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Let W, (K) be the Lie algebra of derivations of the polynomial algebra K[X] := K[z1,...,zn] over an
algebraically closed field K of characteristic zero. A subalgebra L C W, (K) is called polynomial if it is
a submodule of the K[X]-module W, (K). We prove that the centralizer of every nonzero element in L is
abelian provided that L is of rank one. This fact allows to classify finite-dimensional subalgebras in polynomial
Lie algebras of rank one.

Hexait Wy, (K) — anre6pa JIi qudepenniroBans noniHomiansuoi anrebpu K[X| := K[z1, .. ., zy] Hax anre6-
paiuso 3amkaeHuM noieM K xapakrepuctuku Hyb. [Tinaare6pa L C W, (K) HasuBaeTbcs noiHOMiaIbHOIO,
Ko BoHa € migmonyieM K[X]-momymnst Wy, (K). [loBeaeHo, 10 LEHTpasi3aTop KOXHOIO HEHYJIBOBOIO elie-
MeHTa 3 L € abeneBuM y BUIAJKy, koinu L Mae panr 1. Lle nae MOIMBICTh Kiacu(iKyBaTH CKIHUCHHOBHUMIpPHI
niganreOpu nojiiHomianpHUX anredp JIi panry 1.

Introduction. Let K be an algebraically closed field of characteristic zero and K[X] :=
K[z1,...,x,] the polynomial algebra over K. Recall that a derivation of K[X] is a
linear operator D : K[X] — K[X] such that

D(fg) = D(f)g+ fD(g) forall f,geK[X].
Every derivation of the algebra K[X] has the form

0 0
P—+...4+ P,— forsome P,...,P, €K[X].
8x1 8$n
A derivation D may be extended to the derivation D of the field of rational functions
K(X) :=K(z1,...,z,) by

D (f) _ D()g—/D(9)
g g
The kernel S of D is an algebraically closed subfield of K(X), cf. [6] (Lemma 2.1).
Denote by W,,(K) the Lie algebra of all derivations of K[X] with respect to the
standard commutator. The study of the structure of the Lie algebra W, (K) and of
its subalgebras is an important problem appearing in various contexts (note that in
case K = R or K = C we have the Lie algebra W,,(K) of all vector fields with

polynomial coefficients on R™ or C™). Since W, (K) is a free K[X]-module <with the

0 0
basis EriRLRE 3)’ it is natural to consider the subalgebras L C W,,(K) which are
X1 Tn
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K[X]-submodules. Following the work of V. M. Buchstaber and D. V. Leykin [1], we
call such subalgebras the polynomial Lie algebras. In [1], the polynomial Lie algebras
of maximal rank were considered. Earlier, D. A. Jordan studied subalgebras of the Lie
algebra Der(R) for a commutative ring R which are R-submodules in the R-module
Der(R) (see [4]).

In this note, we study polynomial Lie algebras L of rank one. In Section 2 we prove
that the centralizer of every nonzero element in L is abelian. Clearly, this property is
inherited by any subalgebra in L. It is not difficult to describe all finite-dimensional Lie
algebras with this property, see Proposition 2. In Theorem 1 we give a classification
of finite-dimensional subalgebras in polynomial Lie algebras of rank one: every such
subalgebra is either abelian, or solvable with an abelian ideal of codimension one and
trivial center, or isomorphic to si2(KK). Moreover, for all these three types we construct
an explicit realization in some L. Applying obtained results to the Lie algebra W1 (K) we
give a description of all finite dimensional subalgebras of W7 (K) (Proposition 3). In case
K = C this description can be easily deduced from classical results of S. Lie (see [5])
about realizations (up to local diffeomorphisms) of finite dimensional Lie algebras by
vector fields on the complex line. In [5], S. Lie has also classified analogous realizations
on the complex plane and on the real line. On the real plane such a classification is given
in [2].

1. Lie algebras with abelian centralizers. We begin with an elementary lemma
on submodules of a free module. Let A be a unique factorization domain and N =
= Ae;1 @ ... D Ae, a free A-module. An element x € N is said to be reduced if the
condition z = az’ with a € A and =’ € N implies that the element a is invertible in A.

Lemma 1. For every submodule M C N of rank one there exist an ideal I C A
and a reduced element my € N such that M = Img. The submodule M defines the
element mg uniquely up to multiplication by an invertible element of A.

Proof. Take a nonzero element m € M, m = aje; + ... + ane,. Let a be the
greatest common divisor of a1, ..., an, and mg = afe; + ...+ a’e,, where a? = a;/a.
Since M has rank one, for every nonzero m’ € M there are nonzero c,d € A such that
em~+dm’ = 0. Then acmo +dm’ = 0. If m’ = ae; +...+a, ey, then acal +dal = 0
forall i = 1,...,n. If d does not divide ac, then some prime p € A divides all the
elements aY, ..., al. But the elements a{, ..., al are coprime, a contradiction. Thus m/’
equals bmg with b = ac/d. This proves that all elements of M have the form bm, for
some b € A. Clearly, all elements b € A such that by € M form an ideal I of A. The
second assertion follows from the fact that a free A-module has no torsion.

Lemma 1 is proved.

We say that a derivation Plai + ...+ Pnai is reduced if the polynomials
X1 Ln

Py,..., P, are coprime. Setting A = K[X] and N = W, (K), we get the following
variant of Lemma 1.

Lemma 2. For every submodule M C W, (K) of rank one there exist an ideal
I C K[X] and a reduced derivation Dy € W,,(K) such that M = IDy. The submodule
M defines the derivation Dy uniquely up to nonzero scalar.

Now we study the centralizers of elements in a polynomial Lie algebra of rank one.

Proposition 1. Let L be a subalgebra of the Lie algebra W,,(K). Assume that L
is a submodule of rank one in the K[ X|-module W,,(K). Then the centralizer of any
nonzero element in L is abelian.
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Proof. By Lemma 2, the subalgebra L has the form I D for some reduced derivation
Dy € W,(K). Denote by Dy the extension of Dy to the field K(X), and let S be the
kernel of Dy. Take any nonzero element fDy € L, f € I, and consider its centralizer
C = CL(fDy). For every nonzero element gDy € C one has

[f Do, gDo] = (fDo(g) — gDo(f))Do = 0.

This implies Do(f)g — fDo(g) = 0, thus Do(f/g) = 0 and f/g € S. Take another
nonzero element hDy € C. By the same arguments we get f/h € S. This shows that
g/h € S. The latter condition is equivalent to [¢gDg, hDy] = 0, so the subalgebra C' is
abelian.

Proposition 1 is proved.

The next proposition seems to be known, but having no precise reference we supply
it with a complete proof. By Z(F') we denote the center of a Lie algebra F.

Proposition 2. Let F be a finite-dimensional Lie algebra over an algebraically
closed field K of characteristic zero. Assume that the centralizers of all nonzero elements
in F are abelian. Then either F is abelian, or ' = A X (b), where b € F, A C F is an
abelian ideal and Z(F) = 0, or F' = sl3(K).

Proof. 1f the centralizers of all nonzero elements of a Lie algebra F' are abelian,
then the same property holds for every subalgebra of F. Assume that F' is not abelian
and the centralizers of all elements of F' are abelian. Then the center Z(F') is trivial.

Case 1. F is solvable. Then F' contains a non-central one-dimensional ideal (a),
see [3] (IL.4.1, Corollary B). Let A be the centralizer of a in F. Clearly, A is an abelian
ideal of codimension one in F. Then F =2 A X (b) forany b € F \ A.

Case 2. F is semisimple. Then F' = I} & ... @ Fj, is the sum of simple ideals.
Since the centralizer of every element x € Fy contains F5 & ... ® F}, we conclude that
F' is simple. Let H be a Cartan subalgebra in F' and F' = N_ @& H & N, the Cartan
decomposition with opposite maximal nilpotent subalgebras N_ and N, in F, see [3]
(I1.8.1). Since the centrilizer of every element in V., is abelian, either the subalgebra V.
is abelian or Z(N;) = 0. The second possibility is excluded because N is nilpotent.
Thus NV, is abelian. This is the case if and only if the root system of the Lie algebra F'
has rank one, or, equivalently, F' & sl5(K).

Case 3. F is neither solvable nor semisimple. Consider the Levi decomposition
F = R X\ G, where G is a maximal semisimple subalgebra and R is the radical of F.
By Case 2, the algebra G is isomorphic to sl5(K). Denote by A the ideal of R which
coincides with R if R is abelian, and A = [R, R] otherwise. By Case 1, the ideal A is
abelian. Consider the decomposition A = A; @ ... & A, into simple G-modules with
respect to the adjoint representation. If dim A; = 1, then the centralizer of a nonzero
element in A; contains G, a contradiction. Suppose that dim A; > 2. Fix an sl,-triple
{e,h, f} in G and take a highest vector z € A; with respect to the Borel subalgebra
(e, h). Then [e,x] = 0 and the centralizer Cp(x) contains the subalgebra A X (e). The
latter is not abelian because the adjoint action of the element e on A; is not trivial. This
contradiction concludes the proof.

2. Main results. In this section we get a classification of finite-dimensional subalgebras
in polynomial Lie algebras of rank one.

Theorem 1. Let L be a polynomial Lie algebra of rank one in W, (K), where K
is an algebraically closed field of characteristic zero, and F' C L a finite-dimensional
subalgebra. Then one of the following conditions holds:
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(1) F is abelian;

(2) F =2 AX(b), where A C F is an abelian ideal and [b, a] = a for every a € A,

(3) F is a three-dimensional simple Lie algebra, i.e., F = sl5(K).

Proof. By Propositions 1 and 2, every finite-dimensional subalgebra F' C L is either
abelian, or has the form A X (b), or is isomorphic to sl2(KK). It remains to prove that in
the second case we may find b € F with [b,a] = a for every a € A. Take any element
b with F' = A X (b).

Let us prove that the operator ad(b) is diagonalizable. Assuming the converse, let
ag, a1 € A be nonzero elements with [b, a1] = Aay + ag, [b, ag] = Aag for some A € K.
By Lemma 2, the subalgebra L has the form 1D for some ideal I C K[X] and some
reduced derivation Dy € W,,(K). Set ag = fDy, a1 = gDo, b = hDy, f,g,h € I. The
relations [b, a1] = Aay + ao, [b, ag] = Aag, and [ag, a1] = 0 are equivalent to

hDo(g) — gDo(h) = Ag+ f,  hDo(f) — fDo(h) = Af, fDo(g) —gDo(f) = 0.

Multiplying the second relation by g, we get hgDo(f) — fgDo(h) = Afg. This and the
third relation imply hfDo(g) — fgDo(h) = Afg = hDy(g) — gDo(h) = Ag. Together
with the first relation it gives f = 0, a contradiction.

Now assume that [b,a1] = Aa; and [b,as] = Aqage for some A, A2 € K. If
a1 = fDy, as = gDg,b = hDy, then we obtain the relations

hDo(f) — fDo(h) = A1 f,  hDo(g) — gDo(h) = Aag, fDolg) — gDo(f) = 0.

Consequently,

ghDo(f) = gf (A1 + Do(h)) = fhDo(g) = fg(A2 + Do(h)).

This proves that A; = Ao and hence ad(b) is a scalar operator. Since F' is not abelian,
ad(b) is nonzero and, multiplying b by a suitable scalar, we may assume that ad(b) is
the identical operator.

Theorem 1 is proved.

Let us show that all three possibilities indicated in Theorem 1 are realizable. Take
a derivation Dy € W, (K) such that there exist non-constant polynomials p, ¢ € K[X]

with Dy(p) = 0 and Dy(q) = 1. For example, one may take Dy = — + Pg,i +...
9 63:2 63:3
oot Pna— with arbitrary Ps, ..., P, € K[X], and p = x1, ¢ = 2.
Tn
The subalgebra (Dg, pDq, . ..,p™ 1Dy) is an m-dimensional abelian subalgebra in

K[X]D, for every positive integer m.
The subalgebra A X\ (b) with dimA = m may be obtained by setting A =
= <.D(),p.D()7 Ce 7])7TL71.D(]> and b = —qD(). Indeed,

[—qDo, f(p)Do] = (=Do(f(p))+f(p)Do(q)) Do = f(p)Do forevery f(p) € K[p].

Finally, the derivations e = ¢>Dg, h = 2¢qDg and f = —Dy form an sl-triple in
K[X]Dy.

Remark 1. The structure of finite-dimensional subalgebras in a polynomial Lie
algebra L = ID, depends on properties of the derivation Dy. In particular, if
Ker(Dy) = K, then all abelian subalgebras in K[X]Dy are one-dimensional.
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Our last result concerns finite-dimensional subalgebras in the Lie algebra W1 (

K).
By Lemma 2, every polynomial Lie algebra in W;(K) has the form L = q(x)]K[:z:]a2
x

with some polynomial ¢(z) € K[z].
Proposition 3. Let L = q(x)K[x]£ be a polynomial algebra.
1. If degq(x) > 2, then every finite dimensional Lie subalgebra in L is one-

dimensional.
2. If degq(x) = 1, then every finite dimensional Lie subalgebra in L is either
0 0
one-dimensional or coincides with I}, = <q(w)6, q(m)’“8>for some k > 2.
i i
3. If q(x) = const # 0 (i.e, L = Wi(K)), then every finite dimensional Lie

0
subalgebra in L is either one-dimensional, or coincides with Fi, g = ( (z + ﬂ)%, (x+

+ ﬂ)kaax> for some f € Kand k =0,2,3,..., oris a three-dimensional subalgebra

0 0 0
F(B)=( == — 2= h K.
(B) <8x’ (x+ﬂ)8x’ (x+B) [“)x>’ where 3 €

Proof. Let us describe all two-dimensional subalgebras in W;(K). Every such
subalgebra has the form

(f@) g o)) with f(0). o) € Kla] and fg' = Fg=g. )

If deg(f) > 2, then looking at the highest terms of f¢’ and f’g, we get deg(f) = deg(g).
But the polynomials (f + Ag, g) satisfy relation (x) for every A € K, and thus we may
assume that f is linear. Each root of ¢ is also a root of f, so g is proportional to f* for
some k = 0,2,3,.... This observation together with Theorem 1 and Remark 1 proves
all the assertions.

Proposition 3 is proved.

If we consider obtained in Proposition 3 realizations up to automorphisms of the
polynomial ring K[z], then in case deggq(x) = 1 for the Lie algebra F}, one can take
q(x) = x, and in case g(x) = const # 0 one can take 8 = 0.
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