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ON THIN-COMPLETE IDEALS OF SUBSETS OF GROUPS
ITPO TOHKO-ITOBHI ITEAJIN HA I'PYIIAX

Let 7 C Pg be a left-invariant lower family of subsets of a group G. A subset A C G is called F-thin if
zANyA € F for any distinct elements x,y € G. The family of all F-thin subsets of G is denoted by 7(F).
If 7(F) = F, then F is called thin-complete. The thin-completion 7*(F) of F is the smallest thin-complete
subfamily of Pg that contains F.

Answering questions of Lutsenko and Protasov, we prove that a set A C G belongs to 7*(G) if and only
if for any sequence (gn )new Of non-zero elements of G there is n € w such that

N g0 ... ginAe F.
i0y-yin €{0,1}

Also we prove that for an additive family 7 C P its thin-completion 7*(F) is additive. If the group G is
countable and torsion-free, then the completion 7*(F¢) of the ideal F of finite subsets of G is coanalytic
and not Borel in the power-set P endowed with the natural compact metrizable topology.

Hexait F C P — iHBapiaHTHa 371iBa HIOKHSA ciM’st miaMHOXuH rpynd G. [Tinmaoxku#a A C G Ha3HBAa€eThCs
F-monkoio, skio ANy A € F s OyIb-SKUX pi3HUX eJIeMeHTIB x,y € G. CiM’s BCiX JF-TOHKHUX ITIIMHOXHH
G nosnavaetses Kk 7(F). Skio 7(F) = F, 1o F Ha3HBAETCA MOHKO-n06HOoI0. Tonkum nonosnenuam 7* (F)
ciM’1 F € HaiiMeHIlIa TOHKO-TIOBHA MiACiM s 3 P, 10 MiCTHTD JF .

STk Binnosins Ha nuranHs Jlynenka ta [Ipotacosa qoBezeHo, o MEHoXHHa A C G Hanexutsb cim’i 7% (G)
TO 1 TIIBKK TOMi, KOJH JUIst Oy/b-SIKOT MOCIIIOBHOCTI (gn, )new HEHYIBOBUX eleMeHTiB GG icHye n € w Take,
1mo _ )

m 9 - g AEF.
i0,-.-,in €{0,1}

Takox J0BEJEHO, 1110 JUIs aIUTHBHOI ¢iM’1 F C P 1i ToHKe noroBHeHHst 7* (F) € agutuBHUM. SIKiio rpyna G
3niyeHHa Ta 6e3 ckpyTy, nonosHeHHs 7* (F¢ ) ineany FG CKiHYCHHHX HIAMHOXHH rpynu G € KOQHAIITHIHUM
i He OOpeneBuM.

1. Introduction. This paper was motivated by problems posed by Ie. Lutsenko and
I. V. Protasov in a preliminary version of the paper [1] devoted to relatively thin sets in
groups.

Following [2], we say that a subset A of a group G is thin if for any distinct points
z,y € G the intersection xA N yA is finite. In [1] (following the approach of [3])
Lutsenko and Protasov generalized the notion of a thin set to that of a F-thin set where
F is a family of subsets of G. By Ps we shall denote the Boolean algebra of all subsets
of the group G.

We shall say that a family F C Pg is

left-invariant if tF € F forall F € F and = € G;

additive if AUB € F forall A,B € F;

lower if A € F forany A C B € F;

an ideal if F is lower and additive.

Let F C Pg be a left-invariant lower family of subsets of a group GG. A subset
A C G is defined to be F-thin if for any distinct points z,y € G we get tANyA € F.
The family of all F-thin subsets of G will be denoted by 7(F). It is clear that 7(F)
is a left-invariant lower family of subsets of G and F C 7(F). If 7(F) = F, then the
family F will be called thin-complete.

Let 7*(F) be the intersection of all thin-complete families 7 C P that contain F.

It is clear that 7*(F) is the smallest thin-complete family containing F. This family is
called the thin-completion of F.
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742 T. BANAKH, N. LYASKOVSKA

The family 7*(F) has an interesting hierarchic structure that can be described as
follows. Let 7°(F) = F and for each ordinal o put 7%(F) be the family of all sets
A C G such that for any distinct points x,y € G we get zANyA € U, 7(F). So,

7(F) =7(15%(F)), where 7<%(F)= U ™ (F).

B<a

By Proposition 3 of [1], 7*(F) = Ua<\G\+ TYF).

The following theorem (that will be proved in Section 3) answers the problem of
combinatorial characterization of the family 7*(F) posed by Ie. Lutsenko and I. V. Pro-
tasov. Below by e we denote the neutral element of the group G.

Theorem 1.1. Let F C Pg be a left-invariant lower family of subsets of a group
G. A subset A C G belongs to the family 7 (F) if and only if for any sequence
(gn)new € (G \ {e}D)N there is a number n € w such that

k n
ﬂ gy ...ginAc F.
Koo kn €40,1}

We recall that a family F C Pg is called additive if {AUB: A, Be F} C F. It
is clear that the family F¢ of finite subsets of a group G is additive. If G is an infinite
Boolean group, then the family 7*(F¢g) = 7(F¢) is not additive, see Remark 3 in [1].
For torsion-free groups the situation is totally diferent. Let us recall that a group G is
torsion-free if each non-zero element of G has infinite order.

Theorem 1.2. For a torsion-free group G and a lefi-invariant ideal F C Pg the
SJamily 7<%(F) is additive for any limit ordinal «. In particular, the thin-completion
7*(F) of F is an ideal in Pg.

We define a subset of a group G to be -thin if its belongs to the thin-completion
7*(F¢) of the family F¢ of all finite subsets of the group G. By Proposition 3 of [1],
for each countable group G we get 7*(Fg) = 7<“(Fg). It is natural to ask if the
equality 7*(Fg) = 7<*(F¢) can happen for some cardinal o < wy. If the group G is
Boolean, then the answer is affirmative: 7*(F) = 7!(F) according to Theorem 1 of [1].
The situation is different for non-torsion groups:

Theorem 1.3. [f an infinite group G contains an Abelian torsion-free subgroup
H of cardinality |H| = |G|, then 7*(Fq) # 7(Fg) # 7<%(Fg) for each ordinal
a<|G|t.

Theorems 1.2 and 1.3 will be proved in Sections 4 and 6, respectively. In Section 7
we shall study the Borel complexity of the family 7*(F¢) for a countable group G. In
this case the power-set P¢ carries a natural compact metrizable topology, so we can talk
about topological properties of subsets of Pg.

Theorem 1.4. For a countable group G and a countable ordinal o the subset
7%(Fg) of Pg is Borel while 7*(Fg) = 7<%*(Fg) is coanalytic. If G contains an
element of infinite order, then the space T*(JF¢) is coanalytic but not analytic.

2. Preliminaries on well-founded posets and trees. In this section we collect the
neccessary information on well-founded posets and trees. A poset is an abbreviation
from a partially ordered set. A poset (X, <) is well-founded if each subset A C X has
a maximal element a € A (this means that each element z € A with z > a is equal
to a). In a well-founded poset (X, <) to each point 2 € X we can assign the ordinal
rank x (x) defined by the recursive formula
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ON THIN-COMPLETE IDEALS OF SUBSETS OF GROUPS 743

rankx (z) = sup {rankx (y) + 1: y > a},

where sup @ = 0. Thus maximal elements of X have rank 0, their immediate predeces-
sors 1, and so on. If X is not empty, then the ordinal rank(X) = sup{rankx (z) + 1:
x € X} is called the rank of the poset X. In particular, a one-element poset has rank 1.
If X is empty, then we put rank(X) = 0.

A tree is a poset (T, <) with the smallest element @ such that for each ¢ € T the
lower set |t = {s € T': s <t} is well-ordered in the sense that each subset A C |¢ has
the smallest element. A branch of a tree T' is any maximal linearly ordered subset of 7.
If a tree is well-founded, then all its branches are finite.

A subset S C T of a tree is called a subtree if it is a tree with respect to the induced
partial order. A subtree S C T is lower if S =S ={teT:3se St <s}.

All trees that appear in this paper are (lower) subtrees of the tree X< = .. X"
of finite sequences of a set X. The tree X <% carries the following partial order:

(o, Zn) < (Yo, ym) Iff n<m and z;,=y; forall i<n.

The empty sequence sy € X is the smallest element (the root) of the tree X <¢.
For a finite sequence s = (zg,...,2,) € X< and an element 2 € X by s’z =
= (zo,...,Tn, ) we denote the concatenation of s and . So, sz is one of | X| many
immediate successors of s. The set of all branches of X <% can be naturally identified
with the countable power X“. For each branch s = (s,)ncw € X* and n € w by
s|n = (so,...,8n—1) we denote the initial interval of length n.

Let Tr C Px<w denote the family of all lower subtrees of the tree X <“ and WF C
C Tr be the subset consisting of all well-founded lower subtrees of X <.

In Section 7 we shall exploit some deep facts about the descriptive properties of the
sets WF C Tr C Px<w for a countable set X. In this case the tree X <“ is countable
and the power-set Px <« carries a natural compact metrizable topology of the Tychonoff
power 2% = So, we can speak about topological properties of the subsets WF and Tr
of the compact metrizable space Px <w.

We recall that a topological space X is Polish if X is homeomorphic to a separable
complete metric space. A subset A of a Polish space X is called

Borel if A belongs to the smallest o-algebra that contains all open subsets of X;

analytic if A is the image of a Polish space P under a continuous map f: P — A;

coanalytic if X \ A is analytic.

By Souslin’s Theorem 14.11 [4], a subset of a Polish space is Borel if and only if it is
both analytic and coanalytic. By ¥} and II} we denote the classes of spaces homeomor-
phic to analytic and coanalytic subsets of Polish spaces, respectively.

A coanalytic subset X of a compact metric space K is called I1}-complete if for
each coanalytic subset C' of the Cantor cube 2“ there is a continuous map f: 2% — K
such that f~1(X) = C. It follows from the existence of a coanalytic non-Borel set in
2 that each I1}-complete set X C K is non-Borel.

The following deep theorem is classical and belongs to Lusin, see [4] (32.B and
35.23).

Theorem 2.1. Let X be a countable set.

(1) The subspace Tr is closed (and hence compact) in Px<w.

(2) The set of well-founded trees WF is 11}-complete in Tr. In particular, WF is
coanalytic but not analytic (and hence not Borel).
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(3) For each ordinal oo < wy the subset WF,, = {T' € WF: rank(T") < a} is Borel
in Tr.

(4) Each analytic subspace of WF lies in WF, for some ordinal o < wy.

3. Combinatorial characterization of x-thin subsets. In this section we prove
Theorem 1.1. Let F C Pg be a left-invariant lower family of subsets of a group G.
Theorem 1.1 trivially holds if 7 = Pg (which happens if and only if G € F). So, it
remains to consider the case G ¢ F. Let e be the neutral element of G and G, = G\ {e}.
We shall work with the tree GS% discussed in the preceding section.

Let A be any subset of G. To each finite sequence s € GS“ assign the set A, C G,
defined by induction: Ay = A and Ay, = A, NzA, for s € GZ¥ and z € G..
Repeating the inductive argument of the proof of Proposition 2 [1], we can obtain the
following direct description of the sets A;:

Claim 3.1. For every sequence s = (go,.--,9n) € GS¥

A, = ﬂ ggo .. .gfL"A.
ko,...,kn€{0,1}

The set
Ty={s€eGs¥: A ¢ F}

is a subtree of GS% called the T-free of the set A.

For a non-zero ordinal « let —1 + « be a unique ordinal 3 such that 1 + 8 = «. For
a =0 we put —1+ a = —1. It follows that —1 4+ o = « for each infinite ordinal «.

Theorem 3.1. A4 set A C G belongs to the family 7*(F) for some ordinal « if
and only if its T-tree T is well-founded and has rank(T4) < -1+« + 1.

Proof. By induction on a. Observe that A € 7°(F) = F if and only if Ty = @ if
and only if rank(T4) = 0 = —1 + 0 + 1. So, Theorem holds for oo = 0.

Assume that for some ordinal @ > 0 and any ordinal 8 < o we know that a set
A C G belongs to 7°(G) if and only if T, is a well-founded tree with rank(7,) <
< —14 f+1. Given a subset A C G we should check that that A € 7 (F) if and only
if its 7-tree T4 is well-founded and has rank(74) < -1+ a + 1.

First assume that A € 7%(F). Then for every x € G, the set A N xzA belongs to
8= (F) C 7<%(F) for some ordinal 3, < «. By the inductive assumption, the 7-tree
Tanza is well-founded and has rank(Tanza) < =1+ B, + 1.

If A € 7(F), then T4 C {sg} and rank(T4) < 1 < —1 4+ a + 1. So, we can
assume that A ¢ 7(F). In this case each point x € G, = G considered as the sequence
() € G* of length 1 belongs to the 7-tree T4 of the set A. So we can consider the upper
set Ta(x) = {s € Ta: s > z} and observe that the subtree T4 (x) of T4 is isomorphic
to the 7-tree Tan,a of the set A N aA and hence rank(T4(z)) = rank(Tan.a) <
< —1+4 B, + 1. It follows that

rank(T4) = ranky, (sg) + 1 = < sup (rankp, () + 1)) +1=
z€G,

= (sup rankTA(m)> +1< (sup(—l—i—ﬁx—&—l)) +1<-1+a+1.
z€Go z€G,

Now assume conversely that the 7-tree T’y of A is well-founded and has rank (74 ) <
—1+4a+1. Foreach z € G,, find a unique ordinal 3, such that —1+5, = rankp, (x).

IA
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It follows from
—1+4 B, + 2 =ranky, () + 2 <ranky, (sg) + 1 =rank(Ty) < -1+ a+1

that 8, < . Since the subtree T4 (z) = T4 N Tz is isomorphic to the 7-tree Thnza
of the set AN xA, we conclude that T'an, 4 is well-founded and has rank(Tan,4) =
= rank(T4(x)) = ranky,(x) + 1 = —1 + 5, + 1. Then the inductive assumption
guarantees that ANz A € 79+ (F) C 7<%(F) and hence A € 7%(F) by the definition
of the family 7% (F).

Theorem 3.1 is proved.

As a corollary of Theorem 3.1, we obtain the following characterization proved
in [1]:

Corollary 3.1. A subset A C G belongs to the family 7" (F) for some n € w if and
only if for each sequence (g;)"_, € G we get

m g(’jﬂ...gfl'nAe}‘.

Theorem 3.1 also implies the following explicit description of the family 7*(F),
which was announced in Theorem 1.1:

Corollary 3.2. For a subset A C G the following conditions are equivalent:

() Aer™(F)

(2) the T-tree Ty of A is well-founded,

(3) for each sequence (gn)ncw € G¥ there is n € w such that (o, ..., gn) ¢ Ta;

(4) for each sequence (gn)necw € G¥ there is n € w such that

ﬂ gé"“...gﬁ”Ale.
ko,...,kn€{0,1}

4. The additivity of the families 7<%(F). In this section we shall prove Theo-
rem 1.2. Let G be an infinite group and e be the neutral element of G.

For a natural number m let 2" denote the finite cube {0,1}™. For vectors g =
=(g1,---,9m) € (G\ {e})™ and x = (21, ...,2y) € 2™ let

g =91"...gpm eG.

A function f: 2™ — G to a group G will be called cubic if there is a vector
g=1(91,---,9m) € (G\ {e})™ such that f(z) = g® for all z € 2™.

Lemma 4.1. Ifthe group G is torsion-free, then for every n € N, m > (n — 1)2,
and a cubic function f: 2™ — G we get | f(2™)] > n.

Proof. Assume conversely that | f(2™)| < n. Consider the set B = {(kl, cokm) €

€2m: ZZI ki = 1} having cardinality |B| = m > (n — 1)2. Since e ¢ f(B), we
conclude that |f(B)| < |f(2™)] —1 < n — 1 and hence |[B N f~!(y)| > n for some
y € f(B). Let B, = BN f~'(y) and observe that f(2™) D {e,y,?,... ,y‘By‘} and
thus | f(2™)| > |By| +1 > n + 1, which contradicts our assumption.

Lemma 4.1 is proved.

For every n € N let ¢(n) be the smallest number m € N such that for each cubic
function f: 2™ — G we get | f(2™)] > n. It is easy to see that ¢(n) > n. On the other
hand, Lemma 4.1 implies that ¢(n) < (n — 1)? + 1 if G is torsion-free.
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For a family F and a natural number n € N, let

\/F={UA: ACF, |A| <n}.

Lemma 4.2. Let F C Pg be a lefi-invariant lower family of subsets in a torsion-
free group G. For every n € N we get

\/ 7(F) c o= <\/]-">

n

e(n)
where m =n?"" .

Proof. Fix any A € \/7'(]-') and write it as the union A = A4; U--- U A, of sets

Aq,..., A, € 7(F). The inclusion A € 7¢(")~ (\/ ]:) will follow from Corollary 3.1

as soon as we check that

ﬂ gf”Ae\/]-'

ze2¢(n)

for each vector g € (G'\ {e})“™). De Morgan’s law guarantees that

N« (Us)- U N s

re2c(n) fenzc(n) re2c(n)

So, the proof will be complete as soon as we check that for every function f: 2™ — n
the set (), cgen) 8% A () belongs to F. The vector g € (G \ {e})*™ induces the cubic
function g: 2°™ — @, g: x +— g®. The definition of the function c(n) guarantees that
|g(2¢(™)| > n. The function f: 2¢™) — n can be thought as a coloring of the cube
2¢(") into n, colors. Since |g(2¢(™)| > n, there are two points y, z € 2°(™) colored by the

same color such that g(y) # g(z). Then g¥ = g(y) # g(z) = g® but f(y) = f(2) =k
for some k < n. Consequently,

ﬂ ngf(:v) CglArNgfAr e F
xze2e(n)

because the set Ay, € 7(F).

Lemma 4.2 is proved.

Now consider the function ¢: N x w — w defined recursively as ¢(n,0) = 0 for
alln € Nand ¢(n,k+ 1) = ¢(n) — 1+ c(nQC("),k) for (n,k) € N x w. Observe that
¢(n,1)=c(n) —1foralln e N.

Lemma 4.3. [fthe group G is torsion-free and F C Pg is a left-invariant ideal,
then

\/Tk(J:) c R (F)
Sor all pairs (n, k) € N x w.
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ON THIN-COMPLETE IDEALS OF SUBSETS OF GROUPS 747

Proof. By induction on k. For k = 0 the equality \/, 7°(F) = F = r¢(»0(F)
holds because F is additive.

Assume that Lemma is true for some k¥ € w. By Lemma 4.2 and by the inductive
assumption, for every n € N we get

\/ HHF) =\ (F) c =\ HFF) |

n nzc(n)

C e (Tcm?““” ) (f>> _ pelm =Lt k) () _ pelnt D) (F).

Lemma 4.3 is proved.

Now we are able to present:

Proof of Theorem 1.2. Assume that G is a torsion-free group G and F C Pg is a
left-invariant ideal. By transfinite induction we shall prove that for each limit ordinal «
the family 7<(F) is additive. For the smallest limit ordinal o = 0 the additivity of the
family 7°(F) = F is included into the hypothesis. Assume that for some non-zero limit
ordinal o we have proved that the families 7<7(F) are additive for all limit ordinals
B8 < a. Two cases are possible:

1) @« = B + w for some limit ordinal 5. By the inductive assumption, the family
7<B(F) is additive. Then Lemma 4.3 implies that the family 7<%(F) = 7<¢(7<A(F))
is additive.

2) o = sup B for some family B # « of limit ordinals. By the inductive assumption
for each limit ordinal 3 € B the family 7<(F) is additive and then the union

r=F) =] ~F
BeB

is additive too.

This completes the proof of the additivity of the families 7<%(F) for all limit or-
dinals . Since the torsion-free group G is infinite, the ordinal « = |G| is limit and
hence the family 7*(F) = 7<%(F) is additive. Being left-invariant and lower, the family
7*(F) is a left-invariant ideal in Pg.

Theorem 1.2 is proved.

Remark 4.1. Theorem 1.2 is not true for an infinite Boolean group G. In this case
Theorem 1(2) of [1] implies that 7*(Fg) = 7(F¢g). Then for any infinite thin subset
A C Gandany z € G\ {e} the union AUz A is not thin as (AUzA) Nx(AUzA) =
= AU zA is infinite. Consequently, the family 7*(F¢g) = 7(F¢) is not additive.

5. h-Invariant families of subsets in groups. Let G be a group and h: H — K
be an isomorphism between subgroups of G. A family F of subsets of G is called
h-invariant if a subset A C H belongs to F if and only if h(A) € F.

Example 5.1. The ideal Fy of finite subsets of the group Z is h-invariant for each
isomorphism hy: Z — kZ, h: x — kx, where k € N.

Proposition 5.1. Let h: H — K be an isomorphism between subgroups of a
group G. For any h-invariant family F C Pg and any ordinal « the family 7% (F) is
h-invariant.
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Proof. For a = 0 the h-invariance of 7°(F) = F follows from our assumption.
Assume that for some ordinal o we have established that the families 77(F) are h-
invariant for all ordinals 8 < a. Then the union 7<*(F) = [z, 7%(F) is also
h-invariant.

We shall prove that the family 7@ (F) is h-invariant. Given a set A C H we need to
prove that A € 7%(F) if and only if h(A) € 7%(F).

Assume first that A € 7%(F). To show that h(A) € 7*(F), take any element
y € G\{e}. Ify ¢ K, then h(A)Nyh(A) = @ € 7<%(F).If y € K, then y = h(x) for
some z € H and then h(A) Nyh(A) = h(ANzA) € 7<%(F) since ANzA € 7<%(F)
and the family 7<(F) is h-invariant.

Now assume that A ¢ 7%(F). Then there is an element © € G \ {e} such that
ANzA ¢ 7<%(F). Since A C H, the element x must belong to H (otherwise ANz A =
=@ € 7<%F)). Then for the element y = h(x) we get h(A) Nyh(A) ¢ 7<%(F) by
the h-invariance of the family 7<%(F). Consequently, h(A) ¢ 7%(F).

Proposition 5.1 is proved.

Corollary 5.1. Let h: H — K be an isomorphism between subgroups of a group
G. For any h-invariant family F C Pg the family 7*(F) is h-invariant.

Definition 5.1. A left-invariant family F C Pg of subsets of a group G is called

auto-invariant if F is h-invariant for each injective homomorphism h: G — G;

sub-invariant if F is h-invariant for each isomorphism h: H — K between sub-
groups K C H of G.

strongly invariant if F is h-invariant for each isomorphism h : H — K between
subgroups of G.

It is clear that

strongly invariant = sub-invariant = auto-invariant.

Remark 5.1. Each auto-invariant family F C P, being left-invariant is also right-
invariant.

Proposition 5.1 implies:

Corollary 5.2. If F C Pq is an auto-invariant (sub-invariant, strongly invariant)
Sfamily of subsets of a group G, then so are the families 7*(F) and 7*(F) for all
ordinals «.

It is clear that the famly F¢ of finite subsets of a group G is strongly invariant.
Now we present some natural examples of families, which are not strongly invariant.
Following [5], we call a subset A of a group G

large if there is a finite subset F' C G with G = F' A;

small if for any large set L C G the set L \ A remains large.

It follows that the family S of small subsets of G is a left-invariant ideal in Pg.
According to [5], a subset A C G is small if and only if for every finite subset F' C G
the complement G \ F'A is large. We shall need the following (probably known) fact.

Lemma 5.1. Let H be a subgroup of finite index in a group G. A subset A C H
is small in H if and only if A is small in G.

Proof. First assume that A is small in G. To show that A is small in H, take any
large subset L C H. Since H has finite index in G, the set L is large in G. Since
A is small in G, the complement L \ A is large in G. Consequently, there is a finite
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subset F' C G such that F(L \ A) = G. Then for the finite set Fy = F N H, we get
Fy(L\ A) = H, which means that L \ A is large in H.

Now assume that A is small in H. To show that A is small in G, it suffices to show
that for every finite subset F' C G the complement G \ F'A is large in G. Observe
that (G\ FA)N H = H\ FgA where Fy = F N H. Since A is small in H, the set
H \ Fy A is large in H and hence large in G (as H has finite index in ). Then the set
G\ FAD H\ FyA is large in G too.

Lemma 5.1 is proved.

Proposition 5.2. Let G be an infinite Abelian group.

(1) If G is finitely generated, then the ideal S¢ is strongly invariant.

(2) If G is infinitely generated free Abelian group, then the ideal S¢ is not auto-
invariant.

Proof. 1. Assume that G is a finitely generated Abelian group. To show that S
is strongly invariant, fix any isomorphism h: H — K between subgroups of G and
let A C H be any subset. The groups H, K are isomorphic and hence have the same
free rank ro(H) = ro(K). If ro(H) = r9(K) < ro(G), then the subgroups H, K
have infinite index in GG and hence are small. In this case the inclusions A € S and
h(A) € Sg hold and so are equivalent.

If the free ranks ro(H) = r9(K) and ro(G) coincide, then H and K are subgroups
of finite index in the finitely generated group G. By Lemma 5.1, a subset A C H is
small in G if and only if A is small in H if and only if h(A) is small in the group
h(H) = K if and only if h(A) is small in G.

2. Now assume that GG is an infinitely generated free Abelian group. Then G is
isomorphic to the direct sum ®&*Z of k = |G| > Ny many copies of the infinite cyclic
group Z. Take any subset A C x with infinite complement x\ A and cardinality |\| = |&]
and fix an isomorphism h: G — H of the group G = @"Z onto its subgroup H = G 7.
The subgroup H has infinite index in G and hence is small in G. Yet h"1(H) = G is
not small in G, witnessing that the ideal S of small subsets of G is not auto-invariant.

Proposition 5.2 is proved.

6. Thin-completeness of the families 7 (F). In this section we shall prove that in
general the families 7%(F) are not thin-complete. Our principal result is the following
theorem that implies Theorem 1.3 announced in the Introduction.

Theorem 6.1. Let G be a group containing a free Abelian subgroup H of cardi-
nality |H| = |G|. If F is a sub-invariant ideal of subsets of G such that 7(F)N\Py ¢ F,
then T*(F) # 7%(F) # 7<*(F) for all ordinals o < |G|

We divide the proof of this theorem in a series of lemmas.

Lemma 6.1. Let h: H — K be an isomorphism between subgroups of a group
G, F be an h-invariant left-invariant lower family of subsets of G. If a subset A C H
does not belong to T*(F) for some ordinal «, then for every point z € G \ {e} the set
h(A) U zh(A) ¢ 7TL(F).

Proof. Proposition 5.1 implies that h(A) ¢ 7(F). Since

(h(A) U zh(A)) N z_l(h(A) U zh(A)) D h(A) & 7%(F),

the set h(A) U zh(A) ¢ 7T1(F) by the definition of 71 (F).
Lemma 6.1 is proved.
In the following lemma for a subgroup K of a group H by
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Zn(K)={z€ H:Vz € K zz =22}

we denote the centralizer of K in H.

Lemma 6.2. Let h: H — K be an isomorphism between subgroups K C H of
a group G such that there is a point z € Zy(K) with 2> ¢ K. Let F C Pg be an
h-invariant lefi-invariant ideal. If a subset A C H belongs to the family T7%(F) for some
ordinal o, then h(A) U zh(A) € 7oL (F).

Proof. By induction on o.. For & = 0 and A € F the inclusion h(A) U zh(A) €
€ F C 7(F) follows from the h-invariance and the additivity of F.

Now assume that for some ordinal & we have proved that for every 5 < « and
A € Py N 7P(F) the set h(A) U zh(A) belongs to 77T1(F). Given any set A €
€ Py N 7%(F), we need to prove that h(A) U zh(A) € 791 (F). This will follow as
soon as we check that (h(A)Uzh(A))Ny(h(A)Uzh(A) € 7%(F) for every y € G\ {e}.

Ify¢ KUzK Uz 1K, then

(h(A) U zh(A)) Ny(h(A) U zh(A)) C (K UzK)Ny(K U zK) =@ € 7°T(F).
So, it remains to consider the case y € K U zK Uz 'K C H. If y € K, then
(h(A) U zh(A)) Ny(h(A) U zh(A)) = (h(A) Nyh(A)) U z(h(A) Ny h(A)).

Since y € K, there is an element x € H with y = h(z). Since A € 7*(F), ANzA €
€ 77(F) for some 3 < « and then

(h(A)U zh(A)) Ny(h(A) U zh(A)) =

= h(ANzA)Uzh(ANzA) € 7PTY(F) C 79(F)
by the inductive assumption. If y € zK, then 22 ¢ K implies that
(h(A) U zh(A)) Ny(h(A) U zh(A)) = zh(A) Nyh(A) C zh(A) € TY(F)

by the h-invariance and the left-invariance of the family 7*(F), see Proposition 5.1.
If y € 2~ 'K, then by the same reason,

(h(A) U 2h(A)) N y(h(A) U zh(A)) = h(A) Nyzh(A) C h(A) € 7%(F).

Lemma 6.2 is proved.

Given an isomorphism h: H — K between subgroups K C H of a group G, for
every n € N define the iteration h": H — K of the isomorphism h letting h! =
=h: H— K and h"T! = ho h" forn > 1.

The isomorphism h: H — K will be called expanding if (), oy h" (H) = {e}.

Example 6.1. For every integer k > 2 the isomorphism

hi: 7 — k7, hi: x— kz,

is expanding.

Lemma 6.3. Let h: H — K be an expanding isomorphism between torsion-free
subgroups K C H of a group G and F C Pg be an h-invariant left-invariant ideal of
subsets of G. For any limit ordinal o and a family { A, }new C 7<%(F) of subsets of
the group H, the union A =, .., h"(Ay) belongs to the family 7% (F).
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Proof. First observe that {h"(A,,)}new C 7<%(F) by Proposition 5.1. To show
that A = (J,,c,, h"(An) € 7*(F) we need to check that AN zA € 7<%(F) for all
x € G\ {e}. This is trivially true if = ¢ H as A C H. So, we assume that z € H.
By the expanding property of the isomorphism £, there is a number m € w such that
x ¢ h™(H). Put B = |J"-) h"(A,) and observe that ANzA C BUzB € 7<%(F)
as 7<%(F) is additive according to Theorem 1.2.

Lemma 6.3 is proved.

Lemma 6.4. Assume that a lefi-invariant ideal F on a group G is h-invariant for
some expanding isomorphism h: H — K between torsion-free subgroups K C H of G
such that Zy(K) ¢ K. If 7(F) NPy ¢ F, then 7%(F) # 7<%(F) for all ordinals
o < wi.

Proof. Fix any point z € Zy(H) \ K. Since H is torsion-free, 22 # e. Since the
isomorphism A is expanding, 2% ¢ h™ (H) for some m € N. Replacing the isomorphism
h by its iterate h™, we lose no generality assuming that z? ¢ h(H) = K.

By induction on v < wy we shall prove that 7%(F) N Py # 7<%(F) N Py.

For @ = 1 the non-equality 7(F)NPy # 7°(F)NPy is included into the hypothesis.
Assume that for some ordinal o < w; we proved that 77 (F) N Py # 7<P(F) NPy for
all ordinals 5 < a.

If « = 8+ 1 is a successor ordinal, then by the inductive assumption we can find
aset A € 78(F)\ 7<P(F) in the subgroup H. By Lemmas 6.1 and 6.2, AU zA €
€ PHYF)\ P(F) = 72(F) \ 7<%(F) and we are done.

If « is a limit ordinal, then we can find an increasing sequence of ordinals (a, )new
with o = sup,,¢,, . By the inductive assumption, for every n € w there is a subset
A, C H with A,, € 79 TY(F) \ 7% (F). Then we can put A = |J, . h"(Ay). By
Proposition 5.1, for every n € w, we get

new

K™ (An) € T4 FHF) \ 7 (F)

and thus A ¢ 7%~ (F) for all n € w, which implies that A ¢ 7<%(F). On the other
hand, Lemma 6.3 guarantees that A € 7(F).

Lemma 6.4 is proved.

Lemma 6.5. Assume that a left-invariant ideal F on a group G is h-invariant
for some isomorphism h: H — K between torsion-free subgroups K C H of G such
that 2*> ¢ K for some z € Zy(H). Assume that for an infinite cardinal k there are
isomorphisms h,: H — H,, n € k, onto subgroups H, C H such that F is h,-
invariant and H,, - H,, N Hy, - H, = {e} for all indices n,m,k,l € r with {n,m} N
N{k 1} =2.

If7(F)NPy ¢ F, then 7%(F) # 7<%(F) for all ordinals o < k.

Proof. By induction on a < s we shall prove that 7% (F) NPy # 7<%(F) N Py.

For a = 1 the non-equality 7*(F) N Py # 7°(F) N Py is included into the
hypothesis. Assume that for some ordinal & < st we proved that 7%(F) N Py #
# 7<B(F) NPy for all ordinals 8 < a.

If a = 8+ 1 is a successor ordinal, then by the inductive assumption we can find a
set A € 78 (F)\ 7<F(F) in the subgroup H. By Lemmas 6.1 and 6.2, h(A) U zh(A) €
€ P+ F)\ 7#(F) and we are done.

If « is a limit ordinal, then we can fix a family of ordinals (o, )ne, With @ =
= sup,c.(@n + 1). By the inductive assumption, for every n € x there is a subset
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A,, C H such that A,, € 7o T1(F)\ 7% (F). After a suitable shift, we can assume that
e ¢ A,. Since the ideal F is hy,-invariant, h,,(A,) € 71 (F)\ 7% (F) according to
Lemma 5.1.

Then the set A = J,,c,, fin(Ar) does not belong to 7<%(F). The inclusion A €
€ 7%(F) will follow as soon as we check that ANz A € 7<%(F) for all z € G \ {e}.
This is clear if ANz A is empty. If ANz A is not empty, then z € h,, (A )b (A) "1 C
C H,H,, for some n,m € k. Taking into account that H, H,, N H H; = {e} for all
k.l € k\ {n,m} and e ¢ A, we conclude that

ANzA C hy(An) Ul (Ay) Uzh,(Ay) Uzhy, (Ay) € 75Y(F)

as 7<%(F) is additive according to Theorem 1.2.

Lemma 6.5 is proved.

Let us recall that a family F of subsets of a group G is called auto-invariant if for
any injective homomorphism h: G — G a subset A C G belongs to F if and only if
h(A) € F.

Lemma 6.6. Let G be a free Abelian group G and F be an auto-invariant ideal
of subsets of G. If F is not thin-complete, then for each ordinal o < |G|* the family
T%(F) is not thin-complete.

Proof. Being free Abelian, the group G is generated by some linearly independent
subset B C . Consider the isomorphism h: G — 3G of G onto the subgroup 3G =
= {¢3: g € G} and observe that h is expanding and for each z € B we get 22 ¢ 3G.
The ideal F being auto-invariant, is h-invariant. Applying Lemma 6.4, we conclude that
T7¥(F) # 7<%(F) for all ordinals & < w;. If the group G is countable, then this is
exactly what we need.

Now consider the case of uncountable x = |G|. Being free Abelian, the group G
is isomorphic to the direct sum €&"Z of x-many copies of the infinite cyclic group Z.
Write the cardinal « as the disjoint union x = | J,, ¢, ko of £ many subsets x, C & of
cardinality |k, | = k. For every a € k consider the free Abelian subgroup G, = ®"~Z
of G and fix any isomorphism hq: G — Go. It is clear that G, @ G NG, & G5 = {0}
for all ordinals «, 3,7, € x with {«, 8} N {v,d} = @.

Being auto-invariant, the ideal F is h,-invariant for every o € k. Now it is legal to
apply Lemma 6.5 to conclude that 7%(F) # 7<%(F) for all ordinals o < x7.

Lemma 6.6 is proved.

Proof of Theorem 6.1. Let F be a sub-invariant ideal of subsets of a group G
and let H C G be a free Abelian subgroup of cardinality |H| = |G|. Assume that
T(F)NPy ¢ F.

Consider the ideal 7' = Py N F of subsets of the group H. By transfinite induction
it can be shown that 7(F’) = Py N 7(F) for all ordinals «.

The sub-invariance of F implies the sub-invariance (and hence auto-invariance) of
F'. By Lemma 6.6, we get 7%(F’) # 7<%(F’) for each a < |H|" = |G|*. Then also
T*(F) # 7(F) # 7<%(F) for all « < |G|*.

Theorem 6.1 is proved.

7. The descriptive complexity of the family 7*(F). In this section given a count-
able group G and a left-invariant monotone subfamily 7 C Pg, we study the de-
scriptive complexity of the family 7*(F), considered as a subspace of the power-set
Pc endowed with the compact metrizable topology of the Tychonoff product 2¢ (we
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identify Pg with 2¢ by identifying each subset A C G with its characteristic function
xa: G—2=4{0,1}).

Theorem 7.1. Let G be a countable group and F C Pg be a Borel left-invariant
lower family of subsets of G.

(1) For every ordinal o < wy the family 7 (F) is Borel in Pg.

(2) The family 7*(F) = 7<“1(F) is coanalytic.

B) If T*(F) £ 7%(F) for all & < wy, then 7*(F) is not Borel in Pg.

Proof. Let us recall that G, = G\ {e}.

In Section 3 to each subset A C G we assigned the 7-tree

Tha={se€Gs¥: Ay & F},
where for a finite sequence s = (go,...,gn—1) € G C G$¥ we put

Ty s T —1E€2™
Consider the subspaces WF C Tr of Pg<w, consisting of all (well-founded) lower
subtrees of the tree GS¥.
Claim 7.1. The function

Ty: Pg — Tr, Te: A= Ty

is Borel measurable.

Proof. The Borel measurability of 7}, means that for each open subset &/ C Tr the
preimage 7.1 (1) is a Borel subset of P. Let us observe that the topology of the space
Tr is generated by the sub-base consisting of the sets

(st ={T €Tr:s€T} and (s)” ={T €Tr:s¢ T}, where seGS¥.

Since (s)™ = Tr \ (s)™, the Borel measurability of T will follow as soon as we check
that for every s € G5 the preimage T ((s)T) = {A € Pg: s € T4} is Borel.
For this observe that the function

f:’PGszw—)'Pg, f:(A,S)'—)AS,

is continuous. Here the tree GS* is endowed with the discrete topology.
Since F is Borel in Pg, the preimage £ = f~1(Pg \ F) is Borel in Pg x G5.
Now observe that for every s € GS¥ the set

T (s)T)={A€Pg:scTal={AcPg: (As)c&}

is Borel.

Theorem 7.1 is proved.

By Theorem 3.1, 7*(F) = T, 1 (WF) and 7%(F) = T, ' (WF_144+1) for a < ws.
Now Theorem 2.1 and the Borel measurablity of the function T} imply that the preimage
7 (F) = T, Y(WF) is coanalytic while 7%(F) = T, }(WF_14,41) is Borel for every
a < wy, see [4] (14.4).

Now assuming that 7o (F) # 7%(F) for all @ < wy, we shall show that 7*(F)
is not Borel. In the opposite case, 7*(F) is analytic and then its image T, (7*(F)) C
C WF under the Borel function 7} is an analytic subspace of WF, see [4] (14.4).
By Theorem 2.1(4), T..(7*(F)) C WFq41 for some infinite ordinal o < w; and thus
7*(F) = T, Y(WFq4q1) = 7%(F), which is a contradiction.

Theorems 6.1 and 7.1 imply:
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Corollary 1.1. For any countable non-torsion group G the ideal 7*(Fg) C Pg is
coanalytic but not analytic.

By [4] (26.4), the ¥1-Determinacy (i.e., the assumption of the determinacy of all
analytic games) implies that each coanalytic non-analytic space is I1}-complete. By
[6], the X1-Determinacy follows from the existence of a measurable cardinal. So, the
existence of a measurable cardinal implies that for each countable non-torsion group G
the subspace 7*(Fg) C Pg, being coanalytic and non-analytic, is IT}-complete.

Question 7.1. s the space 7*(Fz) II}-complete in ZFC?
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