UDC 512.5 R. Yilmaz (Rize Univ., Turkey) THE BIDUAL OF *r*-ALGEBRAS БІДУАЛ *r*-АЛГЕБР

We prove that the order continuous bidual of an Archimedean r-algebra is a Dedekind complete r-algebra with respect to the Arens multiplications.

Доведено, що порядковий неперервний бідуал архімедової r-алгебри є повною r-алгеброю Дедекінда відносно множень Аренса.

1. Introduction. In [11] we studied a new class of lattice ordered algebras; so-called *r*-algebras and presented its relation with the certain lattice ordered algebras; f-algebras [5] (a lattice ordered algebra A with the property that $a \wedge b = 0$ implies $ac \wedge b = ca \wedge b = 0$ for all $c \in A^+$), almost f-algebras [6] (a lattice ordered algebra A for which $a \wedge b = 0$ in A implies ab = 0), d-algebras [9] (a lattice ordered algebra A such that $a \wedge b = 0$ in A implies $ac \wedge bc = ca \wedge cb = 0$ for all $c \in A^+$), pseudo f-algebras [7] (a lattice ordered algebra A having the property that ab = 0 if $a \wedge b$ is a nilpotent element of A) and generalized almost f-algebras [8] (a lattice ordered algebra A such that ab is an annihilator of A if $a \wedge b = 0$). A lattice ordered algebra A in which $a \wedge b = 0$ in A implies $ab \wedge ba = 0$ is called an r-algebra. This is a wider class than both the classes of almost f-algebra is a generalization of a d-algebra in much the same way as an almost f-algebra is a generalization of an f-algebra. Observe also that the Archimedean r-algebra A is not commutative (for details, see [11]).

In this paper we concentrate on the Arens multiplications [2, 3] in the algebraic bidual of r-algebras and prove that the order continuous bidual of an Archimedean r-algebra is again a Dedekind complete (and hence Archimedean) r-algebra. This is the extension of a result of Bernau and Huijsmans in [4] in which they prove that the order continuous bidual of an almost f-algebra (respectively d-algebra) is again an almost f-algebra (respectively d-algebra).

We now assume that A is a lattice ordered algebra, which is not necessarily commutative or unital. The following two multiplications in A'' can be introduced, which are referred to as the *first* and *second Arens multiplications* [2, 3]. They are accomplished in three steps: for $a, b \in A$, $f \in A'$ and $F, G \in A''$, define $a \cdot f, f \cdot F \colon A \mapsto \mathbb{R}$ and $F \cdot G \colon A' \mapsto \mathbb{R}$ (fa, Ff and FG for the second multiplication) by

C(1)

 $C \setminus (1)$

$(a \cdot f)(b) = f(ba),$
$(f \cdot F)(a) = F(a \cdot f),$
$(F \cdot G)(f) = G(f \cdot F)$
(fa)(b) = f(ab),
(Ff)(a) = F(fa),
(FG)(f) = F(Gf).

and

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5

We shall concentrate on the first Arens multiplication; similar results hold for the second.

For the elementary theory of ℓ -spaces and terminology not explained here we refer to [1, 10, 12].

2. The order continuous bidual of *r*-algebras. In this section we consider the order continuous bidual of the class of Archimedean *r*-algebras and prove that the order continuous bidual of an *r*-algebra *A* is again an *r*-algebra with respect to the Arens multiplication. We first recall some relevant notions. The *canonical mapping* $a \mapsto \hat{a}$ of a vector lattice *A* into its order bidual *A''* is defined by $\hat{a}(f) = f(a)$ for all $f \in A'$. For each $a \in A$, \hat{a} defines an order continuous algebraic lattice homomorphism on *A'* and the canonical image \hat{A} of *A* is a subalgebra of $(A')'_c$. Moreover the band $S_{\hat{A}} = \{F \in (A')'_c : |F| \le \hat{x} \text{ for some } x \in A^+\}$ generated by \hat{A} is order dense in $(A')'_c$; that is, for each $F \in (A')'_c$, there exists an upwards directed net $\{G_{\lambda} : \lambda \in \Lambda\}$ in $S_{\hat{A}}$ such that $0 < G_{\lambda} \uparrow F$.

Lemma 2.1. Let A be an r-algebra and $0 \le G, H \in (A')'_c$. If $G \land H = 0$ and $G, H \le \hat{x}$ for some $x \in A^+$, then $G \cdot H \land H \cdot G = 0$.

Proof. Let $0 \le f \in A'$ and $x \in A^+$. Then define the positive linear functional fx in A' by (fx)(y) = f(xy) for all $y \in A$. It follows that $f \cdot \hat{x} = fx$ since

$$(f \cdot \widehat{x})(y) = \widehat{x}(y \cdot f) = (y \cdot f)(x) = f(xy) = (fx)(y)$$

for all $y \in A$. Hence $0 \le x \cdot f + fx \in A'$, and so, by Corollary 1.2 of [4], there exist $g, h \in A'$ with $g \wedge h = 0$, and G(g) = 0 = H(h) such that $x \cdot f + fx = g + h$. Hence

$$\inf\{g(y) + h(z) \colon x = y + z, \, y, z \in A^+\} = (g \wedge h)(x) = 0,$$

which implies that, for $\epsilon > 0$, there exist $y, z \in A^+$ such that x = y + z and $g(y) < \epsilon$ and $h(z) < \epsilon$.

We now define the linear functionals G_1 and H_1 on A' by

$$G_1 = G \land (y - y \land z)$$
 and $H_1 = H \land (z - y \land z)$.

Clearly, $0 \leq G_1, H_1 \in (A')'_c$ and the following inequalities hold:

$$0 \le H - H_1 = (H - (z - y \land z))^+ \le (\widehat{x} - (\overline{z - y \land z}))^+$$
$$= (\widehat{y + z - (z - y \land z)})^+ = (\widehat{y + y \land z})^+ \le 2\widehat{y}, \tag{1}$$

and similarly

$$0 \le G - G_1 \le 2\widehat{z}.\tag{2}$$

Since $(y - y \wedge z) \wedge (z - y \wedge z) = (y \wedge z) - (y \wedge z) = 0$ in A and A is an r-algebra,

$$(y - y \wedge z)(z - y \wedge z) \wedge (z - y \wedge z)(y - y \wedge z) = 0,$$

and so $0 \leq G_1 \cdot H_1 \wedge H_1 \cdot G_1 \leq (\widehat{y - y \wedge z}) \cdot (\widehat{z - y \wedge z}) \wedge (\widehat{z - y \wedge z}) \cdot (\widehat{y - y \wedge z}) = 0;$ i.e.,

$$G_1 \cdot H_1 \wedge H_1 \cdot G_1 = 0. \tag{3}$$

We next consider the elements $0 \leq G \cdot (H - H_1)$, $(G - G_1) \cdot H_1$, $H \cdot (G - G_1)$ and $(H - H_1) \cdot G_1$ of $(A')'_c$. Then, by (1),

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5

THE BIDUAL OF r-ALGEBRAS

$$(G \cdot (H - H_1))(f) \le (\widehat{x} \cdot (H - H_1))(f) = (H - H_1)(f \cdot \widehat{x}) =$$

= $(H - H_1)(fx) \le (H - H_1)(fx + x \cdot f) =$
= $(H - H_1)(g + h) = (H - H_1)(g) + (H - H_1)(h) \le$
 $\le (H - H_1)(g) + H(h) \le 2\widehat{y}(g) + 0 = 2g(y)$ (4)

and, by (2),

$$((G - G_1) \cdot H_1)(f) \leq ((G - G_1) \cdot \hat{x})(f) = \hat{x}(f \cdot (G - G_1)) =$$

$$= (f \cdot (G - G_1))(x) = (G - G_1)(x \cdot f) \leq$$

$$\leq (G - G_1)(x \cdot f + fx) = (G - G_1)(g + h) =$$

$$= (G - G_1)(g) + (G - G_1)(h) \leq$$

$$\leq G(g) + (G - G_1)(h) \leq 2h(z).$$
(5)

It follows by symmetry that

$$(H \cdot (G - G_1))(f) \le 2h(z)$$
 and $((H - H_1) \cdot G_1)(f) \le 2g(y).$ (6)

Using the fact that $(a + b) \land c \leq a \land c + b \land c \leq a + b \land c$ in ℓ -spaces and (3), we find

$$\begin{split} G \cdot H \wedge H \cdot G &= [\left(G \cdot (H - H_1) + (G - G_1) \cdot H_1 + G_1 \cdot H_1\right)] \wedge \\ \wedge [H \cdot (G - G_1) + (H - H_1) \cdot G_1 + H_1 \cdot G_1] \leq \\ &\leq G \cdot (H - H_1) + (G - G_1) \cdot H_1 + \\ + G_1 \cdot H_1 \wedge [H \cdot (G - G_1) + (H - H_1) \cdot G_1 + H_1 \cdot G_1] \leq \\ &\leq G \cdot (H - H_1) + (G - G_1) \cdot H_1 + \\ + G_1 \cdot H_1 \wedge (H \cdot (G - G_1) + (H - H_1) \cdot G_1) + \\ &+ G_1 \cdot H_1 \wedge H_1 \cdot G_1 \leq \\ &\leq G \cdot (H - H_1) + (G - G_1) \cdot H_1 + \\ &+ H \cdot (G - G_1) + (H - H_1) \cdot G_1. \end{split}$$

Hence, by (4), (5) and (6),

$$0 \le (G \cdot H \wedge H \cdot G)(f) \le ((G \cdot (H - H_1))(f) + ((G - G_1) \cdot H_1))(f) + ((H \cdot (G - G_1))(f) + ((H - H_1) \cdot G_1))(f) \le$$

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5

$$\leq 2g(y) + 2h(z) + 2h(z) + 2g(y) \leq 8\epsilon.$$

Since this holds for an arbitrary $\epsilon > 0$, we have $(G \cdot H \wedge H \cdot G)(f) = 0$ for all $0 \le f \in A'$. It now follows that for all $f \in A'$

$$(G \cdot H \wedge H \cdot G)(f) = (G \cdot H \wedge H \cdot G)(f^+) - (G \cdot H \wedge H \cdot G)(f^-) = 0,$$

and so $G \cdot H \wedge H \cdot G = 0$.

We now in a position to express the main result of this work.

Theorem 2.1. The order continuous bidual of an *r*-algebra is a Dedekind complete (and hence Archimedean) *r*-algebra.

Proof. Let A be an r-algebra. We only need to prove $G \cdot H \wedge H \cdot G = 0$ whenever $0 \leq G, H \in (A')'_c$ with $G \wedge H = 0$. To this end, consider the band $S_{\widehat{A}}$ generated by the canonical image \widehat{A} of A in $(A')'_c$. Since $S_{\widehat{A}}$ is order dense in $(A')'_c$, there exist $G_{\alpha}, H_{\beta} \in S_{\widehat{A}}$ such that $0 \leq G_{\alpha} \uparrow G$ and $0 \leq H_{\beta} \uparrow H$ with $0 \leq G_{\alpha} \leq \widehat{x}_{\alpha}$ and $0 \leq H_{\beta} \leq \widehat{y}_{\beta}$ for some $x_{\alpha}, y_{\beta} \in A^+$. It follows from $G \wedge H = 0$ that $G_{\alpha} \wedge H_{\beta} = 0$ for all α, β . Furthermore, $0 \leq G_{\alpha}, H_{\beta} \leq \widehat{x}_{\alpha} + \widehat{y}_{\beta}$. Hence, by Lemma 2.1, we see that

$$G_{\alpha} \cdot H_{\beta} \wedge H_{\beta} \cdot G_{\alpha} = 0 \tag{7}$$

for all α and β . Now let $0 \leq f \in A'$. It follows from $0 \leq G_{\alpha} \uparrow G$ that $0 \leq G_{\alpha}(x \cdot f) \uparrow G(x \cdot f)$; i.e., $0 \leq (f \cdot G_{\alpha})(x) \uparrow (f \cdot G)(x)$ for all $x \in A^+$. This shows that $0 \leq f \cdot G_{\alpha} \uparrow f \cdot G$. Hence, by the order continuity of H_{β} for each β , $0 \leq H_{\beta}(f \cdot G_{\alpha}) \uparrow H_{\beta}(f \cdot G)$; i.e., $0 \leq (G_{\alpha} \cdot H_{\beta})(f) \uparrow (G \cdot H_{\beta})(f)$, which implies that, for each β ,

$$0 \le G_{\alpha} \cdot H_{\beta} \uparrow G \cdot H_{\beta}. \tag{8}$$

Similarly, since $0 \leq H_{\beta} \uparrow H$, $0 \leq H_{\beta}(f \cdot G) \uparrow H(f \cdot G)$; i.e., $0 \leq (G \cdot H_{\beta})(f) \uparrow (G \cdot H)(f)$ for all $0 \leq f \in A'$, and so

$$0 \le G \cdot H_{\beta} \uparrow G \cdot H. \tag{9}$$

In the same way, using the order continuity of G_{α} for each α , we obtain

$$0 \le H_{\beta} \cdot G_{\alpha} \uparrow H \cdot G_{\alpha},\tag{10}$$

leading to

$$0 \le H \cdot G_{\alpha} \uparrow H \cdot G. \tag{11}$$

It follows from (8) and (10) that $0 \leq G_{\alpha} \cdot H_{\beta} \wedge H_{\beta} \cdot G_{\alpha} \uparrow G \cdot H_{\beta} \wedge H \cdot G_{\alpha}$, and so, by (7), $G \cdot H_{\beta} \wedge H \cdot G_{\alpha} = 0$ for all α and β . On the other hand, $0 \leq G \cdot H_{\beta} \wedge H \cdot G_{\alpha} \uparrow G \cdot H \wedge H \cdot G$ by (9) and (11), and so $G \cdot H \wedge H \cdot G = 0$, as required.

As remarked earlier, the order bidual A'' of an almost f-algebra (respectively f-algebra) A is an almost f-algebra (respectively f-algebra) which may not be true for the order biduals of either d-algebras [4] or r-algebras. However we have the following consequence.

Corollary 2.1. The order bidual of a commutative r-algebra is a Dedekind complete r-algebra.

- 1. Aliprantis C. D., Burkinshaw O. Positive operators. Acad. Press, 1985.
- 2. Arens R. Operations induced in function classes // Monatsh. Math. 1951. 55. P. 1-19.

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5

THE BIDUAL OF *r*-ALGEBRAS

- 3. Arens R. The adjoint of a bilinear operation // Proc. Amer. Math. Soc. 1951. 2. P. 839-848.
- 4. Bernau S. J., Huijsmans C. B. The order bidual of almost f-algebras and d-algebras // Trans. Amer. Math. Soc. - 1995. - 347. - P. 4259-4275.
- 5. Birkhoff G., Pierce R. S. Lattice-ordered rings // An. Acad. brasil. Ciénc. 1956. 28. P. 41-49.
- 6. Birkhoff G. Lattice theory // Amer. Math. Soc. Colloq. 1967. № 25.
- 7. Boulabiar K., Hadded F. A class of lattice ordered algebras // Algebra Univ. 2003. 50. P. 305 323.
- 8. Chil E. Generalized almost f-algebras // Bull. Belg. Math. Soc. Simon Stevin. 2009. 16, № 2. -P. 223 – 234.
- 9. Kudláček V. On some types of ℓ-rings // Sb. VUT Brně. 1962. 1-2. P. 179-181.
- 10. Luxemburg W. A. J., Zaanen A. C. Riesz spaces I. North-Holland, 1971.
- Yilmaz R. The class of *r*-algebras (Submited).
 Zaanen A. C. Introduction to Operator theory in Riesz spaces. Springer, 1997.

Received 25.10.10