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MULTIDIMENSIONAL RANDOM MOTION
WITH UNIFORMLY DISTRIBUTED CHANGES
OF DIRECTION AND ERLANG STEPS

BATATOBUMIPHUM BUIIAJIKOBUH PYX
I3 PIBHOMIPHO PO3IOJAIIEHUMH 3MIHAMMU HAITPSIMKY
TA KPOKAMMU EPJIAHTA

In this paper we study transport processes in R™, n > 1, having non-exponential distributed sojourn times
or non-Markovian step durations. We use the idea that the probabilistic properties of a random vector are
completely determined by those of its projection on a fixed line, and using this idea we avoid many of the
difficulties appearing in the analysis of these problems in higher dimensions. As a particular case, we find the
probability density function in three dimensions for 2-Erlang distributed sojourn times.

JocunimxeHo npouecu neperocy B R™, n > 1, 1110 MaroTh HEEKCIIOHEHIIaJIbHO PO3MOAIECHUH Yac nepeOyBaHHs
200 HEMapKOBCHKY TPUBAJICTh KPOKIB. BUKOpUCTaHO i71€10 PO Te, 1[0 IMOBIpPHICHI BIACTUBOCTI BUIIAJKOBOTO
BEKTOpa IIIIKOM BH3HAYAIOTHCS TAaKMMH CaMHMH BIIACTHBOCTSMHM HOro mpoekiii Ha ¢ikcoBaHy mpsamy. Lleit
MIiX1]] T03BOJIMB YHUKHYTH 0araTboX CKJIQJHOCTEH, 1110 3’ SIBJISIOTHCS MPH JTOCIIDKSHHI UX Mpo0ieM Y BUMIp-
HOCTSIX BUILOTO MOPSAKY. SIk OKpeMuil BUIIa0K, 3HAHIEHO (HYHKIIIO MITEHOCTI HMOBIPHOCTI y TPHBHMIpHOMY
BUNAJKY AJIs yacy nepeOyBaHHs 3 2-po3noninom Eprianra.

1. Introduction. One-dimensional non-Markovian generalizations of the telegrapher’s
random process were obtained in [1, 2] with velocities alternating at Erlang-distributed
sojourn times. Uniformly distributed direction of motion or isotropic motion has been
studied by Pinsky [3] for transport processes on Riemannian manifold and by Orsingher
and De Gregorio in higher dimensions [4]. However, most of the papers on multidimen-
sional random motion are devoted to analysis of models in which motions are driven by
a homogeneous Poisson process (see [3—6] and references therein). The recent work of
Le Caer [7] departs from this trend since he is studying uniformly distributed orientation
random motion with Pearson— Dirichlet distributed steps in a multidimensional random
walk setting. In this work, we consider random motions with uniformly distributed di-
rections on the multidimensional space R™, n > 1, with Erlang distributed step lengths.
Our analysis is based on random evolutions on a semi-Markov media.

Let us consider the renewal process £(t) = max{m > 0: 7,, < t}, ¢ > 0, where
Tm = Z:Zl Ok, 7o = 0and 6, > 0, k = 1,2,..., are i.i.d. random variables with a
distribution function G(t) such that there exists the probability density function (pdf)

o(t) = a0,

We assume that a particle starting from the coordinate origin (0,0, ...,0) of the
space R", at time ¢t = 0, continues its motion with a constant absolute velocity v along
the direction ng"), where ng") = (x1,%2,...,2,) is a tandom n-dimensional vector
uniformly distributed on the unit sphere Q7" = {(z1, 2o, ...,2,): 23 +234.. 422 =
=1}

At instant 7y the particle changes its direction to ngn), where ngn) and ngn) are i.i.d.

random vectors on 7' Then, at instant 7 the particle changes its direction to nén),
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where ng ") is also uniformly distributed on Q7™ ! and independent of 770 ) and 171 ,
and so on.

Denote by x("™)(t), t > 0, the particle position at time ¢. We have that

()

X (1) = 0> M0 +vn) (t—7ew). (1)
=0

Basically, Eq. (1) determines the random evolution in the semi-Markov medium &(¢).
Lemma 1. The probability distribution of the random vector X(")( t) is determined

¢ n
by the probability distribution of its projection (™ (t) = v Z~(; g, + vné(t))(
(n)

— Te(t)) on a fixed line, where 17 is the projection of mj; ~ on the line.
Proof. Let us consider the cumulative distribution function (cdf) F,m) 4 (y) =
= P(z(™(t) < y). Then, the characteristic function Pxm (1) () Of x(™(t) is given

by

Pxtn () = Eexp {z (a,x(”)(t))} — Eexp {z e (e,x(")(t)>} -

= Eexp {z [EER (t)} = /exp {illedly} dFoen o) (),
0
where || = \/a? +aZ + ...+ a2, z(™(t) is the projection of x("™ () onto the unit

vector e and it has a cdf Fn) 1) (y)-

Lemma 1 is proved.

It is well known that if f(xz1,22,...,2,) € Li(R"™) depends only on |x| =
=23 +23+...+a2, ie, f(x1,72,...,2,) = g(r), then the function

©(81,82, -3 8n) :/f(x)exp{—i Zskxk}dx
Bn k=1

depends only on s = ||s||. Such functions are called radial functions and for these
functions the Fourier transform in several variables goes over into the “Bessel transform”
in one variable as follows:

27T n/2 s

rn 2
#(s) s(n 2)/2 / 9(r) 12 T 2) o (s7)dr
0

where Jp,(x) denotes the Bessel function, of the first kind, of order p [10].
Since ¢y () depends only on @ = ||c||, meaning that ¢y () = ¢(a) then the pdf
fx(t)(y) corresponding to the distribution

E(t)+1
Fewy(y)=P v Z 77in)0i +o 7727(]})) (t—Tew) <y
i=0

depends only on r = ||y||, that is, fx()(y) = h(r) and we have
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(@mn/2
@x(t)(a) = 22 h(r)r"/2J(n72)/2(ar)dr.

0

It also follows that if A (r) is continuous on [0, +00) and / " h(r)dr < oo, and if
0

/ " tp(a)da < oo, then [10]
0

(o]
1 n
fx(t) (y) =h(r) = W/@(a)a /QJ(n—2)/2(0”“)d04-
0

Now, let us define #(")(t) = vZf:i n™6; and A(t) = vné?t)) (t — T¢(r)), and
we will denote as Fjn) () (y) (resp. Fag)(y)) the cdf of #M(t) (resp. A(t)). It is
easy to verify that #(")(t) and A(t) are independent. Hence, we have Foomw(y) =
= Fyon ) (Y) * Faw) (v)-

Therefore, by using Lemma 1 we can study the cdf of x(™)(¢) but we need to know
the cdf of (™) (t) and A(t).

Lemma 2. Let F,(t) be the cdfofngn)ﬁi and it is of the following form:

§+F(2n)_1>/ G(L)a-aodtan s iz0

Val (5 z
0
Fo(t) = 1 @
1 I3 t 2 (n— :
2 G=2)@1=a2)"3/2g t<0.
2 iy [ 03 e
0
Proof. Let us denote by f,, (x) the pdf of the projection 775") of the vector ngn) onto
a fixed line. It is showed in [8] that f,, (x) is of the following form:
r(3) 24(n—3)/2 .
j(l—x ) s Zf ‘Te[_l,l},
[y (@)= { VAT (557) 3)
0, if xé¢[-1,1].
Since n§") and 6; are independent it is easy to verify that the cdf of 775”)91» is of the form
).

Lemma 2 is proved.
The process y(t) = t — T¢(1) is a Markov process and it has the following generator
operator A [9]:

where ¢ € C1(R).

Lemma 3. The cdf Fa)(s) =P (v nént)) (t = Tewy) < s) is given by
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1

1 F(g) s 2\(n—3)/2 .

2*)/Fv<f>(m)<1‘f”> o s 20
0

FA(t)(S) =

1
1 r(E) Fop (=) (1= 22 324e,  if s<o.
) B ( )
0

Proof. The cdf F,)(u) = P(y(t) < u) satisfies the following Markov renewal
equation [9]

t
Fyy(u) =V (t,u) + /g(s)F,Y(t_s) (u)ds, )]
0

where V (t,u) = P(y(t) <u,71 >t) = (1 - G(t)) [{r<u}-
Let us define the function R(t) = Z:O_O g*®)(t), where the symbol *(n) denotes
the k-fold convolution of g(t) with itself. Then, Eq. (4) can be rewritten as

Fyy(u) = (V x R)(t,u) = /V(t — s,u)dR(s).

(n)

Since v T () and ~(t) are independent that concludes the proof.
2. Evolution in odd-dimensional spaces. Now, let us assume that n = 2/ 4+ 3, [ =
s . At
=0,1,2,...,and 6y has a (n—1)-Erlang distribution, that is g(¢) = ﬁ 2o
n —

It follows from Lemma 2 that the pdf f,,(¢) of the random variable 771 )0 has the form

1
)\t 2041
)\/ 7)\75/30(1 _ x2)ldx
0

$2l+2

(3)
o Jar ("34)T(n—1)

or equivalently,

AL (1+3) (1 ok [ 20k) s
fnlt) = ﬁr(l+1)r(22z+2) kZ:O (k>(_1)k(m k/s Re0ds,

At

for t > 0. Furthermore, the following equivalent expression can be found after some
algebraic simplifications

oAt 2(1—k) 2k+m
20— k) (At)F
Fn(t) l'221+1 Z kl I —k)! z_:o m! ®)

We have f,,(t) = fn(—t) for the case when ¢ < 0.

3. Evolution in three dimensions. Let us consider the particular case when n = 3.
Thus, by taking into account Lemma 2, we have that 772(3) is uniformly distributed on
[—1,1].

Let random variables 0, k = 0,1,2,..., be 2-Erlang distributed, i.e., g(t) =
= Nte ™, A >0,t>0.

For this particular case, the Laplace transform of R(t), say ﬁ(s), is of the form
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T A\ (A1)
— —at *(k) —st _

/R dt = Z/ dt = Z(A+s) s24+2Xs’

0

and the Laplace transform V (s, u) of V (¢, u) can be written as

2X + 5 — (Mus + N2us + s + 2)e~(A+s)u

V(s,u) = SFE

Therefore, the Laplace transform ﬁ, (s,u) of Iy (u) is given by

~ =~ 2A+ 5 — (Aus + N2us + s + 2)e~ (A s)u
By () = R (5,) = N .

(6)

After applying the inverse Laplace transform to ﬁy(s, u), we obtain for ¢t > u > 0
Fyy(u) = e M (24 Mu)e M sinh (A(t — u)) +2e M sinh (M) — (Au+1)e A,

Thus, we have the limit result

Taking into account Lemma 3 we can obtain the corresponding expression for

Faw) (s)-
It follows from Eq. (5) that 7;6; has the Laplace distribution with pdf f3(t) =

1
= 5 >\€_>\It‘ .

k
Therefore, the Fourier transform of P (v Z o 1:0; < y) is given by

o0 k )2 k
—iX _
[ ”PG§3W”W>—<V+wM>'
=0

On the other hand, since

£(t)

oo k
Fyo(y Z&M<y:ZPGZ%%<OHWFM
=0

k=0

then the characteristic function of %) (t), say,

o0

Pz (1) (@) = Efe " 0] = / e " YdF ;) (1 (y)

— 00

can be calculated as follows

et =3 (i) P =8 =

k=0

B —Ati A2 k ()\t)% . ()\t)2k+1
—0 e 2% T (2k+ 1))
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)\2

Let us define ® = ——— then

/N2 ¥ v2a2’

A2 4 0202
Pz (1) (@) = e M | cosh Dt + % sinh &t | .

Therefore, by using the inverse Fourier transform, we can obtain Fys) () (y)-
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