UDC 512.5
M. J. Nikmehr, R. Nikandish, S. Heidari (K. N. Toosi Univ. Technology, Iran)

PROPERTIES OF A CERTAIN PRODUCT OF SUBMODULES
ВЛАСТИВОСТІ ПЕВНОГО ДОБУТКУ ПІДМОДУЛІВ
Let R be a commutative ring with identity, M an R-module and K_{1}, \ldots, K_{n} submodules of M. In this article, we construct an algebraic object, called product of K_{1}, \ldots, K_{n}. We equipped this structure with appropriate operations to get an $R(M)$-module. It is shown that $R(M)$-module $M^{n}=M \ldots M$ and R-module M inherit some of the most important properties of each other. For example, we show that M is a projective (flat) R-module if and only if M^{n} is a projective (flat) $R(M)$-module.
Припустимо, що R - комутативне кільце з одиницею, $M-R$-модуль і K_{1}, \ldots, K_{n} - підмодулі M. Побудовано алгебраїчний об'єкт, що називається добутком підмодулів K_{1}, \ldots, K_{n}. Цю структуру оснащено відповідними операціями для отримання $R(M)$-модуля. Показано, що $R(M)$-модуль $M^{n}=M \ldots M$ та R-модуль M успадковують деякі з найбільш важливих властивостей один одного Наприклад, показано, що M є проективним (плоским) R-модулем тоді і тільки тоді, коли $M^{n}-$ проективний (плоский) $R(M)$-модуль.

1. Introduction and preliminaries. In this paper, all rings are commutative with identity and all modules are unitary. Let M be an R-module; there are some attempts to define a product between submodules of M, see for example [5, p. 386]. Based on this idea, in this article, we introduce and investigate a kind of product of submodules of M and especially we study $R(M)$-module $M^{n}=M \ldots M$, in which $R(M)$ is idealization of M. It is worthy to mention that Nagata introduced the notion of idealization and the idea to use idealization is due to him. Idealization is useful for extending results about ideals to submodules and constructing examples of commutative rings with zerodivisors. The theme throughout is how properties of R-module M are related to those of $R(M)$-module M^{n} and this is the main goal of this article. For example, in Section 2, we show that M is a projective (flat) R-module if and only if M^{n} is a projective (flat) $R(M)$-module and in Section 3, we find primary and secondary representation for M^{n} by means of those of M and conversely. Now, we define the concepts that we will need. Recall that $R(M)=R(+) M$ with coordinate-wise addition and multiplication

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)
$$

is a commutative ring with identity, called the idealization of M. Note that R naturally embeds into $R(M)$ via $r \longrightarrow r(+) 0$, if N is a submodule of M, then $0(+) N$ is an ideal of $R(M), 0(+) M$ is a nilpotent ideal of $R(M)$ of index 2 , every ideal that contains $0(+) M$ has the form $I(+) M$ for some ideal I of R, and every ideal that is contained in $0(+) N$ has the form $0(+) K$ for some submodule K of N. The purpose of idealization is to put M inside a commutative ring A so that the structure of M as an R-module is essentially the same as that of M as an A-module, that is, an ideal of A. Since $R \cong R(M) / 0(+) M, I \longrightarrow I(+) M$ gives a one-to-one correspondence between ideals of R and ideals of $R(M)$ that contains $0(+) M$. Thus the prime (maximal) ideals of $R(M)$ have the form $P(+) M$ where P is a prime (maximal) ideal of R. Some basic results on idealization can be found in [10].

An R-module M is said to be multiplication if every submodule N of M has the form $I M$ for some ideal I of R. Equivalently, $N=[N: M] M$. A submodule K of M is multiplication if and only if $N \cap K=[N: K] K$ for all submodules N of M. See for example [5], for more details.

Generalizing the case for ideals, an R-module M is called a cancellation (weak cancellation) module if $I M=J M$ for ideals I and J of R implies $I=J(I+$ $+\operatorname{ann} M=J+\operatorname{ann} M)$, see [3]. Examples of cancellation modules include invertible ideals, free modules, and finitely generated faithful multiplication modules [4] (Corollary to Theorem 9). The trace ideal of an R-module M is $\operatorname{Tr}(M)=\sum_{f \in \operatorname{Hom}(M, R)} f(M)$. If M is projective, then $M=\operatorname{Tr}(M) M$ and $\operatorname{ann}(M)=\operatorname{ann} \operatorname{Tr}(M)$ [9] (Proposition 3.30). The set of all prime ideals of ring R is denoted by $\operatorname{Spec}(R)$. Moreover, we denote by $Z d v_{R}(M)$ the set of all zero-divisors of module M over ring R. Also, for unexplained definitions and terminologies we refer to [6, 9].
2. The multiplication property and product. We begin with the following definition which plays an important role in this article.

Definition. Let $K_{1}, K_{2}, \ldots, K_{n}$ be submodules of an R-module M. Define product of $K_{1}, K_{2}, \ldots, K_{n}$ as follows:

$$
K_{1} K_{2} \ldots K_{n}=\left\{\left(1_{R}, k_{1}, k_{2}, \ldots, k_{n}\right) \mid k_{i} \in K_{i}, \text { for all } 1 \leqslant i \leqslant n\right\}
$$

One can easily check that $K_{1} K_{2} \ldots K_{n}$ forms an $R(M)$-module under the below operations:

$$
\begin{gathered}
\left(1_{R}, k_{1}, k_{2}, \ldots, k_{n}\right)+\left(1_{R}, k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n}^{\prime}\right)= \\
=\left(1_{R},\left(k_{1}+k_{1}^{\prime}\right),\left(k_{2}+k_{2}^{\prime}\right), \ldots,\left(k_{n}+k_{n}^{\prime}\right)\right) \\
(r, m)\left(1_{R}, k_{1}, k_{2}, \ldots, k_{n}\right)=\left(1_{R}, r k_{1}, r k_{2}, \ldots, r k_{n}\right)
\end{gathered}
$$

For convenience, 1_{R} and $M \ldots M$ (n-times) will be denoted by 1 and M^{n}, respectively.

In this section, we shall investigate the multiplication, quasimultiplication, projective, flat, faithfully flat, cancellation and weak cancellation properties under this new product submodules.

Let P be a maximal ideal of R and let $T_{P}(M)=\{m \in M \mid(1-p) m=0$, for some $p \in P\}$. Then $T_{P}(M)$ is a submodule of M. An R-module M is called P-torsion if $T_{P}(M)=M$. On the other hand, M is called P-cyclic provided there exist $x \in M$ and $q \in P$ such that $(1-q) M \subseteq R x$. El-Bast and Smith [8] (Theorem 1.2), showed that M is multiplication if and only if M is P-torsion or P-cyclic for each maximal ideal P of R.

Next we prove that if $K_{1} \ldots K_{n}$ is a multiplication module, then each $K_{i}, 1 \leq i \leq n$, is a multiplication module. But first we need the following lemma.

Lemma 1. Let K_{1}, \ldots, K_{n} be submodules of an R-module M and P a maximal ideal of R. Then:
(i) $T_{P(+) M}\left(K_{1} \ldots K_{n}\right)=\left\{\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \mid m_{i} \in T_{P}\left(K_{i}\right)\right\}$. In particular, $K_{1} \ldots K_{n}$ is $P(+) M$-torsion if and only if each $K_{i}, 1 \leq i \leq n$, is P-torsion.
(ii) $K_{1} \ldots K_{n}$ is $P(+) M$-cyclic if and only if each $K_{i}(1 \leq i \leq n)$ is P-cyclic.

Proof. (i) Let $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in T_{P(+) M}\left(K_{1} \ldots K_{n}\right)$. Then there exists $(p, m) \in P(+) M$ such that $((1,0)-(p, m))\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)=(1,0,0, \ldots, 0)$. So $\left(1,(1-p) m_{1},(1-p) m_{2}, \ldots,(1-p) m_{n}\right)=(1,0,0, \ldots, 0)$. It follows that $m_{i} \in T_{P}\left(K_{i}\right)$, for all $1 \leq i \leq n$. Now, suppose that $m_{i} \in T_{P}\left(K_{i}\right), 1 \leq i \leq n$. Then there exists $p_{i} \in P$
such that $\left(1-p_{i}\right) m_{i}=0$. If we put $q=1-\prod_{i=1}^{n}\left(1-p_{i}\right) \in P$, then $(1-q) m_{i}=0$, for each $1 \leq i \leq n$ and hence $((1,0)-(q, 0))\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)=(1,0,0, \ldots, 0)$. Thus $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in T_{P(+) M}\left(K_{1} \ldots K_{n}\right)$.
(ii) To see why (ii) is true, let $K_{i}, 1 \leq i \leq n$, be P-cyclic. Then there exist $m_{i} \in K_{i}$ and $p_{i} \in P$ such that $\left(1-p_{i}\right) K_{i} \subseteq R m_{i}$. If we put $q=1-\prod_{i=1}^{n}\left(1-p_{i}\right) \in P$, then $((1,0)-(q, 0)) K_{1} \ldots K_{n} \subseteq R(M)\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)$. Hence $K_{1} \ldots K_{n}$ is $P(+) M-$ cyclic.

Conversely, let $K_{1} \ldots K_{n}$ be $P(+) M$-cyclic. Then there exist $\left(1, k_{1}, \ldots, k_{n}\right) \in$ $\in K_{1} \ldots K_{n}$ and $(p, m) \in P(+) M$ such that $((1,0)-(p, m)) K_{1} \ldots K_{n} \subseteq$ $\subseteq R(M)\left(1, k_{1}, \ldots, k_{n}\right)$. Thus $(1-p) K_{i} \subseteq R k_{i}$, for all $1 \leq i \leq n$ and so K_{i} is P-cyclic, as required.

Lemma 1 is proved.
Theorem 1. Let K_{1}, \ldots, K_{n} be submodules of an R-module M. If $K_{1} \ldots K_{n}$ is a multiplication $R(M)$-module, then each K_{i} is a multiplication R-module. Moreover, if M is a multiplication R-module, then M^{n} is a multiplication $R(M)$-module.

Proof. Let $K_{1} \ldots K_{n}$ be a multiplication $R(M)$-module and P a maximal ideal of R. If each $K_{i}, 1 \leq i \leq n$, is P-torsion, there is nothing to prove. Now, assume that there exists $i, 1 \leq i \leq n$, such that K_{i} is not P-torsion. By Lemma $1(\mathrm{i}), K_{1} \ldots K_{n}$ is not $P(+) M$-torsion and so there exist $(p, m) \in P(+) M$ and $\left(1, k_{1}, \ldots, k_{n}\right) \in K_{1} \ldots K_{n}$ such that

$$
((1,0)-(p, m)) K_{1} \ldots K_{i} \ldots K_{n} \subseteq R(+) M\left(1, k_{1}, \ldots, k_{i}, \ldots, k_{n}\right)
$$

Hence $(1-p) K_{i} \subseteq R k_{i}$, i.e., K_{i} is P-cyclic. It follows that each K_{i} is a multiplication submodule of M.

Now, let M be a multiplication R-module and $P(+) M$ be a maximal ideal of $R(M)$. Suppose that M^{n} is not $P(+) M$-torsion. By Lemma 1(i), M is not P-torsion and hence there exist $p \in P$ and $m \in M$ such that $(1-p) M \subseteq R m$. It follows that $((1,0)-(p, 0)) M^{n} \subseteq R(+) M(1, m, \ldots, m)$. Thus M^{n} is $P(+) M$-cyclic and this completes the proof.

For an R-module M, following [7], we set

$$
M(P)=\{x \in M \mid s x \in P M, \text { for some } s \in R \backslash P\},
$$

in which P is a prime ideal of R. In [7], it is shown that $M(P)=M$ or $M(P)$ is a submodule of M, for every $P \in \operatorname{Spec}(R)$. As usual, we will denote the Support of M by
$\operatorname{Supp}_{R} M=\{P \in \operatorname{Spec}(R) \mid$ there exists $0 \neq x \in M$ such that $\operatorname{ann}(x) \subseteq P\}$.
Recall that an R-module M is called quasimultiplication if $M(P)=P M$, for all $P \in \operatorname{Supp}_{R} M$. For a reference on quasimultiplication module see [7].

The next result will be used in the Theorem 2.
Lemma 2. Let M be an R-module. Then:
(i) $\operatorname{Supp}_{R(M)} M^{n}=\left\{P(+) M \mid P \in \operatorname{Supp}_{R} M\right\}$.
(ii) $M^{n}(P(+) M)=\left\{\left(1, m_{1}, \ldots, m_{n}\right) \in M^{n} \mid m_{i} \in M(P)\right.$, for all $\left.1 \leq i \leq n\right\}$.

Proof. (i) If $P \in \operatorname{Supp}_{R} M$, then there exists $0 \neq x \in M$ such that $\operatorname{ann}(x) \subseteq P$. Clearly, $\operatorname{ann}(1, x, x, \ldots, x)=\{(r, m) \mid r \in \operatorname{ann}(x)\} \subseteq P(+) M$. Hence $P(+) M \in$ $\in \operatorname{Supp}_{R(+) M} M^{n}$ and so $\left\{P(+) M \mid P \in \operatorname{Supp}_{R} M\right\} \subseteq \operatorname{Supp}_{R(M)} M^{n}$. Now, let $P(+) M \in \operatorname{Supp}_{R(+) M} M^{n}$. Then there exists $0 \neq\left(1, x_{1}, \ldots, x_{n}\right) \in M^{n}$ such that $\operatorname{ann}\left(1, x_{1}, \ldots, x_{n}\right) \subseteq P(+) M$, and hence ann $x_{1} \cap$ ann $x_{2} \cap \ldots \cap \operatorname{ann} x_{n} \subseteq P$. Since P is a prime ideal, there exists $1 \leq i \leq n$ such that ann $x_{i} \subseteq P$, i.e., $P \in \operatorname{Supp}_{R} M$ and so $\operatorname{Supp}_{R(M)} M^{n} \subseteq\left\{P(+) M \mid P \in \operatorname{Supp}_{R} M\right\}$. By the above argument the proof is finished.
(ii) Let $T=\left\{\left(1, m_{1}, \ldots, m_{n}\right) \in M^{n} \mid m_{i} \in M(P)\right.$ for all $\left.1 \leq i \leq n\right\}$, and $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in M^{n}(P(+) M)$. Then there exists $\left(s^{\prime}, m^{\prime}\right) \in R(+) M \backslash P(+) M$ such that $\left(s^{\prime}, m^{\prime}\right)\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in(P(+) M) M^{n}$. Hence $s^{\prime} m_{i} \in P M$, for all $1 \leq i \leq n$ and so $m_{i} \in M(P)$ for all $1 \leq i \leq n$. It follows that $M^{n}(P(+) M) \subseteq T$.

Conversely, let $\left(1, m_{1}, \ldots, m_{n}\right) \in T$. For every $1 \leq i \leq n$, there exists $s_{i} \in$ $\in R \backslash P$ such that $s_{i} m_{i} \in P M$. Put $s=s_{1} \ldots s_{n}$. Clearly, $s \notin P$ and $s m_{i} \in P M$, for each $1 \leq i \leq n$. So $(s, 0)\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in(P(+) M) M^{n}$ and therefore, $\left(1, m_{1}, \ldots, m_{n}\right) \in M^{n}(P(+) M)$. Thus $T \subseteq M^{n}(P(+) M)$. By the above argument it follows that

$$
M^{n}(P(+) M)=\left\{\left(1, m_{1}, \ldots, m_{n}\right) \in M^{n} \mid m_{i} \in M(P), \text { for all } 1 \leq i \leq n\right\}
$$

Lemma 2 is proved.

The next result shows how quasimultiplication property of an R-module M can be transferred to an $R(M)$-module M^{n} and conversely.

Theorem 2. An R-module M is quasimultiplication if and only if M^{n} is a quasimultiplication $R(M)$-module.

Proof. First, note that $M(P)=M$ if and only if $M^{n}(P(+) M)=M^{n}$. Suppose that M is a quasimultiplication R-module and $P(+) M \in \operatorname{Supp}_{R(+) M} M^{n}$. Then $M^{n}(P(+) M)=\left\{\left(1, m_{1}, \ldots, m_{n}\right) \in M^{n} \mid m_{i} \in M(P)=P M\right.$, for all $\left.1 \leq i \leq n\right\}$. It follows that for all $1 \leq i \leq n$ there exist $p_{i j} \in P$ and $m_{i j}^{\prime} \in M$ such that $m_{i}=\sum_{j=1}^{t} p_{i j} m_{i j}^{\prime}$. Hence

$$
\left(1, m_{1}, \ldots, m_{n}\right)=\left(1, \sum_{j=1}^{t} p_{1 j} m_{1 j}^{\prime}, \ldots, \sum_{j=1}^{t} p_{n j} m_{n j}^{\prime}\right)=\sum_{j=1}^{t}\left(1, p_{1 j} m_{1 j}^{\prime}, \ldots, p_{n j} m_{n j}^{\prime}\right) .
$$

Therefore, $\left(1, m_{1}, \ldots, m_{n}\right) \in(P(+) M) M^{n}$. This yields that

$$
M^{n}(P(+) M) \subseteq(P(+) M) M^{n}
$$

Now, let $\sum_{i=1}^{m}\left(1, p_{i} m_{i 1}, \ldots, p_{i} m_{i n}\right) \in(P(+) M) M^{n}$. Since $M(P)=P M, p_{i} m_{i j} \in$ $\in M(P)$, for each $1 \leq i \leq m$ and $1 \leq j \leq n$. It follows that

$$
\left(1, \sum_{i=1}^{m} p_{i} m_{i 1}, \ldots, \sum_{i=1}^{m} p_{i} m_{i n}\right) \subseteq(1, M(P), \ldots, M(P)),
$$

and by Lemma 2, $\sum_{i=1}^{m}\left(1, p_{i} m_{i 1}, \ldots, p_{i} m_{i n}\right) \in M^{n}(P(+) M)$. Therefore,

$$
(P(+) M) M^{n} \subseteq M^{n}(P(+) M)
$$

i.e., M^{n} is a quasimultiplication $R(M)$-module.

Conversely, let M^{n} be a quasimultiplication $R(M)$-module and $P \in \operatorname{Supp}_{R} M$. Then $P(+) M \in \operatorname{Supp}_{R(M)} M^{n}$, by Lemma 2. Since M^{n} is quasimultiplication, $M^{n}(P(+) M)=(P(+) M) M^{n}$, and hence $M(P)=P M$. Thus M is a quasimultiplication R-module.

Theorem 2 is proved.
The following question is araised: Does M^{n} as an $R(M)$-module have all properties of R-module M ? It is easily checked that \mathbb{Q} is a faithful \mathbb{Z}-module, but ann $\left(\mathbb{Q}^{n}\right)=$ $=\operatorname{ann}(\mathbb{Q})(+) \mathbb{Q}=0(+) \mathbb{Q}$. In fact, it shows that every property of M can not be transferred to M^{n}.

Before we state and prove our next corollary, we need the following proposition.
Proposition 1. For an R-module M

$$
\operatorname{Tr}\left(M^{n}\right)=\operatorname{Tr}(M)(+) \sum_{g \in \operatorname{Hom}(M, M)} g(M)=\operatorname{Tr}(M)(+) M
$$

Proof. Let $f \in \operatorname{Hom}\left(M^{n}, R(+) M\right)$. It is clear that there exist $g_{1} \in \operatorname{Hom}(M, R)$ and $g_{2} \in \operatorname{Hom}(M, M)$ such that $f=g_{1}(+) g_{2}$. Hence

$$
\begin{gathered}
\operatorname{Tr}\left(M^{n}\right)=\sum_{f \in \operatorname{Hom}\left(M^{n}, R(+) M\right)} f\left(M^{n}\right)= \\
=\sum_{g_{1} \in \operatorname{Hom}(M, R), g_{2} \in \operatorname{Hom}(M, M)} g_{1}(M)(+) g_{2}(M)= \\
=\sum_{g_{1} \in \operatorname{Hom}(M, R)} g_{1}(M)+\sum_{g_{2} \in \operatorname{Hom}(M, M)} g_{2}(M) \subseteq \operatorname{Tr}(M)(+) M .
\end{gathered}
$$

Conversely, let $g \in \operatorname{Hom}(M, R)$. Define $f: M^{n} \longrightarrow R(+) M$ as follows: for each $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in M^{n}, f\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)=g\left(m_{1}+m_{2}+\ldots+m_{n}\right)(+) i d\left(m_{1}+\right.$ $\left.+m_{2}+\ldots+m_{n}\right)$. It is clear that f is well-defined and $R(M)$-homomorphism. Therefore,

$$
\operatorname{Tr}(M)(+) M=\sum_{g \in \operatorname{Hom}(M, R)} g(M)(+) M \subseteq \sum f\left(M^{n}\right) \subseteq \operatorname{Tr}\left(M^{n}\right)
$$

It follows that $\operatorname{Tr}\left(M^{n}\right)=\operatorname{Tr}(M)(+) M$.
Proposition 1 is proved.
Lemma 3. Let M be a projective R-module. Then $\operatorname{Tr}(M)$ is a finitely generated ideal of R if and only if $\operatorname{Tr}\left(M^{n}\right)$ is a finitely generated ideal of $R(M)$.

Proof. By Proposition 1 and [9] (Proposition 3.3), $\operatorname{Tr}\left(M^{n}\right)=\operatorname{Tr}(M)(+) M=$ $=\operatorname{Tr}(M)(+) \operatorname{Tr}(M) M$. Hence, $\operatorname{Tr}\left(M^{n}\right)$ is a finitely generated ideal of $R(M)$ if and only if $\operatorname{Tr}(M)$ is a finitely generated ideal of R [1] (Theorem 7(1)).

Lemma 3 is proved.
It is shown in [9] (Lemma 3.23) that an R-module M is projective if and only if there exist a family of elements $\left\{m_{i}\right\}_{i \in I}$ in M and family $\left\{f_{i}\right\}_{i \in I}$ of elements in $M^{*}=\operatorname{Hom}_{R}(M, R)$ such that every $m \in M$ is a finite sum $m=\Sigma m_{i} f_{i}(m)$, where $f_{i}(m)=0$ almost for every $i \in I$. In the next theorem we prove that M is a projective R-module if and only if M^{n} is a projective $R(M)$-module.

Theorem 3. An R-module M is projective if and only if M^{n} is a projective $R(M)$-module.

Proof. Let M be a projective R-module and $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in M^{n}$. There exist a family $\left\{m_{i, j}\right\}_{(i, j) \in I}$ in M and family $\left\{f_{(i, j)}\right\}_{(i, j) \in I}$ of elements in $M^{*}=$ $=\operatorname{Hom}_{R}(M, R)$ such that $m_{j}=\sum_{i} m_{(i, j)} f_{(i, j)}\left(m_{j}\right)$. Hence,

$$
\begin{gathered}
\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)=\left(1, \Sigma m_{(i, 1)} f_{(i, 1)}\left(m_{1}\right), \ldots, \Sigma m_{(i, n)} f_{(i, n)}\left(m_{n}\right)\right)= \\
=\Sigma\left(1, m_{(i, 1)} f_{(i, 1)}\left(m_{1}\right), \ldots, m_{(i, n)} f_{(i, n)}\left(m_{n}\right)\right)= \\
=\Sigma\left(f_{(i, 1)}\left(m_{1}\right), 0\right)\left(1, m_{(i, 1)}, 0, \ldots, 0\right)+\ldots+\left(f_{(i, n)}\left(m_{n}\right), 0\right)\left(1,0, \ldots, m_{(i, n)}\right) .
\end{gathered}
$$

For each $(i, j) \in I$, define $g_{(i, j)}: M^{n} \rightarrow R(M)$ as follows:
for each $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) \in M^{n}, g_{(i, j)}\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)=\left(f_{(i, j)}\left(m_{j}\right), 0\right)$. It is clear that $g_{(i, j)}$ is well-defined and $R(M)$-homomorphism. Let $m_{i, j}=(1,0, \ldots$, $\ldots, \overbrace{m_{(i, j)}}^{j \text { th }}, \ldots, 0)$. So $\left(1, m_{1}, m_{2}, \ldots, m_{n}\right)=\Sigma g_{(i, j)}\left(1, m_{1}, m_{2}, \ldots, m_{n}\right) m_{i, j}$ and hence M^{n} is a projective $R(M)$-module.

Conversely, let M^{n} be a projective $R(M)$-module and $m \in M$. Since M^{n} is projective, there exist a family of elements $f_{i} \in \operatorname{Hom}\left(M^{n}, R(+) M\right)$ and family $\left(1, m_{1, i}, \ldots, m_{n, i}\right)$ of elements M^{n} such that

$$
(1, m, \ldots, 0)=\Sigma f_{i}(1, m, \ldots, 0)\left(1, m_{1, i}, \ldots, m_{n, i}\right)
$$

Because $f_{i} \in \operatorname{Hom}\left(M^{n}, R(+) M\right)$, there exist $g_{i} \in \operatorname{Hom}(M, R)$ and $g_{i}^{\prime} \in \operatorname{Hom}(M, M)$ such that $f_{i}=g_{i}(+) g_{i}^{\prime}$. Thus $m=\Sigma g_{i}(m) m_{1, i}$, i.e., M is a projective R-module.

Theorem 3 is proved.
It is well-known that a projective module is weak cancellation if and only if its trace is a finitely generated ideal [14] (Theorem 4.1). The following question raises: If M is a weak cancellation module, can we deduce that M^{n} is a weak cancellation module? The following corollary gives an affirmative answer in case the projective modules.

Corollary 1. Let M be a projective R-module. Then M is a weak cancellation R-module if and only if M^{n} is a weak cancellation $R(M)$-module.

Proof. Let M be a projective weak cancellation R-module. Then $\operatorname{Tr}(M)$ is finitely generated by [13] (Theorem 4.1). By the above theorem, Lemma 3 and [13] (Theorem 4.1), M^{n} is a weak cancellation module. The proof of the converse is similar.

Our the following result is taken from [13] (Theorem 4.2).
Corollary 2. Let M be a projective R-module. Then M is a cancellation R-module if and only if M^{n} is a cancellation $R(M)$-module.

Proof. Let M be a projective cancellation R-module. By [13] (Theorem 4.2), $\operatorname{Tr}(M)=R$. By Proposition $1, \operatorname{Tr}\left(M^{n}\right)=\operatorname{Tr}(M)(+) M=R(M)$. Hence, by [13] (Theorem 4.2), M^{n} is a cancellation module. The proof of the converse is similar.

It is shown in [11] (Theorem 7.6), that M is flat if and only if for every pair of finite subsets $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{a_{1}, \ldots, a_{n}\right\}$ of M and R, respectively, such that $\sum_{i=1}^{n} a_{i} x_{i}=0$ there exist elements $z_{1}, \ldots, z_{k} \in M$ and $b_{i j} \in R, i=1, \ldots, n, j=$ $=1, \ldots, k$ such that $\sum_{i=1}^{n} b_{i j} a_{i}=0(j=1, \ldots, k)$ and $x_{i}=\sum_{j=1}^{k} b_{i j} z_{j}$. Our main concern in this part is to show that M is flat if and only if M^{n} is flat.

Theorem 4. An R-module M is flat if and only if M^{n} is a flat $R(M)$-module.
Proof. Let M be a flat R-module and $\sum_{i=1}^{m}\left(a_{i}, 0\right)\left(1, x_{1, i}, x_{2, i}, \ldots, x_{n, i}\right)=0$. Then $\sum_{i=1}^{m} a_{i} x_{j, i}=0$, for every $1 \leq j \leq n$. Since M is flat, there exist elements $z_{j, 1}, \ldots, z_{j, s} \in M$ and $b_{j, i k} \in R, i=1, \ldots, m, k=1, \ldots, s$ and $j=1, \ldots, n$ such that $\sum_{i=1}^{m} b_{j, i k} a_{i}=0, k=1, \ldots, s$ and $x_{j, i}=\sum_{k=1}^{s} b_{j, i k} z_{j, k}$, for $j=1, \ldots, n$. Hence $\sum_{i=1}^{m}\left(b_{j, i k}, 0\right)\left(a_{i}, 0\right)=0$ and

$$
\begin{gathered}
\left(1, x_{1, i}, \ldots, x_{n, i}\right)= \\
=\sum_{k=1}^{s}\left(b_{1, i k}, 0\right)\left(1, z_{1, k}, 0, \ldots, 0\right)+\ldots+\left(b_{n, i k}, 0\right)\left(1,0, \ldots, z_{n, k}\right), \quad 1 \leq i \leq m
\end{gathered}
$$

Therefore, M^{n} is a flat $R(M)$-module.
Conversely, let M^{n} be flat. Suppose that $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{a_{1}, \ldots, a_{m}\right\}$ are two finite subsets of M and R, respectively, such that $\sum_{i=1}^{m} a_{i} x_{i}=0$. This implies that

$$
\sum_{i=1}^{m}\left(a_{i}, 0\right)\left(1, x_{i}, 0, \ldots, 0\right)=0
$$

Since M^{n} is flat, there exist elements $\left(1, z_{1}, \ldots, 0\right), \ldots,\left(1, z_{s}, \ldots, 0\right) \in M^{n}$ and $\left(b_{i, k}, 0\right) \in R(M)(i=1, \ldots, m, k=1, \ldots, s)$, such that

$$
\sum_{i=1}^{m}\left(b_{i, k}, 0\right)\left(a_{i}, 0\right)=0, \quad k=1, \ldots, s,
$$

and

$$
\left(1, x_{i}, 0, \ldots, 0\right)=\sum_{k=1}^{s}\left(b_{i, k}, 0\right)\left(1, z_{k}, 0, \ldots, 0\right)
$$

Hence

$$
\sum_{i=1}^{m} b_{i, k} a_{i}=0, \quad x_{i}=\sum_{k=1}^{s} b_{i, k} z_{k}
$$

By the above argument, M is a flat R-module.
Theorem 4 is proved.
It is known that an R-module M is called faithfully flat if M is flat and $N \otimes M \neq 0$ for any non-zero R-module N. Equivalently, M is flat and $P M \neq M$ for every maximal ideal P of $R[11]$ (Theorem 7.2). We next show that if M is faithfully flat, then M^{n} is faithfully flat.

Corollary 3. An R-module M is faithfully flat if and only if $M^{n}, n \geq 2$, is a faithfully flat $R(M)$-module.

Proof. It is easy to check that for every maximal ideal P of $R, P M \neq M$ if and only if $(P(+) M) M^{n} \neq M^{n}$. The result now follows by Theorem 4.
3. Product submodules and decomposition. Recall that a proper submodule N of a module M is said to be primary submodule if the condition $r a \in N, r \in R$ and $a \in M$, implies that $a \in N$ or $r^{n} M \subseteq N$, for some positive integer n. Let $T=K_{1} \ldots K_{n}$ be a primary submodule of M^{n} and $r_{i} k_{i} \in K_{i}$ where $r_{i} \in R, k_{i} \in M$. Then

$$
\left(r_{i}, 0\right)(1,0, \ldots, \overbrace{k_{i}}^{i \text { th }}, \ldots, 0) \in K_{1} \ldots K_{i} \ldots K_{n}
$$

Since $K_{1} \ldots K_{i} \ldots K_{n}$ is primary, either $\left(1,0, \ldots, k_{i}, 0, \ldots, 0\right) \in K_{1} \ldots K_{i} \ldots K_{n}$ or $\left(r_{i}, 0\right)^{m} M^{n} \subseteq K_{1} \ldots K_{i} \ldots K_{n}$, for some positive integer m and this means that $k_{i} \in$ $\in K_{i}$ or $r_{i}^{m} M \subseteq K_{i}$. By the above argument it follows that K_{i} is a primary submodule for all $1 \leq i \leq n$.

Conversely, let N be a primary submodule and $(r, m)\left(1, m_{1}, \ldots, m_{n}\right) \in N^{n}$, for some $(r, m) \in R(M)$, and $\left(1, m_{1}, \ldots, m_{n}\right) \in M^{n}$. Hence $r m_{i} \in N$ for each $1 \leq i \leq n$. Since N is primary, $m_{i} \in N$ or $r^{t} M \subseteq N$, for some positive integer t. It follows that N^{n} is a primary submodule of M^{n}.

By the above argument we have the following theorem.
Theorem 5. Let $T=K_{1} \ldots K_{n}$ be a primary submodule of M^{n}. Then K_{i} is a primary submodule of M for all $1 \leq i \leq n$. Furthermore, let N be a primary submodule of M. Then $N^{n}, n \geq 2$, is a primary submodule of M^{n}.

Before we state and prove our next theorem, the following lemma is needed.
Lemma 4. Let Q_{1}, \ldots, Q_{m} be submodules of an R-module M. Then:
(i) $\left(Q_{1}+Q_{2}+\ldots+Q_{m}\right)^{n}=Q_{1}^{n}+Q_{2}^{n}+\ldots+Q_{m}^{n}$,
(ii) $\left(Q_{1} \cap Q_{2} \cap \ldots \cap Q_{m}\right)^{n}=Q_{1}^{n} \cap Q_{2}^{n} \cap \ldots \cap Q_{m}^{n}$.

Proof. (i) First suppose that $m=2$. We have only to prove that $\left(Q_{1}+Q_{2}\right)^{n} \subseteq Q_{1}^{n}+$ $+Q_{2}^{n}$. Let $\left(1, m_{1}, \ldots, m_{n}\right) \in\left(Q_{1}+Q_{2}\right)^{n}$. Then there exist $q_{i} \in Q_{1}$ and $q_{i}^{\prime} \in Q_{2}$ such that $\left(1, m_{1}, \ldots, m_{n}\right)=\left(1, q_{1}+q_{1}^{\prime}, \ldots, q_{n}+q_{n}^{\prime}\right)=\left(1, q_{1}, \ldots, q_{n}\right)+\left(1, q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right) \in$ $\in Q_{1}^{n}+Q_{2}^{n}$ and hence $\left(Q_{1}+Q_{2}\right)^{n} \subseteq Q_{1}^{n}+Q_{2}^{n}$. If $m>2$, then the assertion follows by the case $m=2$ and induction on m. Hence $\left(Q_{1}+Q_{2}+\ldots+Q_{m}\right)^{n}=Q_{1}^{n}+Q_{2}^{n}+\ldots+Q_{m}^{n}$.
(ii) It is easy to check that $\left(Q_{1} \cap Q_{2}\right)^{n}=Q_{1}^{n} \cap Q_{2}^{n}$. Induction on m shows that $\left(Q_{1} \cap Q_{2} \cap \ldots \cap Q_{m}\right)^{n}=Q_{1}^{n} \cap Q_{2}^{n} \cap \ldots \cap Q_{m}^{n}$, as desired.

Lemma 4 is proved.
We record the following theorem.
Theorem 6. Let N be a submodule of an R-module M. If N has a primary decomposition, then $N^{n}, n \geq 2$, has a primary decomposition.

Proof. Suppose that N has a primary decomposition. Then $N=Q_{1} \cap Q_{2} \cap \ldots \cap Q_{m}$, where each Q_{i} is a P_{i}-primary submodule of M. Hence $N^{n}=Q_{1}^{n} \cap Q_{2}^{n} \cap \ldots \cap Q_{m}^{n}$, by Lemma 5. To see why this is a primary decomposition of N^{n}, note first that $\frac{M^{n}}{Q_{i}^{n}} \neq 0$, because $\frac{M}{Q_{i}} \neq 0$. Next, if $(r, m) \in Z d v_{R(M)}\left(\frac{M^{n}}{Q_{i}^{n}}\right)$, then there exists a positive integer n_{1} such that $r^{n_{1}}\left(\frac{M}{Q_{i}}\right)=0$. Since $r^{n_{1}} M \subseteq Q_{i},(r, m)^{n_{1}} M^{n}=\left(r^{n_{1}}, n_{1} r^{n_{1}-1} m\right) M^{n} \subseteq$ $\subseteq Q_{i}^{n}$ and hence $(r, m)^{n_{1}} \frac{M^{n}}{Q_{i}^{n}}=0$. It remains to be shown that Q_{i}^{n} is $P_{i}(+) M$-primary $\left(\right.$ where $\left.P_{i}=\operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{Q_{i}}\right)\right)$. Let $(t, m) \in \operatorname{rad}\left(\operatorname{ann}_{R(M)} \frac{M^{n}}{Q_{i}^{n}}\right)=P_{i}(+) M$. Then there exists a positive integer n_{1} such that $\left(t^{n_{1}}, n_{1} t^{n_{1}-1} m\right) M^{n} \subseteq Q_{i}^{n}$, so $t^{n_{1}} M \subseteq Q_{i}$. It follows that $t \in \operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{Q_{i}}\right)=P_{i}$. Therefore, $\operatorname{rad}\left(\operatorname{ann}_{R(M)} \frac{M^{n}}{Q_{i}^{n}}\right) \subseteq P_{i}(+) M$.

Now, let $\left(p_{i}, m\right) \in P_{i}(+) M=\operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{Q_{i}}\right)(+) M$. There exists a positive integer n_{1} such that $p_{i}^{n_{1}} M \subseteq Q_{i}$ and so $\left(p_{i}, m\right)^{n_{1}} M^{n} \subseteq Q_{i}^{n}$. Since $\left(p_{i}, m\right)^{n_{1}} \frac{M^{n}}{Q_{i}^{n}}=0$, $\left(p_{i}, m\right) \in \operatorname{rad}\left(\operatorname{ann}_{R(M)} \frac{M^{n}}{Q_{i}^{n}}\right)$. So $P_{i}(+) M \subseteq \operatorname{rad}\left(\operatorname{ann}_{R(M)} \frac{M^{n}}{Q_{i}^{n}}\right)$, as required.

Theorem 6 is proved.
It is naturally to ask when the converse of Theorem 6 is true. See the next theorem.
Theorem 7. Let N^{n} be a submodule of $M^{n}, n \geq 2$. If N^{n} has a primary decomposition of the form $N^{n}=K_{1}^{n} \cap K_{2}^{n} \cap \ldots \cap K_{m}^{n}$, where $K_{i}^{n}, 1 \leq i \leq m$, is $P_{i}(+) M$-primary, then N has a primary decomposition of the form $N=K_{1} \cap K_{2} \cap \ldots$ $\ldots \cap K_{m}$.

Proof. We show that $N=K_{1} \cap K_{2} \cap \ldots \cap K_{m}$ is a primary decomposition for N. First, it is clear that $N=K_{1} \cap K_{2} \cap \ldots \cap K_{m}$. Next, we show that each K_{i}, for $1 \leq i \leq m$, is P_{i}-primary. Suppose that $a \in Z d v_{R}\left(\frac{M}{K_{i}}\right)$. Then there exists $m \in M \backslash K_{i}$ such that $a m \in K_{i}$. Since $m \notin K_{i},(1, m, \ldots, m, \ldots, m) \notin$ $\notin K_{i}^{n}$. But $(a, 0)(1, m, \ldots, m, \ldots, m)=(1, a m, \ldots, a m, \ldots, a m) \in K_{i}^{n}$. So $(a, 0) \in$ $\in Z d v\left(\frac{M^{n}}{K_{i}^{n}}\right)$. Because K_{i}^{n} is $P_{i}(+) M$-primary, there exists a positive integer n_{1} such that $(a, 0)^{n_{1}}\left(\frac{M^{n}}{K_{i}^{n}}\right)=0$, and hence $a^{n_{1}}\left(\frac{M}{K_{i}}\right)=0$. It remains to be shown $\operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{K_{i}}\right)=P_{i}$. Let $r \in \operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{K_{i}}\right)$. Then $r^{n_{1}} M \subseteq K_{i}$, for some positive integer n_{1}. Thus $(r, 0)^{n_{1}} M^{n} \subseteq K_{i}^{n}$ and so $(r, 0) \in \operatorname{rad}\left(\operatorname{ann}_{R(M)} \frac{M^{n}}{K_{i}^{n}}\right)=P_{i}(+) M$, i.e., $r \in P_{i}$. Therefore, $\operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{K_{i}}\right) \subseteq P_{i}$.

Conversely, let $r \in P_{i}$. Then $(r, 0) \in P_{i}(+) M=\operatorname{rad}\left(\operatorname{ann}_{R(M)} \frac{M^{n}}{K_{i}^{n}}\right)$ and hence $r^{n_{1}} M \subseteq K_{i}$, for some integer n_{1}. It follows that $P_{i} \subseteq \operatorname{rad}\left(\operatorname{ann}_{R} \frac{M}{K_{i}}\right)$.

Theorem 7 is proved.
I. G. Macdonald has developed the theory of attached prime ideals and secondary representations of a module, which is, in a certain sense, dual to the theory of associated prime ideals and primary decompositions. Let us recall from [11], the definition of secondary module. An R-module M is said to be secondary if $M \neq 0$ and, for each $a \in R$ the endomorphism $\varphi_{a}: M \rightarrow M$ defined by $\varphi_{a}(m)=a m$ (for $m \in M$) is either surjective or nilpotent.

If M is secondary, then $P=\sqrt{\operatorname{ann} M}$ is a prime ideal, and M is said to be P secondary. A secondary representation of an R-module M is an expression of M as a finite sum of secondary submodules:

$$
M=N_{1}+N_{2}+\ldots+N_{n}
$$

Let N be a submodule of an R-module M, in the following theorem we investigate secondary representation of N^{n}.

Theorem 8. Let N be a submodule of an R-module M. If N has a secondary representation, then $N^{n}, n \geq 2$, has a secondary representation. Conversely, let N^{n}
has a secondary representation of the form $N^{n}=Q_{1}^{n}+Q_{2}^{n}+\ldots+Q_{m}^{n}$ in which every Q_{i}^{n} is $P_{i}(+) M$-secondary. Then N has a secondary representation of the form $N=Q_{1}+Q_{2}+\ldots+Q_{m}$.

Proof. Let $N=Q_{1}+Q_{2}+\ldots+Q_{m}$ be a secondary representation of N with $\operatorname{rad}\left(\operatorname{ann} Q_{i}\right)=P_{i}$. Then $N^{n}=Q_{1}^{n}+Q_{2}^{n}+\ldots+Q_{m}^{n}$, by Lemma 1 . To see why this is a secondary representation of N^{n} note first that for each $(r, m) \in R(M)$, the endomorphism $\phi_{(r, m)}: Q_{i}^{n} \rightarrow Q_{i}^{n}$ defined by $\phi_{(r, m)}\left(\left(1, q_{1, i}, q_{2, i}, \ldots, q_{n, i}\right)\right)=$ $=(r, m)\left(1, q_{1, i}, q_{2, i}, \ldots, q_{n, i}\right)=\left(1, r q_{1, i}, r q_{2, i}, \ldots, r q_{n, i}\right)$ induces endomorphism φ_{r} : $Q_{i} \rightarrow Q_{i}$ defined by $\varphi_{r}(q)=r q$. Since Q_{i} is secondary, φ_{r} is either surjective or nilpotent. If φ_{r} is surjective, then it is clear that $\phi_{(r, m)}$ is surjective. If φ_{r} is nilpotent, then there exists a positive integer m_{1} such that $\left(\varphi_{r}\right)^{m_{1}}=0$ and therefore, $r^{m_{1}} q=0$, for all $q \in Q$. It follows that $(r, m)^{m_{1}}\left(1, q_{1, i}, q_{2, i}, \ldots, q_{n, i}\right)=\left(1, r^{m_{1}} q_{1, i}, r^{m_{1}} q_{2, i}, \ldots\right.$ $\left.\ldots, r^{m_{1}} q_{n, i}\right)=(1,0,0, \ldots, 0)$ for all $\left(1, q_{1, i}, q_{2, i}, \ldots, q_{n, i}\right) \in Q_{i}^{n}$ and hence $\phi_{(r, m)}^{m_{1}}=$ $=0$, i.e., $\phi_{(r, m)}$ is nilpotent. This yields that Q_{i}^{n} is a secondary submodule of M^{n}. It remains to be shown that $\operatorname{rad}\left(\operatorname{ann} Q_{i}^{n}\right)=P_{i}(+) M$, for all $1 \leq i \leq n$. Suppose that $(t, m) \in \operatorname{rad}\left(\operatorname{ann} Q_{i}^{n}\right)$. Then there exists a positive integer m_{1} such that $t^{m_{1}} Q_{i}=0$. So $t \in \operatorname{rad}\left(\operatorname{ann} Q_{i}\right)=P_{i}$. It turns out that $\operatorname{rad}\left(\operatorname{ann} Q_{i}^{n}\right) \subseteq P_{i}(+) M$. One can check that $P_{i}(+) M \subseteq \operatorname{rad}\left(\operatorname{ann} Q_{i}^{n}\right)$. Thus Q_{i}^{n} is $P_{i}(+) M$-secondary.

Conversely, let N^{n} has a secondary representation of the form $N^{n}=Q_{1}^{n}+Q_{2}^{n}+\ldots$ $\ldots+Q_{m}^{n}$, in which Q_{i}^{n} is $P_{i}(+) M$-secondary, for all $1 \leq i \leq n$. Clearly, $N=$ $=Q_{1}+Q_{2}+\ldots+Q_{m}$. We show that each Q_{i} is a P_{i}-secondary submodule of M. Let $\varphi_{r}: Q_{i} \rightarrow Q_{i}$ be an endomorphism defined by $\varphi_{r}(q)=r q$. We show that φ_{r} is either surjective or nilpotent. The endomorphism φ_{r} induces endomorphism $\phi_{(r, 0)}: Q_{i}^{n} \rightarrow Q_{i}^{n}$ defined by $\phi_{(r, 0)}\left(1, q_{1}, q_{2}, \ldots, q_{n}\right)=\left(1, r q_{1}, r q_{2}, \ldots, r q_{n}\right)$. Since Q_{i}^{n} is a secondary submodule, $\phi_{(r, 0)}$ is either surjective or nilpotent, and so φ_{r} is either surjective or nilpotent. It is easy to check that $\operatorname{rad}\left(\operatorname{ann} Q_{i}\right)=P_{i}$. Hence Q_{i} is P_{i}-primary.

Example 1. Let R be an integral domain and K be quotient field R. Then K^{n} is a $0(+) M$ secondary $R(+) K$-module. In particular, \mathbb{Q}^{2} is a $0(+) \mathbb{Q}$ secondary $\mathbb{Z}(+) \mathbb{Q}$ module.

Example 2. If P is a maximal ideal of R, then $\frac{R^{n}}{\left(P^{m}\right)^{n}}$ is a $P(R)$-secondary $R(R)$-module, for every positive integer m.

Example 3. Let R be a local ring with maximal ideal P. If every element of P is nilpotent, then R^{n} is a $P(R)$-secondary $R(R)$-module.

Acknowledgements. The authors would like to express their deep aptitude to the referee for the careful reading of the paper and her/his fruitful comments.

1. Ali M. M. Idealization and theorems of D. D. Anderson // Communs Algebra. - 2006. - 34. - P. 4479 4501.
2. Anderson D. D., Winders M. Idealization of a module // J. Commutative Algebra. - 2009. - 1, № 1. P. 3-56.
3. Anderson D. D. Cancellation modules and related modules // Lect. Notes Pure and Appl. Math. - 2001. - 220 - P. 13-25.
4. Anderson D. D. Some remarks on multiplication ideals // Math. Jap. - 1980. - 4. - P. 463-469.
5. Atani S. E. Submodules of multiplication modules // Taiwan. J. Math. - 2005. - 9, № 3. - P. 385-396.
6. Atiyah M. F., Macdonald I. G. Introduction to commutative algebra. - Addison-Wesley, 1969.
7. Divaani-Aazar K., Esmkhani M. A. Associated prime submodules of finitely generated modules // Communs Algebra. - 2005. - 33. - P. 4259-4266.
8. El-Bast Z. A., Smith P. F. Multiplication modules // Communs Algebra. - 1988. - 16. - P. 755-799.
9. Faith C. Algebra I: Rings, modules and categories. - Springer, 1981.
10. Huckaba J. A. Commutative rings with zero divisors. - New York: Marcel Dekker, 1988.
11. Matsumara H. Commutative ring theory. - Cambridge: Cambridge Univ. Press, 1986.
12. Nagata M. Local rings. - New York: Intersci., 1962.
13. Naoum A. G., Mijbas A. S. Weak cancellation modules // Kyungpook Math. J. - 1997. - 37. - P. 73-82.

Received 08.06.10 after revision - 06.02.11

