
increasing on f"([0,1]), for every n > 0, and differentiable on [0,1), (1, f(1)) and
7(0) = 1.
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If h is a solution of (3.1) such that h' is monotonic on (0,1) and

h(0) = -1, lim A'(z) = fL(0) lim A’ 3.3
O)=-1, Jim K() = £,(0) lim () (.3
then h = Tog (on [0, f>°(1))).

Proof. First note that log satisfies the conditions, clearly. Now if 0 < x < 1, then
1< f(x) < f(1) and W' (z) = f'(2)W'(f(z)). Since f is increasing and continuous on
[0,1) and f(0) = 1 we have

Jim #(w) = lim f/(2)l'(f(x)) = f2(0) lim K'(t) = lim A'(z).
Therefore lim,_,o+ h'(z) = lim,_,;- h'(x) so k' is constant on (0,1), because it is
monotonic on (0,1). Now considering —1 = h(0) = lim,_,g+ h(z) and 0 = h(1) =
= lim,_,;- h(x) we conclude that h(z) =z — 1 on [0, 1].

Finally since f: [0, f*°(1)) — [1, (1)) = Uo—,[f™(1), f*T1(1)] is continuous
and increasing and h(f"(x)) = h(x) +n for n > 0, we conclude h = log; on
0, £(1).

Theorem 3.3 is proved.

Now considering the above theorem and (3.3), we have the following corollary:

Corollary 3.2. Let f be continuous and increasing on f™([0,1]), for every n > 0,
and differentiable on [0,1), (1, f(1)) and f\(0) = f(0) = 1. Then o = log; is the
only solution of the Abel’s equation such that a(0) = —1 and o' exists at v = 1 and
monotonic on (0,1).

Moreover; in this case log; is differentiable on [0, f(1)) and if f is differentiable
overall [0,0), then log; is so.
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