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PROPERTIES OF A CERTAIN PRODUCT OF SUBMODULES
BJIACTUBOCTI HEBHOI'O IOBYTKY NIAMOAYJIIB

Let R be a commutative ring with identity, M/ an R-module and K71, .. ., K, submodules of M. In this article,
we construct an algebraic object, called product of K71, ..., K. We equipped this structure with appropriate
operations to get an R(M)-module. It is shown that R(M)-module M™ = M ... M and R-module M
inherit some of the most important properties of each other. For example, we show that M is a projective (flat)
R-module if and only if M™ is a projective (flat) R(M)-module.

Tpunycrumo, mo R — koMmyTaTuBHE Kinble 3 omununetro, M — R-momyns i K7, ..., K, — ninmomyni
M. TloGynoBaHo anreOpaiuHuil 00’€KT, IO Ha3MBA€ThCs NOOyTKOM migmonmynmiB K, ..., K,. Lo crpyk-
Typy OCHAILICHO BiAMOBIAHUMHM omepaiissMu juisi orpumants R(M )-monyns. ITokazano, mo R(M)-momyns
M"™ = M ... M ta R-monyns M ycnankoByHOTh A€sKi 3 HAHOLIbII BaXXJIMBUX BIACTUBOCTEH OJMH OJHOTO.
Hanpuknazx, mokasaHo, mo M € IpOeKTUBHHM (IIOCKHM) R-momyneM Tomi i Timbku Tomi, xomu M"™ —
npoextuBHui (wiockuit) R(M )-monyis.

1. Introduction and preliminaries. In this paper, all rings are commutative with identity
and all modules are unitary. Let M be an R-module; there are some attempts to define
a product between submodules of M, see for example [5, p. 386]. Based on this idea,
in this article, we introduce and investigate a kind of product of submodules of M and
especially we study R(M)-module M™ = M ... M, in which R(M) is idealization
of M. It is worthy to mention that Nagata introduced the notion of idealization and
the idea to use idealization is due to him. Idealization is useful for extending results
about ideals to submodules and constructing examples of commutative rings with zero-
divisors. The theme throughout is how properties of R-module M are related to those of
R(M)-module M™ and this is the main goal of this article. For example, in Section 2,
we show that M is a projective (flat) R-module if and only if M™ is a projective (flat)
R(M)-module and in Section 3, we find primary and secondary representation for M™
by means of those of M and conversely. Now, we define the concepts that we will need.
Recall that R(M) = R(+)M with coordinate-wise addition and multiplication

(r1,m1)(re, ma) = (1172, r1me + roma),

is a commutative ring with identity, called the idealization of M. Note that R naturally
embeds into R(M) viar — r(+)0, if N is a submodule of M, then 0(4)N is an ideal
of R(M), O(+)M is a nilpotent ideal of R(M) of index 2, every ideal that contains
0(+)M has the form I(+4)M for some ideal I of R, and every ideal that is contained in
0(+)N has the form 0(+)K for some submodule K of N. The purpose of idealization
is to put M inside a commutative ring A so that the structure of M as an R-module
is essentially the same as that of M as an A-module, that is, an ideal of A. Since
R = R(M)/0(+)M, I — I(+)M gives a one-to-one correspondence between ideals
of R and ideals of R(M) that contains 0(+)A/. Thus the prime (maximal) ideals of
R(M) have the form P(+)M where P is a prime (maximal) ideal of R. Some basic
results on idealization can be found in [10].

An R-module M is said to be multiplication if every submodule N of M has the
form I M for some ideal I of R. Equivalently, N = [N : M|M. A submodule K of M
is multiplication if and only if NN K = [N : K]K for all submodules N of M. See for
example [5], for more details.
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Generalizing the case for ideals, an R-module M is called a cancellation (weak
cancellation) module if /M = JM for ideals I and J of R implies [ = J (I +
+ann M = J + ann M), see [3]. Examples of cancellation modules include invertible
ideals, free modules, and finitely generated faithful multiplication modules [4] (Corollary
to Theorem 9). The trace ideal of an R-module M is Tr(M) = Z f(M). If

feHom(M,R)

M is projective, then M = Tr(M)M and ann(M) = ann Tr(M) [9] (Proposition 3.30).
The set of all prime ideals of ring R is denoted by Spec(R). Moreover, we denote by
Zdvr(M) the set of all zero-divisors of module M over ring R. Also, for unexplained
definitions and terminologies we refer to [6, 9].

2. The multiplication property and product. We begin with the following definition
which plays an important role in this article.

Definition. Let K1, Ko, ..., K,, be submodules of an R-module M. Define product
of K1, Ks,...,K, as follows:

K\ K>...K, = {(1R,k‘1,k2,...,k‘n)|/€1‘EK1‘, forall lgzén}

One can easily check that K; K5 ... K, forms an R(M )-module under the below
operations:

(1R7klak2a .- 7k7’b) + (lR? ;_7]{/27 e 7k’/n) =
= (1r, (k1 + k), (k2 + k), -y (K 4 K7)),
(T,m)(lR,/{jl,kg,...,]{}n) = (lR,’I‘kl,’/‘k‘Q,...,Tkn).

For convenience, 1 and M ... M (n-times) will be denoted by 1 and M™, respecti-
vely.

In this section, we shall investigate the multiplication, quasimultiplication, projective,
flat, faithfully flat, cancellation and weak cancellation properties under this new product
submodules.

Let P be a maximal ideal of R and let Tp (M) = {m € M| (1 —p)m = 0, for some
p € P}. Then Tp(M) is a submodule of M. An R-module M is called P-torsion if
Tp(M) = M. On the other hand, M is called P-cyclic provided there exist x € M and
q € P such that (1 — ¢)M C Rz. El-Bast and Smith [8] (Theorem 1.2), showed that
M is multiplication if and only if M is P-torsion or P-cyclic for each maximal ideal P
of R.

Next we prove that if K ... K, is a multiplication module, then each K;, 1 <1 < n,
is a multiplication module. But first we need the following lemma.

Lemma 1. Let Ky,..., K, be submodules of an R-module M and P a maximal
ideal of R. Then:

() Tppym(Ky...Ky) = {(1,m1,ma,...,my) | m; € Tp(K;)}. In particular,
K ... K, is P(+)M-torsion if and only if each K;, 1 < i < mn, is P-torsion.

(i) Ki...K, is P(+)M-cyclic if and only if each K; (1 < i < n) is P-cyclic.

Proof. (i) Let (1,mi,mg,...,m,) € Tpym(K1...K,). Then there exists
(p,m) € P(4+)M such that ((1,0) — (p,m))(1,mq1,ma,...,my) = (1,0,0,...,0). So
(1, 1=p)mq, (1—=p)ma, ..., (1—p)m,) = (1,0,0,...,0). It follows that m; € Tp(K,),
forall 1 <i < n.Now, suppose that m; € Tp(K;), 1 <i < n. Then there exists p; € P
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such that (1 —p;)m; = 0. If weputg =1 — Hj_l(l —pi) € P, then (1 — ¢)m; = 0,
for each 1 < 4 < n and hence ((1,0) — (q,O))(ljml,mg, ...,my) = (1,0,0,...,0).
Thus (1,my,ma,...,my) € Tprpynm (K1 ... Ky).

(i1) To see why (ii) is true, let K;, 1 < i < n, be P-cyclic. Then there exist m; € K;
and p; € P such that (1 — p;)K; C Rm;. If weputg =1 — Hjﬂ(l —p;) € P, then
((1,0) — (¢,0))K; ... Ky, € R(M)(1,mq,ma, ..., my). Hence K ... K, is P(+)M-
cyclic.

Conversely, let K ... K, be P(+)M-cyclic. Then there exist (1,k1,...,k,) €
€ Ky...K, and (p,m) € P(+)M such that ((1,0) — (p,m))K;...K,, C
C RIM)(1,ky,...,ky). Thus (1 — p)K; C Rk;, for all 1 < ¢ < n and so K; is
P-cyclic, as required.

Lemma 1 is proved.

Theorem 1. Let Ky,..., K, be submodules of an R-module M. If K; ... K, is
a multiplication R(M)-module, then each K; is a multiplication R-module. Moreover,
if M is a multiplication R-module, then M™ is a multiplication R(M )-module.

Proof. Let K, ... K, be a multiplication R(M )-module and P a maximal ideal of
R. Ifeach K;, 1 < i < n, is P-torsion, there is nothing to prove. Now, assume that there
exists 7, 1 < 4 < n, such that K; is not P-torsion. By Lemma 1(i), K; ... K, is not
P(+4)M-torsion and so there exist (p,m) € P(+)M and (1,k1,...,k,) € K1... K,
such that

(1,0) = (pm) Ky ... K; ... K,y C R(H)M(,ky, .o ks k).

Hence (1 — p)K; C Rk;, i.e., K; is P-cyclic. It follows that each K; is a multiplication
submodule of M.

Now, let M be a multiplication R-module and P(+)M be a maximal ideal of
R(M). Suppose that M™ is not P(+)M-torsion. By Lemma 1(i), M is not P-torsion
and hence there exist p € P and m € M such that (1 — p)M C Rm. It follows
that ((1,0) — (p,0))M™ C R(+)M(1,m,...,m). Thus M™ is P(+)M-cyclic and this
completes the proof.

For an R-module M, following [7], we set

M(P)={x e M| sx € PM, forsome s€ R\ P},

in which P is a prime ideal of R. In [7], it is shown that M (P) = M or M(P) is a
submodule of M, for every P € Spec(R). As usual, we will denote the Support of M

by
Supprp M = { P € Spec(R) | there exists 0 x € M such that ann(z) C P}.

Recall that an R-module M is called quasimultiplication if M (P) = PM, for all
P € Suppp M. For a reference on quasimultiplication module see [7].

The next result will be used in the Theorem 2.
Lemma 2. Let M be an R-module. Then:

(i) Suppg(ry M™ ={P(+)M | P € Suppy M}.
(i) M™(P(+)M)={(1,m1,...,my) € M™ | m; € M(P), for all 1 <i < n}.

ISSN 1027-3190. Vkp. mam. scypH., 2011, m. 63, Ne 4



PROPERTIES OF A CERTAIN PRODUCT OF SUBMODULES 505

Proof. (i) If P € Supppy M, then there exists 0 # & € M such that ann(z) C P.
Clearly, ann(1,z,x,...,2) = {(r,m) | r € ann(z)} C P(+)M. Hence P(+)M €
€ Suppp(ya M" and so {P(+)M | P € Suppr M} C Suppp(ay M". Now, let
P(+)M € Suppg(yyn M™. Then there exists 0 # (1,z1,...,2,) € M" such that
ann(1l,21,...,2,) C P(+)M, and hence annz; Nannxze N ... Nannx, C P. Since
P is a prime ideal, there exists 1 < ¢ < n such that annz; C P, i.e,, P € Suppp M
and so Supp gy M™ C {P(+)M | P € Suppg M}. By the above argument the proof
is finished.

(i) Let T = {(1,mq,...,my,) € M™ | m; € M(P) forall 1 < i < n}, and
(1,my,ma,...,my) € M™"(P(+)M). Then there exists (s',m’') € R(+)M \ P(+)M
such that (s',m/)(1,m1,ms,...,m,) € (P(+)M)M™. Hence s'm; € PM, for all
1<i<nandsom; € M(P) forall 1 <4i<mn.Itfollows that M"™(P(+)M) C T.

Conversely, let (1,mq,...,my,) € T. For every 1 < i < n, there exists s; €
€ R\ P such that s;m; € PM. Put s = s;1...8,. Clearly, s ¢ P and sm; € PM,
for each 1 < i < n. So (s,0)(1,my,ma,...,my) € (P(+)M)M" and therefore,
(I,my,...,my) € M™(P(+)M). Thus T C M™(P(+)M). By the above argument it
follows that

M™(P(+)M) ={(1,mq,...,my) € M" | m; € M(P), forall 1<i<n}.

Lemma 2 is proved.

The next result shows how quasimultiplication property of an R-module M can be
transferred to an R(M )-module M™ and conversely.

Theorem 2. An R-module M is quasimultiplication if and only if M™ is a quasi-
multiplication R(M)-module.

Proof. First, note that M (P) = M if and only if M™(P(+)M) = M™. Suppose
that M is a quasimultiplication R-module and P(+)M € Suppgyyp M". Then
M™(P(+)M) ={(1,mq,...,my,) € M™ | m; € M(P) = PM, forall 1 <i < mn}.

It follows that for all 1 < 4 < n there exist p;; € P and m;J € M such that
t
A
m; = E j:lpijmij' Hence

t

t t
!/ ! / !
(17m17"'7mn) = ]-7 E pljmljv"‘v E pn]mn] = E (17p1jmljv7pn]mn])
Jj=1 Jj=1 Jj=1

Therefore, (1,m1,...,my) € (P(+)M)M™. This yields that
M™(P(+)M) C (P(+)M)M".
Now, let Zil(l,pimﬂ, ey DiMip) € (P(+)M)M™. Since M (P) = PM, p;m;; €

€ M(P), foreach 1 <i <mand 1 < j < n. It follows that

(17Zpimilv e 7Zp2mzn> g (11M(P)u CIEE 7M(P))7
i=1 i=1

and by Lemma 2, Zi1(17pimil7 ooy PiMin) € M™(P(+)M). Therefore,
(P(+)M)M™ C M™(P(+)M),
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i.e., M™ is a quasimultiplication R(M )-module.

Conversely, let M™ be a quasimultiplication R(M)-module and P € Suppp M.
Then P(+)M € Suppg(y M", by Lemma 2. Since M" is quasimultiplication,
M™(P(+)M) = (P(+)M)M", and hence M (P) = PM. Thus M is a quasimultipli-
cation R-module.

Theorem 2 is proved.

The following question is araised: Does M™ as an R(M )-module have all properties
of R-module M? It is easily checked that Q is a faithful Z-module, but ann(Q™) =
= ann(Q)(+)Q = 0(+)Q. In fact, it shows that every property of M can not be
transferred to M™.

Before we state and prove our next corollary, we need the following proposition.

Proposition 1. For an R-module M

Tr(M") =Te(M)(+) Y, g(M)=Tr(M)(+)M.

g€Hom (M, M)

Proof. Let f € Hom(M"™, R(+)M). It is clear that there exist g1 € Hom(M, R)
and go € Hom(M, M) such that f = g;(+)g2. Hence

MY =Y A=

f€Hom(M™,R(+)M)

= Z g1(M)(+)g2(M) =

g1€Hom(M,R),go€Hom (M, M)

= Z 91(M) + Z ga(M) C Tr(M)(+)M.

g1€Hom(M,R) g2 €Hom(M,M)

Conversely, let ¢ € Hom(M, R). Define f: M" — R(+)M as follows: for each
(1,my,ma,...,my) € M™, f(1,my,ma,...,my) = g(mi+mo—+...4+my)(+)id(mi+
+ma+...4+my). Itis clear that f is well-defined and R(M )-homomorphism. Therefore,

TOOHHM= 3 g(M)M C S FM™) C Tr(M™).
g€Hom(M,R)

It follows that Tr(M™) = Tr(M)(+)M.

Proposition 1 is proved.

Lemma 3. Let M be a projective R-module. Then Tr(M) is a finitely generated
ideal of R if and only if Tr(M™) is a finitely generated ideal of R(M).

Proof. By Proposition 1 and [9] (Proposition 3.3), Tr(M") = Tr(M)(+)M =
= Tr(M)(+) Tr(M)M. Hence, Tr(M™) is a finitely generated ideal of R(M) if and
only if Tr(M) is a finitely generated ideal of R [1] (Theorem 7(1)).

Lemma 3 is proved.

It is shown in [9] (Lemma 3.23) that an R-module M is projective if and only
if there exist a family of elements {m;};c; in M and family {f;};c; of elements in
M* = Hompg(M, R) such that every m € M is a finite sum m = Xm; f;(m), where
fi(m) = 0 almost for every 7 € I. In the next theorem we prove that M is a projective
R-module if and only if M™ is a projective R(M )-module.
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Theorem 3. An R-module M is projective if and only if M™ is a projective
R(M)-module.

Proof. Let M be a projective R-module and (1, mq,mo,...,m,) € M™. There
exist a family {m; ;}u jyer in M and family {f; )} jyer of elements in M* =
= Homp (M, R) such that m; = ZZ m;. 5y f(i,5) (m;). Hence,

(1, mi,ma,... ,mn) = (1, Zm(i71)f(i71)(m1), ey Zm(i,n)f(i,n) (m,,)) =
= X(1,mey f(ma)s - s My Fin) (Mn)) =

= 2(fe,1)(m1), 0)(1,mi,1), 0,0, 0) + oo+ (fan) (M), 0)(1,0, ..y m )

For each (i, j) € I, define g(; j: M™ — R(M) as follows:

for each (1,m1,ma,...,m,) € M™, g; (1, mi,ma,...,my) = (fu;)(m;),0).
It is clear that g(; ;) is well-defined and R(M)-homomorphism. Let m; ; = (1, 0,...,

jth
.. ,m, e ,O). So (1,mi,ma,...,m,) = Xga;)(1,m1,ma,...,my)m;; and

hence M™ is a projective R(M )-module.

Conversely, let M™ be a projective R(M)-module and m € M. Since M™ is
projective, there exist a family of elements f; € Hom(M", R(+)M) and family
(1,m14,...,my;) of elements M™ such that

(].,TI’L7 - ,0) = Zfl(l,m, .. .70)(1,m1,i, e ,mn’i).

Because f; € Hom(M™, R(4+)M), there exist g; € Hom(M, R) and ¢g; € Hom(M, M)
such that f; = g;(+)g;. Thus m = Xg;(m)m 4, i.e., M is a projective R-module.

Theorem 3 is proved.

It is well-known that a projective module is weak cancellation if and only if its trace
is a finitely generated ideal [14] (Theorem 4.1). The following question raises: If M is a
weak cancellation module, can we deduce that M™ is a weak cancellation module? The
following corollary gives an affirmative answer in case the projective modules.

Corollary 1. Let M be a projective R-module. Then M is a weak cancellation
R-module if and only if M™ is a weak cancellation R(M )-module.

Proof. Let M be a projective weak cancellation R-module. Then Tr(M) is fi-
nitely generated by [13] (Theorem 4.1). By the above theorem, Lemma 3 and [13]
(Theorem 4.1), M™ is a weak cancellation module. The proof of the converse is similar.

Our the following result is taken from [13] (Theorem 4.2).

Corollary 2. Let M be a projective R-module. Then M is a cancellation R-module
if and only if M™ is a cancellation R(M)-module.

Proof. Let M be a projective cancellation R-module. By [13] (Theorem 4.2),
Tr(M) = R. By Proposition 1, Tr(M") = Tr(M)(+)M = R(M). Hence, by [13]
(Theorem 4.2), M™ is a cancellation module. The proof of the converse is similar.

It is shown in [11] (Theorem 7.6), that M is flat if and only if for every pair
of finite subsets {z1,...,2,} and {a1,...,a,} of M and R, respectively, such that

n
E _, it = 0 there exist elements z1,...,2; € M and b; € R,i=1,...,n,j =
1=

n k
=1,...,k such that 21:1 bija;=0(j=1,...,k)and z; = ijl b;jz;. Our main
concern in this part is to show that M is flat if and only if M™ is flat.
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Theorem 4. An R-module M is flat if and only if M™ is a flat R(M )-module.
Proof. Let M be a flat R-module and Zv_l(ai,O)(l,xl,i,xw, sy Tpy) = 0.

m
Then Z a;zj; = 0, for every 1 < j < n. Since M is flat, there exist elements

Ziay . Za€Mandbj g € Rii=1,...,mk=1,... sandj=1,... nsuch that
" S

Zi:l bjirai =0,k =1,...,5 and z;,; = Zk:l bj.ikzjk, for j = 1,...,n. Hence
m

Zi:l(bj’ik’ O) (ai; 0) =0 and

(Lzrg, .. Tny) =

S

= (bl,ik70)<1azl,k,07~-~7O)+-~-+(bn,ikao)(1,07~-~>zn,k)7 1< <m.
k=1

Therefore, M™ is a flat R(M)-module.
Conversely, let M™ be flat. Suppose that {z1,...,2,,} and {a1,...,a,} are two

finite subsets of M and R, respectively, such that Z”il a;x; = 0. This implies that

m

> (ai,0)(1,2;,0,...,0) = 0.

i=1

Since M™ is flat, there exist elements (1,z1,...,0),...,(1,2s,...,0) € M"™ and
(big,0) € R(M) (i=1,...,m, k=1,...,s), such that

Z(bi,kao)(aho)zoa kzla"'757
=1
and .
(1,2:,0,...,0) = > (bik, 0)(L, 2,0,...,0).
k=1
Hence

m S
E b; ra; =0, T = E bi k2K
i=1 k=1

By the above argument, M is a flat R-module.

Theorem 4 is proved.

It is known that an R-module M is called faithfully flat if M is flatand N @ M # 0
for any non-zero R-module N. Equivalently, M is flat and PM # M for every maximal
ideal P of R [11] (Theorem 7.2). We next show that if M is faithfully flat, then M™ is
faithfully flat.

Corollary 3. An R-module M is faithfully flat if and only if M™, n > 2, is a
Jaithfully flat R(M)-module.

Proof. 1t is easy to check that for every maximal ideal P of R, PM # M if and
only if (P(4+)M)M™ # M™. The result now follows by Theorem 4.

3. Product submodules and decomposition. Recall that a proper submodule N of a
module M is said to be primary submodule if the condition ra € N, r € Randa € M,
implies that a € N or "M C N, for some positive integer n. Let T' = K; ... K,, be a
primary submodule of M"™ and r;k; € K; where r; € R, k; € M. Then
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ith
~ =
(ri,O)(l,O,..., i 0) €K, .. K. K,

Since K ... K; ... K, is primary, either (1,0,...,%;,0,...,0) € Ky ... K;...K, or
(ri,0)"M"™ C K, ...K;...K,, for some positive integer m and this means that k; €
€ K, or "M C K,. By the above argument it follows that K; is a primary submodule
foralll <i<n.

Conversely, let N be a primary submodule and (r,m)(1,my,...,m,) € N™, for
some (r,m) € R(M), and (1,mq,...,m,) € M™. Hence rm; € N foreach1 <1i < n.
Since N is primary, m; € N or r'M C N, for some positive integer t. It follows that
N™ is a primary submodule of M".

By the above argument we have the following theorem.

Theorem 5. LetT = K;...K, be a primary submodule of M™. Then K; is a

primary submodule of M for all 1 < i < n. Furthermore, let N be a primary submodule
of M. Then N™, n > 2, is a primary submodule of M™.

Before we state and prove our next theorem, the following lemma is needed.
Lemma 4. Let Qq,...,Q, be submodules of an R-module M. Then:

D) (@+Q2+...+Qn)"=Qr+Q3+...+Qp,,

() (Q1NQ2N...NQR)"=QTNQREN...NQM.

Proof. (i) First suppose that m = 2. We have only to prove that (Q1 +Q2)" C Q7 +
+ Q5. Let (1,mq,...,my) € (Q1 + Q2)™. Then there exist ¢; € @1 and ¢} € Q2 such
that (17m1;-"amn) = (LQ1 +inaQ7L +q;7,) = (laQI7"'7qn) + (17ql1aaqf;7,) S
€ Q7+Q% and hence (Q1+Q2)" C QT +Q%. If m > 2, then the assertion follows by the
case m = 2 and induction on m. Hence (Q1+Q2+...+ Q)" = Q¥+ Q5 +...+ Q0.

(ii) It is easy to check that (Q1 N Q2)™ = QF N Q4. Induction on m shows that
(Q1NQ2N...NQR)"=QTNQRYFN...NQY, as desired.

Lemma 4 is proved.

We record the following theorem.
Theorem 6. Let N be a submodule of an R-module M. If N has a primary
decomposition, then N™, n > 2, has a primary decomposition.

Proof. Suppose that NV has a primary decomposition. Then N = Q1NQ2N...NQy,,
where each (); is a P;-primary submodule of M. Hence N = Q7 N5 N...NE,, by

0,

Lemma 5. To see why this is a primary decomposition of N™, note first that

M
because — # 0. Next, if (r,m) € Zdvg(r) (

Qr
1

) , then there exists a positive integer

Q
M
n1 such that r”l(Q> = 0. Since 7™ M C Q;, (r,m)"* M™ = (r™, nyr™~tm)M" C

MTL
Qo

i
n

M
C Q7 and hence (r, m)™ = 0. It remains to be shown that Q7 is P;(4)M -primary

=

n

M
(where P; = rad (annR Q)) Let (t,m) € rad (annR(

there exists a positive integer n1 such that (t", n t™*~tm)M™ C Q7 so t"* M C Q;.

M
It follows that ¢ € rad (ann R Q) = P;. Therefore, rad (ann R(

%

M)@
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Now, let (p;, m) € Pi(+)M = rad (annR g{) (4)M. There exists a positive integer
ny Mn
), as required.

ny such that p*M C Q; and so (p;,m)™ M™ C QF. Since (p;,m) = 0,

n
(pi,m) € rad (annR(M) ]g”> So P;(+)MC rad (annR(M
Theorem 6 is proved. '
It is naturally to ask when the converse of Theorem 6 is true. See the next theorem.
Theorem 7. Let N" be a submodule of M™, n > 2. If N has a primary
decomposition of the form N = K N K¥ N ...N K], where K', 1 < i < m, is
P;(+)M-primary, then N has a primary decomposition of the form N = K1 N KyN. ..
N Koy
Proof. We show that N = K; N Ko N...N K, is a primary decomposition
for N. First, it is clear that N = Ky N Ky N ... N K,,. Next, we show that each

n

) Or

M
K;, for 1 < ¢ < m, is P;-primary. Suppose that a € Zdvg (K> Then there

exists m € M \ K, such that am € K;. Since m ¢ K;, (I,m,...,m,...,m) ¢
¢ K. But (a,0)(1,m,...,m,...,m) = (1,am,...,am,...,am) € K. So (a,0) €

€ Zdv

7o |- Because K* is P;(4)M-primary, there exists a positive integer n;
i
n

M M
such that (a,O)”l(Kn) = 0, and hence a’“(K) = 0. It remains to be shown
i i

M M .
rad(anng @ = P,. Let r € rad(anng % ) Then r™ M C K, for some positive

integer ny. Thus (r,0)"* M"™ C K[ and so (r,0) € rad (annR(M) K”) = Pi(+)M,

M
i.e., v € P;. Therefore, rad (annR K> CP.

M
Conversely, let » € P;. Then (r,0) € P;(+)M = rad <annR(M) K”> and hence

r" M C K, for some integer n;. It follows that P; C rad (annR ;\{/‘[) .

Theorem 7 is proved. '

I. G. Macdonald has developed the theory of attached prime ideals and secondary
representations of a module, which is, in a certain sense, dual to the theory of associated
prime ideals and primary decompositions. Let us recall from [11], the definition of
secondary module. An R-module M is said to be secondary if M # 0 and, for each
a € R the endomorphism ¢, : M — M defined by ¢,(m) = am (for m € M) is either
surjective or nilpotent.

If M is secondary, then P = vann M is a prime ideal, and M is said to be P-
secondary. A secondary representation of an R-module M is an expression of M as a

finite sum of secondary submodules:
M =N;+ Ny+...+ N,.

Let N be a submodule of an R-module M, in the following theorem we investigate
secondary representation of N™.

Theorem 8. Let N be a submodule of an R-module M. If N has a secondary
representation, then N, n > 2, has a secondary representation. Conversely, let N"
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has a secondary representation of the form N" = QF + Q5 + ... + Q) in which
every QU is P;(+)M-secondary. Then N has a secondary representation of the form
N=@Q1+Q2+...+Qn.

Proof. Let N = Q1 + Q2 + ... + Q,, be a secondary representation of N with

rad(aani) = P;. Then N" = Q7 + Q% + ... + @}, by Lemma 1. To see why

this is a secondary representation of N™ note first that for each (r,m) € R(M),
the endomorphism ¢, n,y: QF — QF defined by @¢m) (1,014,625, ns)) =
= (r,m)(1,q1,4,92,---+qn,i) = (1,7¢1,4,742,i, - - -, 7qn,;) induces endomorphism ¢, :
Q: — Q; defined by ¢,.(q¢) = rq. Since Q; is secondary, , is either surjective or
nilpotent. If o, is surjective, then it is clear that ¢, ,,,) is surjective. If ;. is nilpotent,
then there exists a positive integer m; such that (¢,)"™* = 0 and therefore, r"1q = 0,
for all ¢ € Q. It follows that (r,m)™ (1,¢14, 924, qn,i) = (L, 7™ @15, 7™ 2,5 - - -
co ™) = (1,0,0,...,0) for all (1,¢1,4,¢2,45---,Gn,:) € QF and hence qﬁ?}q’lm) =

= 0, i.e., @(r,m) is nilpotent. This yields that Q7' is a secondary submodule of M™. It
remains to be shown that rad (ann Q?) = P;(+)M, for all 1 < ¢ < n. Suppose that

(t,m) € rad|ann Q¥ |. Then there exists a positive integer m; such that " Q; = 0.
Sot € rad (ann Ql> = P,. It turns out that rad (ann Qf) C Pi(+)M. One can check

that P;(4+)M C rad (ann Q?). Thus Q7 is P;(+)M-secondary.

Conversely, let N" has a secondary representation of the form N" = Q7+ Q% +. ..
...+ Qr, in which Q7 is P;(4+)M-secondary, for all 1 < ¢ < n. Clearly, N =
=Q1+ Q2+ ...+ Q. We show that each Q); is a P;-secondary submodule of M. Let
©r: Q; — @Q; be an endomorphism defined by ¢,.(q) = rq. We show that ¢, is either
surjective or nilpotent. The endomorphism ¢, induces endomorphism ¢, o) : QF — Q7
defined by ¢.0)(1,q1,q2,..-,qn) = (1,7q1,7q2,...,7q,). Since Q7 is a secondary
submodule, ¢, ) is either surjective or nilpotent, and so ¢, is either surjective or

nilpotent. It is easy to check that rad (ann QZ) = P;. Hence Q; is P;-primary.

Example 1. Let R be an integral domain and K be quotient field R. Then K™ is
a 0(+)M secondary R(+)K-module. In particular, Q? is a 0(+)Q secondary Z(+)Q-

module. .

(Pm)n

Example 2. 1If P is a maximal ideal of R, then is a P(R)-secondary

R(R)-module, for every positive integer m.

Example 3. Let R be a local ring with maximal ideal P. If every element of P is
nilpotent, then R" is a P(R)-secondary R(R)-module.
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