R. Yilmaz (Rize Univ., Turkey)

THE BIDUAL OF r-ALGEBRAS

БІДУАЛ r-АЛГЕБР

We prove that the order continuous bidual of an Archimedean r-algebra is a Dedekind complete r-algebra with respect to the Arens multiplications.

Доведено, що порядковий неперервний бідуал архімедової r-алгебри є повною r-алгеброю Дедекінда відносно множень Аренса

1. Introduction. In [11] we studied a new class of lattice ordered algebras; so-called r algebras and presented its relation with the certain lattice ordered algebras; f-algebras [5] (a lattice ordered algebra A with the property that $a \wedge b=0$ implies $a c \wedge b=c a \wedge b=0$ for all $c \in A^{+}$), almost f-algebras [6] (a lattice ordered algebra A for which $a \wedge b=0$ in A implies $a b=0$), d-algebras [9] (a lattice ordered algebra A such that $a \wedge b=0$ in A implies $a c \wedge b c=c a \wedge c b=0$ for all $c \in A^{+}$), pseudo f-algebras [7] (a lattice ordered algebra A having the property that $a b=0$ if $a \wedge b$ is a nilpotent element of A) and generalized almost f-algebras [8] (a lattice ordered algebra A such that $a b$ is an annihilator of A if $a \wedge b=0$). A lattice ordered algebra A in which $a \wedge b=0$ in A implies $a b \wedge b a=0$ is called an r-algebra. This is a wider class than both the classes of almost f-algebras and d-algebras but in general independent of generalized almost f-algebras. Hence an r-algebra is a generalization of a d-algebra in much the same way as an almost f-algebra is a generalization of an f-algebra. Observe also that the Archimedean r-algebra A is not commutative (for details, see [11]).

In this paper we concentrate on the Arens multiplications [2, 3] in the algebraic bidual of r-algebras and prove that the order continuous bidual of an Archimedean r algebra is again a Dedekind complete (and hence Archimedean) r-algebra. This is the extension of a result of Bernau and Huijsmans in [4] in which they prove that the order continuous bidual of an almost f-algebra (respectively d-algebra) is again an almost f-algebra (respectively d-algebra).

We now assume that A is a lattice ordered algebra, which is not necessarily commutative or unital. The following two multiplications in $A^{\prime \prime}$ can be introduced, which are referred to as the first and second Arens multiplications [2, 3]. They are accomplished in three steps: for $a, b \in A, f \in A^{\prime}$ and $F, G \in A^{\prime \prime}$, define $a \cdot f, f \cdot F: A \mapsto \mathbb{R}$ and $F \cdot G: A^{\prime} \mapsto \mathbb{R}(f a, F f$ and $F G$ for the second multiplication) by

$$
\begin{aligned}
& (a \cdot f)(b)=f(b a), \\
& (f \cdot F)(a)=F(a \cdot f), \\
& (F \cdot G)(f)=G(f \cdot F)
\end{aligned}
$$

and

$$
\begin{aligned}
& (f a)(b)=f(a b) \\
& (F f)(a)=F(f a), \\
& (F G)(f)=F(G f) .
\end{aligned}
$$

We shall concentrate on the first Arens multiplication; similar results hold for the second.
For the elementary theory of ℓ-spaces and terminology not explained here we refer to $[1,10,12]$.
2. The order continuous bidual of r-algebras. In this section we consider the order continuous bidual of the class of Archimedean r-algebras and prove that the order continuous bidual of an r-algebra A is again an r-algebra with respect to the Arens multiplication. We first recall some relevant notions. The canonical mapping $a \mapsto \widehat{a}$ of a vector lattice A into its order bidual $A^{\prime \prime}$ is defined by $\widehat{a}(f)=f(a)$ for all $f \in A^{\prime}$. For each $a \in A, \widehat{a}$ defines an order continuous algebraic lattice homomorphism on A^{\prime} and the canonical image \widehat{A} of A is a subalgebra of $\left(A^{\prime}\right)_{c}^{\prime}$. Moreover the band $S_{\widehat{A}}=\left\{F \in\left(A^{\prime}\right)_{c}^{\prime}:|F| \leq \widehat{x}\right.$ for some $\left.x \in A^{+}\right\}$generated by \widehat{A} is order dense in $\left(A^{\prime}\right)_{c}^{\prime}$; that is, for each $F \in\left(A^{\prime}\right)_{c}^{\prime}$, there exists an upwards directed net $\left\{G_{\lambda}: \lambda \in \Lambda\right\}$ in $S_{\widehat{A}}$ such that $0<G_{\lambda} \uparrow F$.

Lemma 2.1. Let A be an r-algebra and $0 \leq G, H \in\left(A^{\prime}\right)_{c}^{\prime}$. If $G \wedge H=0$ and $G, H \leq \widehat{x}$ for some $x \in A^{+}$, then $G \cdot H \wedge H \cdot G=0$.

Proof. Let $0 \leq f \in A^{\prime}$ and $x \in A^{+}$. Then define the positive linear functional $f x$ in A^{\prime} by $(f x)(y)=f(x y)$ for all $y \in A$. It follows that $f \cdot \widehat{x}=f x$ since

$$
(f \cdot \widehat{x})(y)=\widehat{x}(y \cdot f)=(y \cdot f)(x)=f(x y)=(f x)(y)
$$

for all $y \in A$. Hence $0 \leq x \cdot f+f x \in A^{\prime}$, and so, by Corollary 1.2 of [4], there exist $g, h \in A^{\prime}$ with $g \wedge h=0$, and $G(g)=0=H(h)$ such that $x \cdot f+f x=g+h$. Hence

$$
\inf \left\{g(y)+h(z): x=y+z, y, z \in A^{+}\right\}=(g \wedge h)(x)=0
$$

which implies that, for $\epsilon>0$, there exist $y, z \in A^{+}$such that $x=y+z$ and $g(y)<\epsilon$ and $h(z)<\epsilon$.

We now define the linear functionals G_{1} and H_{1} on A^{\prime} by

$$
G_{1}=G \wedge(\widehat{-y \wedge} z) \quad \text { and } \quad H_{1}=H \wedge(\widehat{-y \wedge} z)
$$

Clearly, $0 \leq G_{1}, H_{1} \in\left(A^{\prime}\right)_{c}^{\prime}$ and the following inequalities hold:

$$
\begin{align*}
0 \leq & H-H_{1}=(H-(z-y \wedge z))^{+} \leq(\widehat{x}-(z \widehat{-y \wedge} z))^{+} \\
& =\left(y+z \widehat{-(z-y \wedge z))^{+}}=(y \widehat{+y \wedge} z)^{+} \leq 2 \widehat{y}\right. \tag{1}
\end{align*}
$$

and similarly

$$
\begin{equation*}
0 \leq G-G_{1} \leq 2 \widehat{z} \tag{2}
\end{equation*}
$$

Since $(y-y \wedge z) \wedge(z-y \wedge z)=(y \wedge z)-(y \wedge z)=0$ in A and A is an r-algebra,

$$
(y-y \wedge z)(z-y \wedge z) \wedge(z-y \wedge z)(y-y \wedge z)=0
$$

and so $0 \leq G_{1} \cdot H_{1} \wedge H_{1} \cdot G_{1} \leq(\widehat{y-y \wedge} z) \cdot(z \widehat{-y \wedge} z) \wedge(\widehat{z-y \wedge} z) \cdot(y \widehat{-y \wedge} z)=0$; i.e.,

$$
\begin{equation*}
G_{1} \cdot H_{1} \wedge H_{1} \cdot G_{1}=0 \tag{3}
\end{equation*}
$$

We next consider the elements $0 \leq G \cdot\left(H-H_{1}\right),\left(G-G_{1}\right) \cdot H_{1}, H \cdot\left(G-G_{1}\right)$ and $\left(H-H_{1}\right) \cdot G_{1}$ of $\left(A^{\prime}\right)_{c}^{\prime}$. Then, by (1),

$$
\begin{gather*}
\left(G \cdot\left(H-H_{1}\right)\right)(f) \leq\left(\widehat{x} \cdot\left(H-H_{1}\right)\right)(f)=\left(H-H_{1}\right)(f \cdot \widehat{x})= \\
\quad=\left(H-H_{1}\right)(f x) \leq\left(H-H_{1}\right)(f x+x \cdot f)= \\
=\left(H-H_{1}\right)(g+h)=\left(H-H_{1}\right)(g)+\left(H-H_{1}\right)(h) \leq \\
\quad \leq\left(H-H_{1}\right)(g)+H(h) \leq 2 \widehat{y}(g)+0=2 g(y) \tag{4}
\end{gather*}
$$

and, by (2),

$$
\begin{gather*}
\left(\left(G-G_{1}\right) \cdot H_{1}\right)(f) \leq\left(\left(G-G_{1}\right) \cdot \widehat{x}\right)(f)=\widehat{x}\left(f \cdot\left(G-G_{1}\right)\right)= \\
\quad=\left(f \cdot\left(G-G_{1}\right)\right)(x)=\left(G-G_{1}\right)(x \cdot f) \leq \\
\leq\left(G-G_{1}\right)(x \cdot f+f x)=\left(G-G_{1}\right)(g+h)= \\
\quad=\left(G-G_{1}\right)(g)+\left(G-G_{1}\right)(h) \leq \\
\quad \leq G(g)+\left(G-G_{1}\right)(h) \leq 2 h(z) \tag{5}
\end{gather*}
$$

It follows by symmetry that

$$
\begin{equation*}
\left(H \cdot\left(G-G_{1}\right)\right)(f) \leq 2 h(z) \quad \text { and } \quad\left(\left(H-H_{1}\right) \cdot G_{1}\right)(f) \leq 2 g(y) \tag{6}
\end{equation*}
$$

Using the fact that $(a+b) \wedge c \leq a \wedge c+b \wedge c \leq a+b \wedge c$ in ℓ-spaces and (3), we find

$$
\begin{gathered}
G \cdot H \wedge H \cdot G=\left[\left(G \cdot\left(H-H_{1}\right)+\left(G-G_{1}\right) \cdot H_{1}+G_{1} \cdot H_{1}\right)\right] \wedge \\
\wedge\left[H \cdot\left(G-G_{1}\right)+\left(H-H_{1}\right) \cdot G_{1}+H_{1} \cdot G_{1}\right] \leq \\
\leq G \cdot\left(H-H_{1}\right)+\left(G-G_{1}\right) \cdot H_{1}+ \\
+G_{1} \cdot H_{1} \wedge \\
\quad\left[H \cdot\left(G-G_{1}\right)+\left(H-H_{1}\right) \cdot G_{1}+H_{1} \cdot G_{1}\right] \leq \\
\leq G \cdot\left(H-H_{1}\right)+\left(G-G_{1}\right) \cdot H_{1}+ \\
+G_{1} \cdot H_{1} \wedge\left(H \cdot\left(G-G_{1}\right)+\left(H-H_{1}\right) \cdot G_{1}\right)+ \\
\quad+G_{1} \cdot H_{1} \wedge H_{1} \cdot G_{1} \leq \\
\leq G \cdot\left(H-H_{1}\right)+\left(G-G_{1}\right) \cdot H_{1}+ \\
+H \cdot\left(G-G_{1}\right)+\left(H-H_{1}\right) \cdot G_{1} .
\end{gathered}
$$

Hence, by (4), (5) and (6),

$$
\begin{aligned}
0 \leq(G \cdot H & \wedge H \cdot G)(f) \leq\left(\left(G \cdot\left(H-H_{1}\right)\right)(f)+\left(\left(G-G_{1}\right) \cdot H_{1}\right)\right)(f)+ \\
& \left.+\left(H \cdot\left(G-G_{1}\right)\right)(f)+\left(\left(H-H_{1}\right) \cdot G_{1}\right)\right)(f) \leq
\end{aligned}
$$

$$
\leq 2 g(y)+2 h(z)+2 h(z)+2 g(y) \leq 8 \epsilon .
$$

Since this holds for an arbitrary $\epsilon>0$, we have $(G \cdot H \wedge H \cdot G)(f)=0$ for all $0 \leq f \in A^{\prime}$. It now follows that for all $f \in A^{\prime}$

$$
(G \cdot H \wedge H \cdot G)(f)=(G \cdot H \wedge H \cdot G)\left(f^{+}\right)-(G \cdot H \wedge H \cdot G)\left(f^{-}\right)=0
$$

and so $G \cdot H \wedge H \cdot G=0$.
We now in a position to express the main result of this work.
Theorem 2.1. The order continuous bidual of an r-algebra is a Dedekind complete (and hence Archimedean) r-algebra.

Proof. Let A be an r-algebra. We only need to prove $G \cdot H \wedge H \cdot G=0$ whenever $0 \leq G, H \in\left(A^{\prime}\right)_{c}^{\prime}$ with $G \wedge H=0$. To this end, consider the band $S_{\widehat{A}}$ generated by the canonical image \widehat{A} of A in $\left(A^{\prime}\right)_{c}^{\prime}$. Since $S_{\widehat{A}}$ is order dense in $\left(A^{\prime}\right)_{c}^{\prime}$, there exist $G_{\alpha}, H_{\beta} \in S_{\widehat{A}}$ such that $0 \leq G_{\alpha} \uparrow G$ and $0 \leq H_{\beta} \uparrow H$ with $0 \leq G_{\alpha} \leq \widehat{x}_{\alpha}$ and $0 \leq H_{\beta} \leq \widehat{y}_{\beta}$ for some $x_{\alpha}, y_{\beta} \in A^{+}$. It follows from $G \wedge H=0$ that $G_{\alpha} \wedge H_{\beta}=0$ for all α, β. Furthermore, $0 \leq G_{\alpha}, H_{\beta} \leq \widehat{x_{\alpha}+y_{\beta}}$. Hence, by Lemma 2.1, we see that

$$
\begin{equation*}
G_{\alpha} \cdot H_{\beta} \wedge H_{\beta} \cdot G_{\alpha}=0 \tag{7}
\end{equation*}
$$

for all α and β. Now let $0 \leq f \in A^{\prime}$. It follows from $0 \leq G_{\alpha} \uparrow G$ that $0 \leq$ $\leq G_{\alpha}(x \cdot f) \uparrow G(x \cdot f)$; i.e., $0 \leq\left(f \cdot G_{\alpha}\right)(x) \uparrow(f \cdot G)(x)$ for all $x \in A^{+}$. This shows that $0 \leq f \cdot G_{\alpha} \uparrow f \cdot G$. Hence, by the order continuity of H_{β} for each β, $0 \leq H_{\beta}\left(f \cdot G_{\alpha}\right) \uparrow H_{\beta}(f \cdot G)$; i.e., $0 \leq\left(G_{\alpha} \cdot H_{\beta}\right)(f) \uparrow\left(G \cdot H_{\beta}\right)(f)$, which implies that, for each ${ }_{\beta}$,

$$
\begin{equation*}
0 \leq G_{\alpha} \cdot H_{\beta} \uparrow G \cdot H_{\beta} \tag{8}
\end{equation*}
$$

Similarly, since $0 \leq H_{\beta} \uparrow H, 0 \leq H_{\beta}(f \cdot G) \uparrow H(f \cdot G)$; i.e., $0 \leq$ $\leq\left(G \cdot H_{\beta}\right)(f) \uparrow(G \cdot H)(f)$ for all $0 \leq f \in A^{\prime}$, and so

$$
\begin{equation*}
0 \leq G \cdot H_{\beta} \uparrow G \cdot H \tag{9}
\end{equation*}
$$

In the same way, using the order continuity of G_{α} for each α, we obtain

$$
\begin{equation*}
0 \leq H_{\beta} \cdot G_{\alpha} \uparrow H \cdot G_{\alpha} \tag{10}
\end{equation*}
$$

leading to

$$
\begin{equation*}
0 \leq H \cdot G_{\alpha} \uparrow H \cdot G . \tag{11}
\end{equation*}
$$

It follows from (8) and (10) that $0 \leq G_{\alpha} \cdot H_{\beta} \wedge H_{\beta} \cdot G_{\alpha} \uparrow G \cdot H_{\beta} \wedge H \cdot G_{\alpha}$, and so, by (7), $G \cdot H_{\beta} \wedge H \cdot G_{\alpha}=0$ for all α and β. On the other hand, $0 \leq G \cdot H_{\beta} \wedge H \cdot G_{\alpha} \uparrow G \cdot H \wedge H \cdot G$ by (9) and (11), and so $G \cdot H \wedge H \cdot G=0$, as required.

As remarked earlier, the order bidual $A^{\prime \prime}$ of an almost f-algebra (respectively f algebra) A is an almost f-algebra (respectively f-algebra) which may not be true for the order biduals of either d-algebras [4] or r-algebras. However we have the following consequence.

Corollary 2.1. The order bidual of a commutative r-algebra is a Dedekind complete r-algebra.

[^0]3. Arens R. The adjoint of a bilinear operation // Proc. Amer. Math. Soc. - 1951. - 2. - P. 839-848.
4. Bernau S. J., Huijsmans C. B. The order bidual of almost f-algebras and d-algebras // Trans. Amer. Math. Soc. - 1995. - 347. - P. 4259-4275.
5. Birkhoff G., Pierce R. S. Lattice-ordered rings // An. Acad. brasil. Ciénc. - 1956. - 28. - P. 41-49.
6. Birkhoff G. Lattice theory // Amer. Math. Soc. Colloq. - 1967. - № 25.
7. Boulabiar K., Hadded F. A class of lattice ordered algebras // Algebra Univ. - 2003. - 50. - P. 305-323.
8. Chil E. Generalized almost f-algebras // Bull. Belg. Math. Soc. Simon Stevin. - 2009. - 16, № 2. P. 223-234.
9. Kudláček V. On some types of ℓ-rings // Sb. VUT Brně. - 1962. - 1-2. - P. 179-181.
10. Luxemburg W. A. J., Zaanen A. C. Riesz spaces I. - North-Holland, 1971.
11. Yilmaz R. The class of r-algebras (Submited).
12. Zaanen A. C. Introduction to Operator theory in Riesz spaces. - Springer, 1997.

[^0]: . Aliprantis C. D., Burkinshaw O. Positive operators. - Acad. Press, 1985.
 . Arens R. Operations induced in function classes // Monatsh. Math. - 1951. - 55. - P. 1-19.

