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GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES
IN APPROXIMATION THEORY

HEPIBHOCTI THUITY I'PIOCCA TA OCTPOBCBKOI'O
B TEOPIi HABJINKEHD

We discuss the Griiss inequalities on spaces of continuous functions defined on a compact metric space. Using
the least concave majorant of the modulus of continuity, we obtain a Griiss inequality for the functional
L(f) = H(f;x), where H: Cla,b] — C|a,b] is a positive linear operator and = € [a, b] is fixed. We
apply this inequality in the case of known operators, for example, the Bernstein, Hermite — Fejér operator the
interpolation operator, convolution-type operators. Moreover, we derive Griiss-type inequalities using Cauchy’s
mean value theorem, thus generalizing results of Cebysev and Ostrowski. A Griiss inequality on a compact
metric space for more than two functions is given, and an analogous Ostrowski-type inequality is obtained.
The latter in turn leads to one further version of Griiss’ inequality. In an appendix, we prove a new result
concerning the absolute first-order moments of the classical Hermite — Féjer operator.

PosmisiHyTO HepiBHOCTI Iprocca Ha mpocTOpax HemepepBHUX (yHKILIMH, SIKi BUSHAYCHO HA KOMIIAKTHOMY MeET-
PUYHOMY MPOCTOPi. 3 BUKOPHCTAHHSM HAWMEHIIOI ONMYKJIOI Ma)KOPAQHTH MOZYJsi HEHEPEpPBHOCTI OIEpPKaHO
HepiBHicTh Iprocca s dynkuionana L(f) = H(f;z), ne H: Cla,b] — Cla,b] — nonarauii nisiiinuii
oreparop, a € [a, b] 3adikcoBauo. L[t HepiBHICTH 3aCTOCOBAHO /10 BUIMAKY BiJIOMHX ONEPATOpPiB, HAPUKIA]
oneparopa bepHireiina, iHTepnonsuiiiHoro oneparopa Epmita — @eitepa, oneparopis tuimy konouorii. Kpim
TOTO, BUBE/ICHO HEpiBHOCTI THITy Iprocca Ha ocHOBI Teopemu Kol mpo cepesHe, M0 y3arajabHIOE Pe3yibTaTi
Yebumosa ta Ocrposcekoro. IlpencraBineHo HepiBHICTH [procca Ha KOMIIAKTHOMY METPUYHOMY IIPOCTOPI
JUIs OUIBII HK ABOX (BYHKIIiH Ta OTPMMAHO aHAJIOTiYHY HEPiBHICTH TUITy OCTPOBCHKOTO, 5IKA, B CBOIO 4EPry,
MIPUBOAUTS JI0 11ie oAHieT Bepcii HepiBHOCTI [procca. Y 1oaaTky 10BEIEHO HOBUI pe3ynbTar 010 a0COMOTHIX
MOMEHTIB [EpIIOro MOPsAKY KIacH4HOro oneparopa Epmira— ®eitepa.

1. Introduction. The original form of Griiss’ inequality estimates the difference be-
tween the integral of a product of two functions and the product of integrals of the two
functions and was published by G. Griiss in 1935 [11]:

Theorem A. Let f and g be two functions defined and integrable on [a,b]. If
m < f(z) < M and p < g(x) < P for all x € [a,b], then

b b 2
pa | @2 [ ey T [ gl < G0n-my(Pp)

The constant 1/4 is the best possible.

Griiss’ inequality attracted considerable interest after its publication. Here we men-
tion only papers by E. Landau [14], J. Karamata [12], and a particularly useful one by
A. M. Ostrowski [21]. We also note that a whole chapter in a book by D. S. Mitrinovi¢
et al. [19] is devoted to the inequality we discuss here.

Our present work is to a large extent motivated by a theorem which can be found in
the paper [2] by D. Andrica and C. Badea. Here we cite a special form of it.
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724 A. M. ACU, H. GONSKA, I. RASA

Theorem B. Let I = [a,b] be a compact interval of the real axis, B(I) be the
space of real-valued and bounded functions defined on I and L: B(I) — R be a
positive linear functional satisfying L(eg) = 1 where eq: I 3 x — 1. Assuming that for
fyg€ B(I) one has m < f(x) < M, p < g(x) < P for all x € I, the following holds:

L(fg) ~ L E(e)] < 3(M —m)(P ~p).

Another celebrated classical inequality was proved by A. M. Ostrowski [20] in 1938
which we cite below in the form given by Anastassiou in 1995 (see [3]).
Theorem C. Let f be in Clla,b], z € [a,b]. Then

1f(@) = u(H)l < e@)1f |,
1 b (x —a)?+ (b—x)?
where p(f) := m/ﬂ f@yde, (z) = 20—a)

There is a relationship between the classical inequalities of Griiss and Ostrowski ob-
served by S. S. Dragomir and S. Wang [7] in 1997 and further studied by
X.-L. Cheng [5] in 2001. The two first-named authors proved that Griiss’ classical
inequality basically implies the following result (which we cite in its improved form

given by Cheng in his Theorem 1.5).
Theorem D. Let f € C'a,b] satisfy m < f'(x) < M for z € [a,b]. Then

fu»—biajfumv—ﬂ2j£W)Qw—“+5>s

Corollary E. Under the assumptions of Theorem D we also have

b
) /(@) - = /ﬂmungﬂ@

4 (b= )M —m);

b—a b—a 8

‘ aer‘ 1
P B

(i) if f(b) = [f(a), then

£@) -~ 5 [ ] < S~ )1 — )

(iii) if we choose m = ir[lfb] (), M = sup f'(x), then
r€|a,

- : (bl

b
o) — 1 /f(t)dt—f(b):cj:(a) <x_a+b> <

a
Note that for f(b) = f(a) the left-hand side in (iii) is Ostrowski’s classical expres-
sion. The right-hand side is in terms of || f'[|; however, it is not pointwise. Note that
(x —a)?+ (b—2)?

2(b—a)

of Griiss-type, i.e., it contains M — m, a difference of upper and lower bounds. It is
thus justified to call an inequality, as given in the theorem, an Ostrowski— Griiss-type

1 b
= Z(b —a) for z = %. The right-hand side in the theorem is
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GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY 725

inequality (although, historically speaking, Griiss — Ostrowski-type inequality might be
the more adequate term).

In [1] the first two authors gave a generalization of Ostrowski’s inequality for arbi-
trary f € Cla,b] and certain linear operators. In order to formulate the result given here
we need the following definition.

Definition 1. Let f € Cla,b]. If for t € [0, 00) the quantity

w(f;t) =sup{[f(z) = fFW)], |z —yl <t}

is the usual modulus of continuity, its least concave majorant is given by

(t —2)w(f;y) + (v — Hw(f; o)
y—x

&)(f;t):sup{ ;Oﬁxﬁtﬁyﬁb—a}-
Let I = [a,b] be a compact interval of the real axis and f € C(I). In [24] the
following result for the least concave majorant is proved:

t t 1
K=, f; 1 ;= inf - =g’ = —a(f; > 0.
(5 5ctan.clen) = nt (I -alo+ 5100 ) = 3ot 120

Theorem F. Let L: Cla,b] — Cla,b] be non-zero, linear and bounded, and such
that L: Cta,b] — C[a,b] with ||(Lg)'|| < ci||d|| for all g € C'[a,b]. Then for all
f € Cla,b] and x € [a,b] we have

. c
L) = L) < 1216 (£ @) )
If L = 1, is the identity on Cla,b], then |L|| = c = 1, and in this case we get

[f(@) = ()l <@(f0(x),  f€Cla,b]. (M

Remark G. 1If f € C'[a, b], then the inequality (1) can be written as

[f(@) = n(H)l < @(f;0(@) < p@) | f llo-

This is Ostrowski’s classical inequality in Anastassiou’s form (see above). If f €
€ Lipya, 0 < a < 1, then |£(x) — u(f)| < &(f p(x)) < M(p(x))*. For a = 1
we obtain Dragomir’s inequality [6].

It is the aim of this paper to look again at Griiss’ inequality from a somewhat
different point of view, and to eventually relate it again to Ostrowski’s inequality. In
doing so we will be guided by the contribution of Andrica and Badea. That is: how
non-multiplicative is a linear functional in the worst case? This is quite an intriguing
question from the point of view of approximation theory.

2. A pre-Griiss inequality on a compact metric space. In 2004 A. Mc. D. Mercer
and P. R. Mercer [17] gave the following pre-Griiss inequality for a positive linear
functional L: B(I) — R, with L(1) = 1:

IL(fg) = L(f)L(g)| < %min{(M —m)L(lg = G|),(P=p)L(f = F)}, (2

where m < f(z) < M,p<g(x) < Pforallz €I, F:=Lf and G := Lg.
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726 A. M. ACU, H. GONSKA, I. RASA

In this section we will prove a pre-Griiss inequality on a compact metric space. Let
L: C(X) — R be a linear bounded functional, L(1) = 1, where C'(X) is a compact
metric space with metric d. Then there are positive linear functionals L, L_, |L]
such that L = Ly — L_ and |L| = Ly + L_. If L is a positive functional we have
IL| =L, =L.

Since M — m = w(f;d(X)), P —p = w(g;d(X)), where m = inf f(x), M =
= sup f(z), p = inf g(z), P = sup g(x), we can prove, using the idea of A. Mercer
and P. Mercer’s proof, the following inequality:

Theorem 1. Let L: C(X) — R be a linear, bounded functional, L(1) = 1,
defined on the compact metric space C(X). Then the inequality

IL(fg)—L(f)L(9)| < %min {w(f; d(X)NILI(1g=G1), wlg; dX))ILI(f = FD}  (3)

holds.

Remark 1. The inequality is sharp in the sense that a non-positive functional A
with A(1) = 1 exists such that equality occurs.

Example 1. Let us consider the following non-positive functional

A: C[0,1] = R, A(f) = 2£(0) — £(1).

For this functional we have A(1) = 1, A+(f) = = f(1), |4](f)
=2f(0) + f(1) and A(fg) — A(f)A(g) = 2(f(1) — (0))( ( ) g(1)). If we choose

f(t)=g(t)=t,then F =G = —1 and
[A(Fg) ~ AA(g)] =2 = 5 min fw(f; DIAI(g + 1), (g, DIAI(F + 1)}

Corollary 1. If L: C(X) — R is a positive linear (and thus bounded) functional
with L(1) = 1, then for all f,g € C(X) we have

IL(fg)—L(f)L(g)| < %min {w(f;d(X))L(lg=GI), w(g; d(X))L(f=FD}, (4

IL(fg) = L(f)L(g)| < %w(f;d(X))w(g;d(X))- )

Proof. Since L is a positive functional it follows |L| = L; so the first inequality is
proved.
In [17] A. Mercer and P. Mercer show that the inequalities
L(lg - G|) <

(P —p) and L(|f = F|) < 5 (M —m) (6)

N —
N =

hold. The inequality (5) can be obtained by using in (4) the inequalities (6).

Corollary 1 is proved.

In [8], B. Gavrea and 1. Gavrea raised the following problem.

Problem. Let L be a linear positive functional defined on C[0,1] with L(1) =
and f,g be two continuous functions. Do positive numbers 61 = 61(f) < 1 and 02 =
= 02(f) < 1 exist such that

(f 51) (f;52)7

ux\H

[L(fg) = L(f)L(g)| <
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GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY 727

We will show that the answer to Gavreas’ question is negative. Let us consider

L =B (£i5) = 5 (FO) + 1), € Cp.1),

where Bj is the first Bernstein operator on C[0, 1].
If we choose f(t) = g(t) = t we have, with e;(t) := t?,

2
1 1
B, (62; 2) - B (61; 2)

Moreover, for 0 < ¢ < 1, wi(e1;t) = @(e;t) = t, implying

IL(f9) = L(f)L(g)| = |L(e2) — L(ex)?| =

1 1 1
—@(f;t)o(git) = ~t* < — for 0 <t < 1.
Hence the conjecture of the two Gavreas is not true.

One more question is if the upper bound in (5) has a corresponding lower bound,
i.e., if there is a constant ¢ > 0 such that for all f, g € C'(X) we also have

cw(f;d(X))w(g; d(X)) < |L(f - g) — L(f)L(g)|- @)

The following example shows that this is not the case.

Example 2. Suppose A: C(X) — R is a positive linear functional satisfying
A(1) = 1. Write D(f.9) == A(f - g) — A(f)A(g).

Case 1: supp A = {z} for z € X. Then A = §,, the point evaluation functional at
x. Hence D(f,g) = 0 for all f,g € C(X), and for appropriate choices of X, f and ¢
the left-hand side of (7) is non-zero.

Case 2: supp A = {z,y}, meaning that A = o - 0, + 3 - J,, where o, f > 0 and
o+ 8 = 1. Hence

D(f,g9) = a-B(f(y) — f(2))(g(y) —g(z)) =0

if and only if f or/and g is/are constant on supp A. Again for suitable choices of X, f
and g the left-hand side of (7) is non-zero.

Case 3: |supp A| > 3. Then there is an h € C'(X) taking at least 3 distinct values
on supp A. Let a := A(h), b:= A(h?), ¢ :== A(h?).

For all t € R we have (h —t - 1) > 0, implying A(h?) — 2tA(h) + > > 0.
Taking ¢ = A(h) shows that A(h?) > A2(h). If A(h?) = A%(h), then there isa ty € R
such that A(h?) — 2tgA(h) + 12 =0, i.e., A((h — to1)?) = 0. This implies that b — o1
is constant on supp A, which is a contradiction. Thus A(h?) — A%(h) = b — a® > 0.

bf
Let f:=h—a,g:=h2+ " h. Then A(f) = 0, A(f-g) = 0, and so D(f,g) = 0.

b—a?
Clearly f is non-constant on supp A. Assuming that g = d is constant on A, means
b — b —
h? + Z gh =d, or h? + Z gh —d = 0 on supp A. But this means that h attains at
—a —a

most two values on supp A, again a contradiction. Thus f and g are both non-constant
on supp A and again the right-hand side of (7) is non-zero.

3. Griiss-type inequalities for positive linear operators. Let H,,: C[a,b] — C|a, b]
be positive linear operators which reproduce constant functions. For x € [a, b] we con-
sider L = ¢, 0 H,, so L(f) = H,(f;z). Denote by
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728 A. M. ACU, H. GONSKA, I. RASA

D(f7 g) = Hn(fgvx) - Hn(f7m)Hn(gvx)

The following result suggests how non-multiplicative the functional L(f) = H,(f;x)
is for a given z € [a, b].
Theorem 2. [f f,g € Cla,b] and x € [a,b] is fixed, then the inequality

ID(f9)l < 1 (F:2v/2H0 (G — 25 )) & (93 2/2H, (o1 — 273 7))

holds.
Proof. Using the Cauchy — Schwarz inequality for positive linear functionals we can
write

\H,(f;2)] < Ho(|f];2) < VH(f%2)Hy(1;2) = VH, (%5 7),

SO
D(f, f) :Hn(f2§x) _Hn(f§x)2

Then D is a positive semidefinite bilinear form on Cfa,b]. For f,g € CJa,b], using
Cauchy — Schwarz for D, it follows that

ID(f,9)] <V D(f, £)D(g,9) < |flloollglloo- ®)

Since H,,: Cla,b] — Cla,b] is a positive linear operator which reproduces constant
functions, H,(f;z), with « € [a,b] fixed, is a positive linear functional and can be
b

represented as H, (f;x) = / f(@)du(t), where u is a probability measure on [a, b],

b
ie.,/ du(t) = 1.

We have

b b b b
< / ( / <f<t>f<s>>2du<s>) au(t) < 1% / ( / (ts>2du<s>> dy(t) =

a a

— I / ( o / sd(s / Sdp(s >) du(t) —
b b b b
— 1712 [ [t ~2 [ sints) [ eautoy + [ szdm)] _

= 2||f'113, [Hn(e2; 2) = Hu(er;2)?] < 20f' I3 Hn (e — 2)%52),  f € Cla, b,
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GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY 729

Therefore

D(f,f) = Ha(f%2) — Ho(f;2)% < 2||f/12Hn ((e1 — )5 2) - ©9)

Using relation (9) for differentiable functions r,s € C*[a, b], we obtain the following
estimate:

|D(r,5)| < V/D(r,1)D(s, ) < 2r'||oc|8"lloo Hn ((e1 — 7)) (10)
Moreover, if f € Cla,b], s € C'[a, b], then
ID(f:5)] < VD(f, )D(s,5) < || flloo V28 lloo v/ Hn ((er = 2)%2). (1)
Likewise, for r € C'[a,b], g € C[a,b], we have
1D(r,9)| < l|gllooV2[r lloo v/ Hn ((e1 — 2)2; ). (12)
Now let f, g € Cla, b] be fixed, r, s € C'[a, b] arbitrary. Then

ID(f;9)l = ID(f —r+mr9—s+s)| <

<ID(f =19 = )|+ |D(f —7,8)| +|D(r,g — 8)[ + [D(r, s)| <

< f =rlllg = sl + V2IF = rlllls'lVHn (e — )% 2)+

+V2g = sl |V Ho ((er = 2)%2) + 201" |8 Hi ((e2 — 2)%52) =

= {IF =+ 17 IV2E (Cer = 2%52) } {llg = sll + 18| V2Ha ((er = )% )}

Passing to the infimum over r and s € C'][a, b], respectively, shows

D(f.9)| < K (V2H, ((er=2)%5a), £;C°,C") x

x K (\/2Hn ((ex—x)2;2),g;C°, C’l) =

& (f: VI (Ger = 07%50)) 5 (9 VBT (fe1 — 0)%50)) =

l\.’)\»—l

- ia; <f;2\/2Hn ((er — x)2;:c)> @ (g; 2\/2H,, ((e1 — x)Q;x)) :

which concludes the proof.
Remark 2. 1If we choose H,, = B,,, the Bernstein operator, then this gives

|Bn(fg;2)—Bn(f;x)Bn(g; )| <

< id} (f; 2v/2B,, ((el—x)Q;x)) @ (g; 2v/2B,, ((e1—1x)2; x)) =

_ ia’ (f;2 296(11—:10)) . (g;? 296(11—:10)) .
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Sfu(f; \/127&)03 (g; \/1271> f9€C0,1].

Remark 3. The above result can be remarkably generalized if we replace ([a, ], |-|)
by a compact metric space (X,d), H,((e1 — z)%x) by H,(d*(,x);x), and
K (-, f;Cla,b],C*[a,b]) by K (-, f; C(X), Lipl).

4. Griiss-type inequality for the classical Hermite — Fejér interpolation operator.
The classical Hermite — Fejér interpolation operator is a positive linear operator and can
be written as

Zfzk 1mk)< 5{2}6))2, (13)

-1
- m, 1 < k < n, are the zeros of T,,(z) =
= cos (n arccos), the n-th Chebyshev polynomial of the first kind.

where f € C[—1,1] and z}, = cos i

1
For this operator we have L, ((e1 — z)%;z) = =T (z).
n
Remark 4. 1If we choose in Theorem 2 H, = L,, the classical Hermite - Fejér
interpolation operator, then this gives

(L)~ La(F: ) Lu(g:2)| < 1 ( 12200 >>( 22 e >|>. (14)

This is disappointing in view of the fact that L,, approximates much faster than B,,.
Indeed, in [9] the following pointwise inequality was proved:

{mmnﬂ})

In this section we will give a different approach adapted to the Hermite — Fejér case.
Denote by

La(f:2) — £(2)] < 5u0r ( :

D(f,9) = Lu(fg;x) — Ln(f;2) L (g; 2).

Theorem 3. If f,g € C[-1,1] and = € [—1,1] is fixed, then the following in-
equality is verified.

Inn Inn
DGl < yuin {71 (5 0 ) ol (529520 ) ] as)

Proof. For f € C[-1,1], s € C'[-1,1] proceed as follows:

ID(f,8)| = |Ln(f - s;2) = Lo (f;2) Ln (55 2)| = |Ln(f (s — Lu(s;2)); )| =

= Ly, (F(£)(s(t) — s(x) + 5(z) — Ln(si2));2)| <
< N flloeLr(Is(8) = s(@)] + [s(2) = Ln(s;2)];2) <
< oo Ln(lls'lller = x| + (I8l Ln(ler — zf; 2); 2) =
= 2[[flloclls’lloc Ln(lex — z[; z).
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Now, for f,g € C[—1,1] fixed and s € C'[—1, 1] arbitrary we get
\D(f,9)l = |D(f,9 = s+ s)| <[D(f,9 = )| +[D(f, )| <
< [ fllocllg = slloc + 20 flloolls"lloc Ln(lex — f;2) =

= [[fllsc {llg = slloc + 2Ln(lex — zf; 2)[|5"l| 0 } -
Passing to the infimum over s € C! yields

ID(f,9)] < I flloc K (2Ln(lex — x| 2),9:C%, CF) =

= 1Flloo5 (9, 4Ln(les — ;7).

By symmetry the same holds with f and g interchanged. Hence

ID(f,9)| < %min{||f||oo®(974Ln(|€1 — z[;2)); |9/l (f, 4Ln(ler — x]; 7))}

But in [9] it was proved that (see the appendix for a detailed proof)

4 1
Lu(ler —ali2) < ~ T, @)|(V1 - lnn+ 1) < 10%, n>2 (16

and so

n n

|D(f,9)| < ;min{”f”ma) <g; 401nn) Nl <f; 4o1nn> }

Remark 5. 1If one of the functions f or ¢ is in Lipl, we have |D(f,g)
Inn

9)l =
=0 (), n — oo. The relation (14) implies in this case only |D(f,g)| =
n
1 1
= o| —= ] . Also, the relation (14) implies |D(f,g)] = o| — | for f,g € Lipl.
\/’E n

This cannot be concluded from (15).

5. A Geriiss inequality for convolution-type operators.

Definition 2. For every function f € C(I), I = [—1,1], and any natural number
n, the operator G,y is defined by

G (fst) = wil/ f (cos(arccost + v)) K, (n)(v)dv,

where the kernel K.,y is a trigonometric polynomial of degree m(n) with the following
properties:

(i) Kyn(n) is positive and even,

(ii) / Komy(v)dv =7, ie, Gpny(1,t) =1 fort € I.

For each [ € C(I) the integral G, (,)(f,-) from Definition 2 is an algebraic poly-

nomial of degree m(n). Moreover, in view of (i) and (ii) one has

m(n)

Kon)(v) = 3 + Z Plym(n) COSkv, v € [—m, 7]
k=1
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Lemma 1 [15]. For x € I the inequality

3 1 1 1
Gm(n) ((61 - 217)2,;1;) = x2{2 — 2p1,m(n) + 2p2,m,(n)} + (1 - xQ) {2 - 2p2,m,(n)}

holds. Here ey denotes the first monomial given by e1(t) =t for |t| < 1.
If K, (n) is the Fejér—Korovkin kernel with m(n) = n — 1, then it is known that
(see [16])

n 2T n 1
cos .
n+1 n+l n+1

(amn

pP2,n—1 =

Y
Pln—1 = COS ———
n 77,+1’

Using the relations (17) we get

1
1= popq| <
+2| P2, 1|f

3 1
Gn-1 ((61 — $)2;$)) < ‘2 — 201 -1+ 5P2n-1

™ 2 ™ 2 ™ 2
< =4 .
_3<n+1> +(n—i—l) (n—i—l)

Remark 6. 1If we consider in Theorem 2 the convolution-type operators with the
Fejér—Korovkin kernel we have

ID(f;9)| = |Gn-1(fg;7) — Gn-1(f; 2)Gn-1(g;7)| <

cle(pigiy)e )0 (o (12)o(e3),

This is an improvement of what we obtained for the Bernstein and Hermite —Fejér
operators.

6. Estimates via Cauchy’s mean value theorem. Let L: Cla,b] — R be a linear
positive functional. We denote by

T(f,g9) = L(fg) — L(f)L(g9), [,g € Cla,b].

In this section our aim is to establish a Griiss inequality for the functional L us-
ing Cauchy’s mean value theorem. Our work is motivated by B.G. Pachpatte’s re-

1 /”
—— | w(z)f(z)dz, where
f:w(ac)dx a
b
w: [a,b] — [0,00) is an integrable function such that / w(z)dx > 0.
a

Theorem 4. If L: Cla,b] — R is a linear positive functional, with L(1) = 1,

sult obtained in [23] for the functional L(f) =

then
i) there is (n,0) € [a,b] X [a,b] such that T(f,g) = i/gg; Z/EZ; T(h,h);
i) |T(f,9)| < ’ i—: ‘ % |T(h,h)|, where f,g,h € C'[a,b] and W' (t) # 0 for

each t € [a, b].
Proof. Let x,y € [a,b] with y # z. Applying Cauchy’s mean value theorem, there
exist points &; and &5 between y and x such that
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f'(&)
fl@) = fly) = ey (h(x) = h(y)), (18)
B _g'(&) 2 —
9(x) = g(y) = h,(&)(h( ) = h(y)). (19)
Multiplying the left-hand sides and right-hand sides of (18) and (19), we get
_ (&) 9 (&) 2
(@) = F)9(x) — 9(0) = s e (o) = ()™
If we apply the functional L with respect to x and y it follows
FE) g€,
2(7.9) = Ly Lo (i3 T ) = )?). 0)

If we denote by

m = min

x| L@ W)
(z,y)€la.b) x[a,b] W (x) B (y)’
then we can write m < (&) 9'(8) < M, namely
h'(&1) B'(&2) —
) (6 962 2 < MO — B2
m(h(a) = h(w))? < T TR () = (o) < M(h(z) = hiy)*

If apply the functional L with respect to = and y, we get

omT(h,h) < LyLq (i;gg; ﬁg (h(z) — h(y))2) < 2MT(h, h).

Luq(f“”y“”wmﬂ—mmv)
<

Since

(&) W (&)
= 27 (h, h)

it follows that there is (7, 0) € [a, b] X [a, b] such that
! /
L,L, <f (&) 9'(&) h

. 2
(e W) ") “”>> ) 9(0)
2T, ) W) W(0)°

IA
=

Using the above relation in (20), it follows

T(f.9) = iﬁ"i %im’ ). @1

From (21) we have
g/

T¢al< L] 12

h/ h/ ‘T(h‘7 h)|

o0

Theorem 4 is proved.
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Remark 7. If in Theorem 4 we take h(z) = =z, © € [a,b], and L(f) =

1 b
5 / f(z)dz, then
—a

(i) there is (17, 8) € [a,b] x [a, b] such that

b b b
ﬁ/f(x)g(a:)dx - (b—la)g/f(x)da:/g(x)dx O

this identity was found by Ostrowski [21] in 1970;

b b b
" 1
@) |52 [ Fe@e)is - = [ s@ite [ @] <
< (b 2 / / .
< 5 sup |f(2)] sup |g'(2)];
z€la,b] z€la,b]
. . v . (b—a)? . .
this inequality was proved by CebySev [4] in 1882, the constant T best possi-

ble, as can be seen for [a,b] = [0,1], f(z) = g(x) = =.
Theorem 5. If L: Cla,b] — R is a linear positive functional, with L(1) = 1,

then the following inequality holds:
where f,g,h € C*[a,b] and W' (t) # 0 for each t € [a,b].
Proof. Multiplying both sides of (18) and (19) by h(z) — h(y) and adding the
resulting identities we get
(f(z) = f) (h(x) = h(y)) + (9(x) — g(y))(h(z) — h(y)) =
&) J(&)
W (&1) W (&2)

If we apply the functional L with respect to x and y, we get

f'(&1)
W (&1)

/

9

h/

f

(00 + 7. < (1) (|7

N

(h(x) = h(y))* + (h(z) = h(y))*.

OT(f.1) + 2T(g,h) = Ly L ( (h(x) - h<y>>2> n
g' (&)
' (&2)

In a similar way with the proof of Theorem 4 it can be shown that there are 7, € [a, b]
such that

+LyL, ( (h(z) - h(y))Q) : (22)

£ (i noy?) — 27 L
Ly (T8 060) ~ )2 ) =271 1

J(&) ) — orn 1 2©)
LyL, <h/(§2) (h(z) — h(y)) ) =2T'(h, h) n(6)
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Using the above identities in (22), we get

T(f,h) +T(g,h) = (iEZ; T zigi) T(h, h).

Therefore ,

IT(f,h) + T(g,h)| < (‘ I

/

g

h' h'

"
oo

M)Tmm»

Theorem 5 is proved.

In the paper [21] Ostrowski defined the concept of synchronous functions. The func-
tions f,g: [a,b] — R are called synchronous, if we have, for any couple of points z, y
from [a,b], f(z) > f(y) if and only if g(x) > ¢(y).

In the case that f, g are synchronous, we get T'(f,g) > 0.

Theorem 6. If L: Cla,b] — R is a linear positive functional, with L(1) = 1,
then the following inequality is verified.
f/
I3

/

9

1
TGl :

wwmn+\

i) 3)
oo
where f,g,h € C'[a,b], h'(t) # 0 for each t € [a,b] and the functions f, g, respectively
g, h are synchronous.

Proof. Multiplying both sides of (18) and (19) by g(z) — g(y) and f(z) — f(y),
respectively, adding the resulting identities, and applying the functionals L with respect
to x and y, we get

f'(&1)

AT(f,9) = LyLs <h’(§1)

<mw—h@mwm—mw0+

g'(&2)
W (&2)

Using this identity and the reasoning from the proof of the above theorems inequality
(23) follows.

Theorem 6 is proved.

7. Griiss inequality for more than two functions. In this section we will prove a
Griiss inequality on a compact metric space for more than two functions.

Lemma 2. Let C(X) be a compact metric space and f, € C(X),1 < k <mn,
n > 1. Then the following inequality holds:

+@mm( (M@h@DU@)ﬂw0~

n

O(fifa- fa) <D 0F) T Ifello, (24)
i=1 k=1,k+i
where 6(f) := m}zgxf — n}}nf, feC(X).

Proof. Inequality (24) can be proved using induction.

Theorem 7. Let A: C(X) — R be a positive linear functional, A(1) = 1, defined
on the metric space C(X). The inequality

n

Soooues) T el

i,j=1,i<j k=1,k#i,j

=

[A(fif2- - fn) = A(f1)A(f2) - A(fo)| <

(25)
holds.
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Proof. The inequality (25) can be proved using induction and relation (24).
Remark 8. 1f f3, ..., f, are constant, relation (25) reduces to

(My — my)(Mz — ma),

=

[A(f1f2) = A(f)A(f2)] <

where M; = m)?xfi, m; = n%}nfi, i€ {1,2}.
The following result is an extension of Ostrowski’s inequality (1):
Theorem 8. If f; € Cla,b], 1 < i < n, then the following inequality is true:

n

[fi(@) o fule) = u(f) - on()l < Yo 0(fie@) TT Il
i=1

k=1,k#i

b x—a)? — )2
where p(f) := ﬁ/ f)dt, p(x) = ( 2)(1:(;) )"

Proof. The inequality can be proved using induction.

Remark 9. Since p(z) < a, x € [a,b], we get

(@) ) = ) o p(f) <0 (fi; b;) [T 1kl
i=1

k=1,k+#i

This relation yields the Griiss-type inequality

n

o) =)o < 10 (5 25%) TT Il

k=1,k#i

Appendix. Here we give the proof of inequality (16) for the classical Hermite —
Fejér interpolation operator based on the roots of Ceby3ev polynomials of the first kind,
defined in (13).

Lemma 3. For the continuous function |e; — x|, v € [—1, 1] fixed, and n > 1 one
has

c
— < — p _ p2\1/2
L,(ler — x|, x) n|Tn(x)|{(1 x<) lnn+1}.

Here e1(t) =t for |t| < 1, and c is a constant independent of n and x and satisfying
1<e<4.

Proof. The existence of a constant ¢ independent of n and x in the above estimate
can be derived from papers of R. N. Misra [18] or S. J. Goodenough and T. M. Mills
[10]. In order to show that c is bounded from above by 4 we give a proof similar to that
of Goodenough and Mills using the technique of O. Kis [13].

Let 2 € [—1,1] be fixed. We may assume that x # z, 1 < k < n, since otherwise
the estimate is apparently true.

For n = 1 we have z; = 0 such that L (|le; — z|;z) = || = |T1(z)|. Hence the
estimate holds for n = 1. We assume in the sequel that n > 2. Because of © = cos 6,
0 <60 <m,and x, = cosfy with 0, = (2k — 1)(2n)~'7, we may proceed as follows.
Let j be chosen in a way such that 0; is closest to 6 among all 0;’s (if 6 has the same
distance from 6 and 6,1, say, we may choose either of them). Thus the following
situations may occur:
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“Left” case:

“Right” case:

Note that in the “left” case 0;_; need not exist (¢ close to 0); a corresponding remark
applies in the “right” case to 6;1 (¢ close to 7).
After fixing j as described above, we write

- 1 —zxp,) T2 (x - -
L.(lex — xmc):z |xg — x|(112(1:)9:)(2> =: Z |z — z|hg(z) =: ZWk(:E) =
k=1 k k=1 k=1
Jj—1 n
=Y Wil@) +Wi(z)+ Y Wi(a) =T+ L+Is.
k=1 k=j+1

Clearly, if j = 1 or j = n, then one of the two sums will not be present. First observe
that for 1 < k < n we have
(1 —2z)T3(@) _ (1—a)TR(x) | aT}(z)

hi () = n?(x—ap)? 0Pz —xp)? 0 nP(r—ap)

which implies

(1—2)Ti(x) | |2|T5(x)
+ .
n?lx — x| n?

Wi(x) = |z, — z|hg(x) <

While the second term in this upper bound does not cause difficulties, the first one may
be written in the following way:

(1—a?)T2(x)  V1—a22T2(x) sin 0

n2|x — ) n? | cos @ — cos O

Now only the second ratio requires further consideration. First observe that

sin 6 1 T
|cos ) — cos O] |sin (0 — 6y)| — |0 — Orl’

here the first inequality may be obtained by using Lemma 2 (a) in Goodenough’s and

1
Mills’ paper [10], while the second one is a consequence of o < 57 sina, 0 < a < 3™
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Consequently, it remains to investigate the quantities 1/|6 — 0%|. It is at this point that
we check the “left” and the “right” case separately. In both cases we first estimate

J—1 n
L +13= Z Wi (z) + Z Wi () and add W;(z) afterwards;
k=1

k=j+1
we have
Jj—1 n
LI3=> Wi(a)+ Y W) <
k=1 k=j+1
VI—22T2(z) (%= 1 d 1 || T2(x)

<V T¥ n) - — )
STz 7 Z\9—9,€|+ 2. =) TV e

k=j+1

For the “left” case (i.e., 0,1 < 0 < ;) wehavefor1 <j<nandk <j—1

1
60— Gk Z (9]'_1 — Hk) + 5(9] — Gj_l) = (2’L — 1)(271)71777 if k = j — i,
and for k > j+1
Op —0>0p —0; =in"'m, ifk=7j+1.
In this case

= d 1 O R =
- - < onr~ — <
kzzlw—ekﬁkz 06, = """ (Z%—1+ 2k>

—j+1 k=1 k=1

< onr! [1 + %ln(Qj _3) 4 % (1+In(n — j))} < onr ! B +n (\%nﬂ

Note that this estimate is also true if j = 1 or j = n. For the “right” case (i.e., 0; < 0 <
< 0jy1)ourestimate for ] < j<mnandk <j—1is

0—0,>0; — 0, =in"'m, ifk=7—1i
and fork > j+1

1
Op — 0> 0 — 011 + 5(9]-+1 —0;) = (2i — 1)(2n) " *m, if k= j +1i.
Thus for the “right” case we arrive at the symmetric inequality

1 Ut R e
< onmg! — <
g, =2 (;2k+;2k1>_

7—1 1 n
2ot 2

=j+1

<2nm! [; - %m(j -1 +1+ %ln(Z(n —j) - 1)] <2nn! B +1n (\}Enﬂ :

Note that this inequality is also true for j = 1 or j = n.
The common estimate obtained for both the “left” and the “right” cases is thus
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2|73 ()

"‘(n—l)TS

Y !
L4l
1+l s Zw 9k+z = 9k|

< @wzm—l (‘; 'l (\}En» @
< @ <3+21n <\}§n>) + @

Using Goodenough’s and Mills’ [10] Lemma 3 we also have that
Iy = W;(x) = |e; — alhy (@) < 7(2n)~"|cosnd] = m(2n) [Ty (2)],

so that for n > 2 the following inequality holds:

V1 — 2272 1 T?
]1+[2+I3§x7n(x) 3492In( —n +M+E|Tn(x)|:
n V2 n 2n

n

x|T2(x s
P T ) <

)>+WIT )+ |2|| T (z )|+72T} <

g'T”:”)' {m (2+21n (

%
SW [m<2+21n<\}§n>>+2+g] <

< W [méllnn-l-él} :4@ [mlnnﬂ]

In order to show that ¢ > 1, it is only necessary to evaluate the left and the right-hand
side of the inequality in the above claim at the point x = 1, say. We have

1 1
Ln(lex —1],1) = —Lp(e1 — 1,1) = ETn(l)Tn—l(l) = n’

Using the same point on the right-hand side shows that

%|Tn(1)| {(1 )Y n+ 1} =°

n

and thus ¢ > 1.

Lemma 3 is proved.

Remark 10. Numerical evidence suggests that the constant ¢ in Lemma 3 equals
1. However, it does not seem to be possible to use the technique of O. Ki§ to obtain
such a good estimate.
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