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ON SOME IMBEDDING RELATIONS BETWEEN CERTAIN
SEQUENCE SPACES"

PO JAEAKI CINBBIJHOIWEHHSA BKJIAJTEHHA
MIK IEBHUMM ITPOCTOPAMHU MNOCJIJIOBHOCTEN

In the present paper, we introduce the sequence space E;f,‘ of non-absolute type which is a p-normed space and
a BK-space in the cases of 0 < p < 1 and 1 < p < oo, respectively. Further, we derive some imbedding
relations and construct the basis for the space Z?,, where 1 < p < oo.

BBeneHo MOHATTS NPOCTOPY IOCTITOBHOCTEH Z;} HEeaOCOJIIOTHOTO THILY, SIKUIl € p-HOPMOBAHHM HPOCTOPOM i
BK-npocropom y Bumagkax 0 < p < 111 < p < oo BignosigHo. Kpim Toro, orpumaHo nesiki criiBBiIHO-
LIEeHHs BKJIaJIleHHs Ta o0y0BaHO 6a3uc IS IPOCTOPY Z;‘, el <p<oo.

1. Introduction. By w, we denote the space of all complex valued sequences. Any
vector subspace of w is called a sequence space.

A sequence space /' with a linear topology is called a K-space provided each of the
maps p;: E — C defined by p;(z) = z; is continuous for all ¢ € N; where C denotes the
complex field and N = {0,1,2,...}. A K-space FE is called an F'K-space provided E
is a complete linear metric space. An F' K -space whose topology is normable is called a
BK-space [2, p. 1451], that is, a BK -space is a Banach sequence space with continuous
coordinates [11, p. 187].

We shall write /., ¢ and ¢ for the sequence spaces of all bounded, convergent and
null sequences, respectively, which are BK -spaces with the usual sup-norm defined by

Il = sup ],

where, here and in the sequel, the supremum sup,, is taken over all k € N. Also, by ¢,,
0 < p < oo, we denote the sequence space of all p-absolutely convergent series. It is
known that the space ¢, is a complete p-normed space and a BK-space in the cases of
0 <p<1land1l <p < oo, respectively, with respect to the usual p-norm and £,-norm
defined by

lzll,, =Y lex?, 0<p<1,
k

and
1/p
ol = (Zw) D lepes
k

respectively. For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to oo.

Let X and Y be sequence spaces and A = (a,) be an infinite matrix of complex
numbers a,x, where n, k € N. Then, we say that A defines a matrix mapping from X
into Y, and we denote it by writing A: X — Y, if for every sequence x = (z) € X
the sequence Az = {A, (x)}, the A-transform of z, exists and is in Y, where
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490 M. MURSALEEN, A. K. NOMAN
m):Zankmk, n € N. (1.1)
k

By (X : Y), we denote the class of all infinite matrices A = (ay) such that A: X —
— Y. Thus, A € (X : Y) ifand only if the series on the right-hand side of (1.1) converges
for each n € N and every x € X, and Az € Y for all z € X. A sequence x is said to
be A-summable to [ € C if Ax coverges to | which is called the A-limit of .
For a sequence space X, the matrix domain of an infinite matrix A in X is defined
by
Xa={recw: Az e X} (1.2)

which is a sequence space.

We shall write e(®) for the sequence whose only non-zero term is a 1 in the % th
place for each k£ € N.

The approach constructing a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by several authors in
many research papers (see, for example, [1-7,12—-15,17, 18]). The main purpose of this
paper is to introduce the sequence space é;‘ of non-absolute type and is to derive some
related results. Further, we establish some imbedding relations concerning the space é;,
0 < p < oo. Finally, we construct the basis for the space K;,‘, where 1 < p < o0.

2. The sequence space EZ’; of non-absolute type. Throughout this paper, let A\ =
= (A\k)ken be a strictly increasing sequence of positive reals tending to oo, that is

0<Xd <A <... and N\ =00 as k — oo. 2.1
By using the convention that any term with a negative subscript is equal to naught,
we define the infinite matrix A = (\,x) by

Ak = AT T (2.2)

for all n,k € N. Then, it is obvious by (2.2) that the matrix A = (A1) is a triangle,
that is A\,,, # 0 and \,x = O for all £ > n, n € N. Further, by using (1.1), we have for
every z = (x)) € w that

1 n
TZ M — Me—1)zk, neN. (2.3)

Recently, Mursaleen and Noman [14] introduced the sequence spaces ), ¢* and £2,
as follows:

cp = {33 €w: limA,(z) = 0},

A= {x € w: limA,(z) exists}
n

and
o = {a: € w: sup|A,(z)| < oo}.
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ON SOME IMBEDDING RELATIONS BETWEEN CERTAIN SEQUENCE SPACES 491

Moreover, it has been shown that the inclusions ¢y C ¢, ¢ C ¢* and £, C ¢, hold.
We refer the reader to [14] for relevant terminology.

Now, as a natural continuation of the above spaces, we define 62 as the set of all
sequences whose A-transforms are in the space ¢, 0 < p < oo; that is

éz{méw Z|A |p<oo} 0<p<oo.

With the notation of (1.2), we may redefine the space 61’}, 0 < p < oo as the matrix
domain of the triangle A in the space £,,. This can be written as follows:

O=(l,),, 0<p<oo. (2.4)

It is trivial that E;‘, 0 < p < o0, is a linear space with the coordinatewise addition

and scalar multiplication. Further, it follows by (2.4) that the space 8;‘, 0<p<l,
becomes a p-normed space with the following p-norm:

lelly =IA@I, =3 ln(@Ps 0<p <t

Moreover, since the matrix A is a triangle, we have the following result which is
essential in the text.

Theorem 2.1. The sequence space E;,‘, 1 < p < o0, is a BK-space with the norm
given by

1/p
[l = A, = (Z |An(x)|f’> , 1<p<oo. (2:5)

Proof. Since (2.4) holds and ¢,,, 1 < p < o0, is a BK-space with the £,-norm (see
[10, p. 218]), this result is immediate by Theorem 4.3.12 of Wilansky [19, p. 63].

Remark 2.1. One can easily check that the absolute property does not hold on the
space £, 0 < p < oo, that is |[z]|;y # [||z[[ls for at least one sequence « € ¢;. This
tells us that é;} is a sequence space of non-absolute type, where |x| = (|z|) -

Theorem 2.2. The sequence space Z;‘ of non-absolute type is linear isometric to
the space {,,, where 0 < p < oo.

Proof. To prove this, we should show the existence of a linear isometry between
the spaces E;‘ and ¢, where 0 < p < oco. For this, let us consider the transformation
T defined, with the notation of (2.3), from 8;} to ¢, by x — A(z) = Tx. Then
Tz = A(z) € £, for every x € é;}. Also, the linearity of T is trivial. Further, it is easiy
to see that z = 0 whenever Tz = 0 and hence T is injective.

Furthermore, for any given y = (yx) € £,, we define the sequence = = (x) by

AkYk — Ab—1Yk—1

= k € N.
T e — Aot <

Then, we have for every n € N that

1 & 1
— A — A = — A — Ao—1Yk—1) = YUn-
A”kzzo k k—1 CEk A, k:o( LYk k—1Yk 1) Y
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492 M. MURSALEEN, A. K. NOMAN

This shows that A(x) = y and since y € ¢,,, we obtain that A(z) € £,. Thus, we deduce
that z € E;} and Tz = y. Hence, the operator T is surjective.
Moreover, let x € E;} be given. Then, we have that

1Tzl = A=)y, = [l

and hence 7' is an isometry. Consequently, the spaces E;‘ and ¢, are linear isometric for
0 <p<oo.

Theorem 2.2 is proved.

Finally, we know that the space ¢ is the only Hilbert space among the Banach spaces
£y, 1 < p < oco. Thus, we conclude this section with the following corollary which is
immediate by Theorems 2.1 and 2.2.

Corollary 2.1. Except the case p = 2, the space E;‘ is not an inner product space,
hence not a Hilbert space for 1 < p < co.

3. Some imbedding relations. In the present section, we establish some imbedding
relations concerning the space E;‘, 0 < p < oo. We essentially characterize the case in
which the imbedding ¢, C 62 holds for 1 < p < oo.

The notion of imbedded Banach spaces can be found in [9] (Chapter I) and it can be
given as follows:

Let X and Y be Banach spaces. Then, we say that X is imbedded in Y if the
following conditions are satisfied:

(i) x € X implies z € Y that is, the space Y includes X.

(i) The space Y includes a vector space structure on X coinciding with the structure
of X.
(iii) There exists a constant C' > 0 such that ||z||,, < C||z| y forall z € X.

In what follows, we shall denote the imbedding of X in Y by X C Y, assuming
that the symbol C means not only the set-theoretic inclusion, but imbedding have the
properties (ii) and (iii). Further, we say that the imbedding X C Y strictly holds if the
space Y strictly includes X.

Since any two sequence spaces have the same vector space structure, the condition
(i1) is redundant when X and Y are B K -spaces.

Now, we may begin with the following basic result:

Theorem 3.1. If 0 <p < s < oo, then the imbedding E;} C ) strictly holds.

Proof. Since the space /, strictly includes /,, the space ¢} strictly includes é;}.
Therefore, this result is immediate by the fact that the topology of the space E;} is
stronger than the topology of ¢, that is

S

[2llgy = [1A(2)

0. SA@),, = llzlle

for all z € £, where 0 < p < s < cc.

Theorem 3.1 is proved.

Although the imbeddings ¢y C ¢, ¢ C ¢* and £, C 2, always holds, the space £,
may not be included in é;; for 0 < p < oco. This will be shown in the following lemma
in which we write 1 = <1> .

A Ak
Lemma 3.1. Let 0 < p < oo. Then, the spaces {,, and é;‘ overlap. Further, if

1
X ¢ {,, then neither of the spaces {,, and E;‘ includes the other one.
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ON SOME IMBEDDING RELATIONS BETWEEN CERTAIN SEQUENCE SPACES 493

Proof. Obviously, the spaces ¢, and E;; always overlap, since the sequence (A —
— Ao, —0,0,0,...) belongs to both spaces ¢, and E;} for 0 < p < oco.

1
Suppose now that — ¢ ¢,, 0 < p < oo, and consider the sequence x = e0) =
=(1,0,0,...) € £,. Then, by using (2.3), we have for every n € N that
1< A
Anz) = =3 = Mecr)el) = 70

Z'A |p:)\Pz)\p

which shows that A(x) ¢ £, and hence z ¢ /). Thus the sequence z is in ¢, but not in

Thus, we obtain that

E)‘ Hence, the space éA does not include ¢, When 3 ¢ £,, where 0 < p < oo.
On the other hand, let 1 < p < oo and define the sequence y = (y) by

1

N k is even,

kEeN.

Yk

1 Ag—1— Ak—2 .
— k dd
Ak—l( Ak — Ak—1 )7 15005

1
Then y ¢ ¢, since Y ¢ ¢,. Besides, we have for every n € N that

1 (An — A"_l) is even
N - N b n tl
0, n is odd.

Thus, we obtain that

)P = )P = A2y — )\2n 1\’

1 s 1 >\2n - >\2n—2)p
1, (
AP Dbv e G

IN

< S+
D D5l G

)\p>:/\2g<oo.

This shows that A(y) € £, and hence y € 62. Thus, the sequence y is in 61’} but not in

£y, where 1 < p < oo.
Similarly, one can construct a sequence belonging to the set E;} \ ¢, for 0 <p < 1.

N +Z(>\”

2n—2

1
Therefore, the space /,, also does not include ¢} when X ¢ £y, for 0 < p < oo.

Lemma 3.1 is proved.
As an immediate consequence of Lemma 3.1, we have the following lemma.
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1
Lemma 3.2. If the imbedding £, C K;‘ holds, then X € Ly, where 0 < p < 0.

Proof. Suppose that the imbedding ¢, C 62‘ holds, where 0 < p < oo, and consider
the sequence z = () = (1,0,0,...) € £,. Then x € E;‘ and hence A(x) € ¢,. Thus,

we obtain that »
1

. 1
which shows that € Ly

Lemma 3.2 is proved.

1

We shall later show that the condition Y€ ¢, is not only necessary but also sufficient
for the imbedding ¢, C é; to be held, where 1 < p < co. Before that, by taking into
account the definition of the sequence A = (\g) given by (2.1), we find that

0<%<1, 0<k<n,
1
for all n, k € N with n 4+ k > 0. Furthermore, if X € ¢, then we have the following
lemma which is easy to prove.

1
Lemma 3.3. IfX € (1, then

oo

1
sgp (A — Ag—1) Z " < 0.

n=k "

Now, we prove the following:

1
Theorem 3.2. The imbedding ¢, C {7 holds if and only ifX € l.
Proof. The necessity is immediate by Lemma 3.2.

1
Conversely, suppose that X € /1. Then, it follows by Lemma 3.3 that

M = sup (A —)\k_1)z — <
k ek 1

n=0 k=0
o0 o0 1 o0
= ];)|xk|(>\k = Ak-1) ;E < M;OWH = M||z|l, .

This also shows that the space ¢ includes ¢;. Hence, the imbedding ¢; C ¢7 holds
which concludes the proof.
1
Corollary 3.1. IfX € {1, then the imbedding (,, C é;‘ holds for 1 < p < oo.

Proof. The imbedding trivially holds for p = 1 by Theorem 3.2, above. Thus, let
1 < p < oo and take any x € £,,. Then |z|P € ¢; and hence |z|P € ¢ by Theorem 3.2
which implies that x € 62‘. This shows that the space ¢, is included in 6;}.
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Further, let x = (x3) € £, be given. Then, for every n € N, we obtain by applying
the Holder’s inequality that

n n p—1 n
A — Ag— A — Ap— 1
- [Z< Y > mp] [Z Y ] = 2 el

k=0 k=0 n

Thus, we derive that

Hxllﬁg = Z|A )P < Z Z (A = Ag—1)|zg [P =
n n= O

o0 1 oo
— p
—Z|$k|p (Al — Ak 1)27 SM;WMP—MHiUHzp,

n=~k

1
where M = sup;, [()\k — Ak—1) Zoc_k )\} < oo by Lemma 3.3. Hence, the imbedding

n

£, C £ also holds for 1 < p < oco.

Corollary 3.1 is proved.

Now, as a generalization of Theorem 3.2, the following theorem shows the necessity

1
and sufficiency of the condition € ¢, for the imbedding ¢, C ¢, to be held, where
1 <p<oo.
1

Theorem 3.3. The imbedding (,, C é;‘ holds if and only {fX € lp, wherel < p <
< 0.

Proof. The necessity is trivial by Lemma 3.2. Thus, we turn to the sufficiency. For

1
) € (1. Therefore, it

. 1 1
this, suppose that X € {p, where 1 < p < co. Then Vi ()\11;

follows by Lemma 3.3 that

| |
sup Ak — Ai_1)? Z 7S Sup (AL = AP ) Z 7 <o
n=k " n=k "
Further, we have for every fixed k € N that
Ak — A
k . k 1’ 0<k<n,
k _ n
An (e( )) - n € N.

0, k>n,

Thus, we obtain that
He(k)H? = )\k_)\k 1 Zf<00 keN,

which yields that e(®) ¢ E;‘ for every k € N, i.e., every basis element of the space ¢,
is in 6;}. This shows that the space K;‘ contains the Schauder basis for the space ¢, such
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that
sup 1e® ey < o0.

Therefore, we deduce that the space E;‘ includes ¢,,. Moreover, by using the same
technique used in the proof of Corollary 3.1, it can similarly be shown that the topology
of the space /), is stronger than the topology of 62. Hence, the imbedding ¢, C 62‘ holds,
where 1 < p < 0.

Theorem 3.3 is proved.

Now, in the following example, we give an important particular case of the space
627 where 1 < p < oo.

Example 3.1. Consider the particular case of the sequence A = (\) given by
A = k+ 1 for all kK € N. Then % ¢ ¢, and hence ¢; is not included in £} by
Lemma 3.1.

On the other hand, we have 1 € ¢, for 1 < p < oo and so ¢, is included in 62‘.
Further, by applying the well-known inequality (see [8, p. 239])

EN p \" r 1
Z 1 oo7) el 1<p<oo,

we immediately obtain that

p
lallg < 2 e 1<p <o
for all x € £,,. This shows that the imbedding ¢, C £, holds for 1 < p < co. Moreover,
this imbedding is strict. For example, the sequence y = {(—1)*}xen is not in £, but in
E;‘, since

Sl =3 St
n k=0

Remark 3.1. In the special case A\, = k+ 1 (k € N) given in Example 3.1, we
may note that the space E;} is reduced to the Cesaro sequence space X,, of non-absolute
type, where 1 < p < oo (see [16, 17]).

Now, let z = (z;,) be a null sequence of positive reals, that is

1
=) —— <00, 1<p<oo.
v R

x>0 forall keN and zp -0 as k — oo.

Then, as is easy to see, for every positive integer m there is a subsequence {x, },cn of

the sequence = such that
1
Tk, = 0] T m+1 |-
<(r +1) +1>

Further, this subsequence can be chosen such that k.1 — k. > 2 for all r € N.

In general, if x = (zy) is a sequence of positive reals such that lim inf 2, = 0, then
there is a subsequence 2’ = {xk;}reN of the sequence x such that lim, x, = 0. Thus
2’ is a null sequence of positive reals. Hence, as we have seen above, for every positive
integer m there is a subsequence {zy, },cn of the sequence x’ and hence of the sequence
x such that k,.,; — k, > 2 for all » € N and
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ON SOME IMBEDDING RELATIONS BETWEEN CERTAIN SEQUENCE SPACES 497

1
—o— .
xkr <('I’+ 1)m+1>

where k, = ké(r) and 6: N — N is a suitable increasing function. Thus, we obtain that

(r+ 1), = O (W) .

Now, let 0 < p < oco. Then, we can choose a positive integer m such that mp > 1.
In this situation, the sequence {(r + 1)z, }ren is in the space £,,.

Obviously, we observe that the subsequence {zy, }-en depends on the positive integer
m which is, in turn, depending on p. Thus, our subsequence depends on p.

Hence, from the above discussion, we conclude the following result:

Lemma 3.4. Letx = (x1) be a sequence of positive reals such that lim inf 2, = 0.
Then, for every positive number p € (0, 00) there is a subsequence x'P) = {x },en of
x, depending on p, such that k,y — k. > 2 for all r € Nand )", |(r + 1)z}, [P < oc.

Moreover, we have the following two lemmas (see [14]) which are needed in the
sequel.

Lemma 3.5. For any sequence x = (xy) € w, the equalities

Sn('r) = Tn _An($)7 n €N, (3.1

and
/\n—l

)\n - )\nfl
hold, where the sequence S(x) = {S,(x)} is defined by

Sp(x) = [An(x) - An_l(x)}, neN, (3.2)

So(z) =0 and S,(x)= )\i Z)\k—l(xk — k1) for n>1.
" k=1

Lemma 3.6. For any sequence A\ = (\p) satisfying (2.1), the sequence

A A
{k} is bounded if and only if lim inf LAREEN 1, and is unbounded if
Ak — Ae—1 ) pen Ak

and only if lim inf % =1.
k

Now, we know by Theorem 3.3 that the imbedding ¢, C E;‘ holds whenever % € {p,
1 < p < oo. More precisely, the following theorem gives the necessary and sufficient
conditions for this imbedding to be strict.

Theorem 3.4. Let1 < p < co. Then, the imbedding (), C Eg strictly holds if and

/\n+1 _ 1

only lf% € ¢, and lim inf

Proof. Suppose that the irrrllbedding ¢, C E;‘ is strict, where 1 < p < oo. Then, the
necessity of the first condition is immediate by Theorem 3.3. Further, since E;‘ strictly
includes £, there is a sequence 2 € £, such that = ¢ ,,, that is A(z) € £, while z ¢ £,,.
Thus, we obtain by (3.1) of Lemma 3.5 that S(z) = {S,(z)} ¢ ¢,. Moreover, since
A(z) € £,, we have Z |An(z)P < oo and hence ), |An(z) — Ap—1(z)? < o0
by applying the Minkowski’s inequality. This means that {A,(z) — Ap—1(2)} € 4.
Thus, by combining this with the fact that {S,(z)} ¢ ¢,, it follows by (3.2) that the
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An— . A .
sequence ¢ ——- | is unbounded and hence § — %t ¢ (... This leads us
)\n - >\n71 )\n - )\nfl

with Lemma 3.6 to the necessity of the second condition.

1
Conversely, since X € {,, we have by Theorem 3.3 that the imbedding ¢, C E;‘

holds. Further, since lim inf Akl =1, we obtain by Lemma 3.6 that
k
liminf 24 =M1 _ g
Ak

Thus, it follows by Lemma 3.4 that there is a subsequence A?) = {\; },cn of the
sequence A = (\y), depending on p, such that k.1 — k. > 2 for all » € N and

3 ‘(r + 1)(%) ’p < x. (3.3)

Let us now define the sequence y = (yi) for every k& € N by

r+1, k =k,
Ae—1 — A
Yk = —(T+1)(M>, k=k-+1, reN,
Ak — A1
0, otherwise.

Then, it is clear that y ¢ ¢,,. Moreover, we have for every n € N that

(T+1) ()"ﬂ_)\)\nl>’ 7’L=kT7

n

Anly) = r e N.
07 n#kr7

This and (3.3) imply that A(y) € £, and hence y € £;. Thus, the sequence y is in /)
but not in £,. Therefore, the imbedding ¢, C ¢, strictly holds, where 1 < p < co.

Theorem 3.4 is proved.

As an immediate consequence of Theorem 3.4, we have the following result:

)\n
Theorem 3.5. The equality E;‘ = {;, holds if and only if lim inf T'H > 1, where
1<p<oo. "
Proof. The necessity is immediate by Theorems 3.3 and 3.4. For, if the equality

1
holds then /,, is imbedded in ¢, and hence 3 € £, by Theorem 3.3. Further, since the

An
imbedding ¢, C 8;‘ cannot be strict, we have by Theorem 3.4 that lim inf /\+1 # 1 and

n

An
hence lim inf 227 > 1.

n
)\n+1

Conversely, suppose that lim inf > 1. Then, there exists a constant a > 1 such

n

An . 1 .
+ > a and hence A\, > Aga” for all n € N. This shows that X € {1 which

that

leads us with Corollary 3.1 to the consequence that the imbedding ¢, C E;‘ holds and
hence ¢, is included in E;‘, where 1 < p < c0.
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On the other hand, by using Lemma 3.6, we have the bounded sequence

{/\n _/\z\n_l } and hence {/\n)\_n);_l } €l
Now, let 2 € £). Then A(z) = {A(2)} € £, and hence {A,,(z) — A,,—1(z)} € 4.

Thus, we obtain by (3.2) that S(z) = {S,(x)} € ¢,. Therefore, it follows by (3.1) that
z = S(z) + A(x) € £,. This shows that = € £, for all z € £, and hence /) is also
included in ¢,,. Consequently, the equality KZ)]‘ =/, holds, where 1 < p < oo.

Theorem 3.5 is proved.

Finally, we conclude this section by the following corollary:

Corollary 3.2. Although the spaces EZ),‘, co, c and Ly, overlap, the space E;} does not
An+1

include any of the other spaces. Further, if lim inf = 1 then none of the spaces

n
o, ¢ or L~ includes the space E;D\, where 0 < p < o0.

Proof. Let 0 < p < oco. Then, it is obvious by Lemma 3.1 that the spaces @, o, C
and /., overlap.
Further, the space E;‘ does not include the space c¢y. To show this, we define the
sequence © = (x) € ¢ by
1

Tp=——"-"-, keN
(k+1)'/7

Then, we have for every n € N that

n

1 A — Ag—1
A ()] = — _— >
[An(2)] )\"kZ:O TERNE

1 - 1
> Y - )=
An<n+1>1“’kz:o e

which shows that A(x) ¢ £, and hence 2 ¢ £;. Thus, the sequence z is in ¢ but not in
E;D\. Hence, the space 62‘ (/1\oes not include any of the spaces cg, ¢ or .
n+1

Moreover, if lim inf = 1 then the space /., does not include the space E;}. To

see this, let 0 < p < oo. T?len, Lemma 3.4 implies that the sequence y, defined in the
proof of Theorem 3.4, is in 61),‘ but not in ¢.,. Therefore, none of the spaces cg, ¢ or
>\n+1

includes the space Z;‘ when lim inf =1, where 0 < p < oc.

n

Corollary 3.2 is proved.

4. The basis for the space £;‘. In the present section, we give a sequence of points
of the space ¢, which forms a basis for £}, where 1 < p < oco.

If a normed sequence space X contains a sequence (b,,) with the property that for
every x € X there is a unique sequence of scalars (v, ) such that

li},n |z — (bo + a1br + ... + anby,)|| =0,

then (b,,) is called a Schauder basis (or briefly basis) for X. The series Zk b, which
has the sum z is then called the expansion of = with respect to (b,,), and written as

T = Zk Ozkbk.
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Now, because of the transformation 7" defined from E;} to £, in the proof of Theorem
2.2 is onto, the inverse image of the basis {e(®)}cx of the space ¢, is the basis for the
new space f;}, where 1 < p < co. Therefore, we have the following:

Theorem 4.1. Let 1 < p < oo and define the sequence e*)()\) = {eﬁf’)(/\)}neN
of the elements of the space E;‘ for every fixed k € N by

A
(1) k— 2k p<n<k+1,

(k) )\n - /\n—l

e (\) = nen @D

0, n<korn>*k+1,

Then, the sequence {e(k)(/\)}keN is a basis for the space E;‘ and every T € ﬁ;} has a
unique representation of the form

z= Z ar(Ne® (X 4.2)

where a(N) = Ag(z) for all k € N,
Proof- Let 1 < p < oo. Then, it is clear by (4.1) that

Ae®(N) =e® er,, keN,

and hence e (X) € £} for all k € N.
Further, let x € E;} be given. For every non-negative integer m, we put

Then, we have that

A™) =" arMA P (V) =D A(a)e®™
k=0 k=0
and hence
0, 0<n<m,
Az — 2™ = n,m € N.

Now, for any given ¢ > 0, there is a non-negative integer m such that

> mer< ()

n=mo+1

Hence, we have for every m > my that

oo 1/p s 1/p
|x—x<m>||@=( ) |An<x>|p> S( > lAn<w>l”> <

n=m+1 n=mo+1

N ™

Thus, we obtain that
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lim ||z — 2™ |[;n =0
m P

which shows that x € Zg is represented as in (4.2).
Finally, let us show the uniqueness of the representation (4.2) of z € Eg‘. For this,

suppose on the contrary that there exists another representation x = Zk Bk()\)e(k) (N).

Since the linear transformation 7" defined from EI),‘ to £, in the proof of Theorem 2.2 is
continuous [19] (Theorem 4.2.8), we have that

An(@) = BN A (e® (X)) = Br(Nelf) = B.(N), neN,
k k

which contradicts the fact that A,,(z) = «,,()) for all n € N. Hence, the representation
(4.2) of z € £} is unique.

Theorem 4.1 is proved.

Now, it is known by Theorem 2.1 that E;j\, 1 < p < o0, is a Banach space with its
natural norm. This leads us together with Theorem 4.1 to the following corollary:

Corollary 4.1. The sequence space E;‘ of non-absolute type is separable for 1 <
<p < oo.

Finally, we conclude our work by expressing from now on that the aim of the next
paper is to determine the a-, - and y-duals of the space Eg‘ and is to characterize some
matrix classes concerning the space f;}, where 1 < p < 0.

1. Altay B., Basar F. Some Euler sequence spaces of non-absolute type // Ukr. Math. J. — 2005. — 57, Ne 1.
-P 1-17.
2. Altay B., Basar F., Mursaleen M. On the Euler sequence spaces which include the spaces £, and £oo 1
// Inform. Sci. — 2006. — 176, Ne 10. — P. 1450-1462.
3. Aydwin C., Basar F. On the new sequence spaces which include the spaces co and ¢ // Hokkaido Math. J.
—2004. - 33, Ne 2. — P. 383-398.
4. Aydin C., Basar F. Some new paranormed sequence spaces // Inform. Sci. — 2004. — 160, Ne 1-4. —
P. 27-40.
5. Aydin C., Basar F. Some new difference sequence spaces / Appl. Math. and Comput. — 2004. — 157,
Ne 3. - P. 677-693.
6. Aydin C., Basar F. Some new sequence spaces which include the spaces £, and /o, // Demonstr. math.
—2005. — 38, Ne 3. — P. 641 —-656.
7. Basar F, Altay B. On the space of sequences of p-bounded variation and related matrix mappings // Ukr.
Math. J. —2003. - 55, Ne 1. — P. 136-147.
8. Hardy G. H., Littlewood J. E., Polya G. Inequalities. — Cambridge Univ. Press, 1952.
9. Krein S. G., Petunin Ju. 1., Semenov E. M. Interpolation of linear operators. — Providence, Rhode Island:
Amer. Math. Soc.,1982.
10. Maddox 1. J. Elements of functional analysis. — 2nd ed. — Cambridge: Cambridge Univ. Press, 1988.
11. Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces // Mat. Vesnik.
—1997. - 49. — P. 187-196.
12.  Malkowsky E., Savas E. Matrix transformations between sequence spaces of generalized weighted means
// Appl. Math. and Comput. — 2004. — 147, Ne 2. — P. 333 -345.
13.  Mursaleen M., Basar F., Altay B. On the Euler sequence spaces which include the spaces £, and £ 11
// Nonlinear Analysis: TMA. — 2006. — 65, Ne 3. — P. 707-717.
14.  Mursaleen M., Noman A. K. On the spaces of A-convergent and bounded sequences // Thai J. Math. —
2010. - 8, Ne 2. — P. 311-329.
15. Mursaleen M., Noman A. K. On som new differnce sequence spaces of non-absolute type // Math.
Comput. Mod. —2010. - 52. - P. 603-617.
16. Ng P-N. On modular space of a nonabsolute type / Nanta Math. — 1978. — 2. — P. 84-93.
17. Ng P-N., Lee P-Y. Cesaro sequence spaces of non-absolute type / Comment. Math. Prace Mat. — 1978.
—20, Ne 2. — P. 429-433.
18. Wang C.-S. On Nérlund sequence spaces // Tamkang J. Math. — 1978. — 9. — P. 269 -274.
19. Wilansky A. Summability through functional analysis // North-Holland Math. Stud. — Amsterdam etc.,
1984. - 85.

Received 10.08.09,
after revision — 18.06.10

ISSN 1027-3190. Vip. mam. scypn., 2011, m. 63, Ne 4



