R. Mirzaie (I. Kh. Int. Univ. (IKIU) Qazvin, Iran)

ON FUNDAMENTAL GROUP OF RIEMANNIAN MANIFOLDS WITH OMITTED FRACTAL SUBSETS ПРО ФУНДАМЕНТАЛЬНУ ГРУПУ РІМАНОВИХ МНОГОВИДІВ 3 ПРОПУЩЕНИМИ ФРАКТАЛЬНИМИ ПІДМНОЖИНАМИ

We show that if K is a closed and bounded subset of a Riemannian manifold M of dimension $m>3$, and the fractal dimension of K is less than $m-3$, then the fundamental groups of M and $M-K$ are isomorphic.

Показано, що якщо K - замкнена й обмежена підмножина ріманового многовиду M розмірності $m>3$, а фрактальна розмірність K менша за $m-3$, то фундаментальні групи M і $M-K є$ ізоморфними.

1. Introduction. If K is a subset of a connected topological space M, it is interesting (but usually hard) to study, relations between fundamental groups of M and $M-K$. When the difference of the fractal dimensions (box dimension or Hausdorff dimension) of K and M is big enough, we expect that the fundamental groups of M and $M-K$ be isomorphic. It is proved in [1] that if $M=R^{m}$ or $M=S^{m}, m \geq 2$ and F is a compact subset of M and the Hausdorff dimension of F is strictly less than $m-k-1$, then $M-F$ is k-connected (i.e., its homotopy groups π_{i} vanish for $i \leq k$). Consequently if $\operatorname{dim}_{H}(F)<m-2$ then $R^{n}-F$ and $S^{n}-F$ are simply connected. In this paper, we consider a more general case when M is a Riemannian manifold then we prove the following theorem.

Theorem 1.1. Let M^{m} be a Riemannian manifold of dimension $m>3$, and K be a bounded and closed subset of M such that $\operatorname{dim}_{B}(K)<m-3$. Then $\pi_{1}(M)$ is isomorphic to $\pi_{1}(M-K)$.

Before giving the proof of the theorem, we mention some preliminaries. Let A be a subset of a metric space (M, d). We denote by $\operatorname{dim} A$ the topological dimension of A. Let ϵ be a positive number and put

$$
B_{\epsilon}(A)=\{x \in M: d(x, a)<\epsilon \text { for some } a \in A\} .
$$

If A is bounded then the upper box dimension of A is defined by

$$
\overline{\operatorname{dim}}_{B} A=\limsup _{\delta \rightarrow 0} \frac{\log \left(m_{\delta} A\right)}{-\log \delta}
$$

where, $m_{\delta} A$ is the maximum number of disjoint balls of radius δ, with centers contained in A. The lower box dimension $\operatorname{dim}_{B}(A)$ is defined in similar way. Another definition for dimension, which is widely used in fractal geometry is Hausdorff dimension (see [2]). We use the upper box dimension in our theorem. But a similar result is true for lower box dimension and also for Hausdorff dimension.

Remark 1.1. (a) If A is a submanifold of a Riemannian manifold M, then

$$
\overline{\operatorname{dim}}_{B}(A)=\operatorname{dim}(A) .
$$

(b) If (M, d) and $\left(N, d^{\prime}\right)$ are metric spaces and $f: M \rightarrow N$ is a map such that for some positive number $c>0, d^{\prime}(f(x), f(y)) \leq c d(x, y)(f$ is Lipschitz), then

$$
\overline{\operatorname{dim}}_{B}(f(A)) \leq \overline{\operatorname{dim}}_{B}(A) .
$$

(c) If A_{1} and A_{2} are bounded subsets of M, then

$$
\overline{\operatorname{dim}}_{B}\left(A_{1} \times A_{2}\right) \leq \overline{\operatorname{dim}}_{B}\left(A_{1}\right)+\overline{\operatorname{dim}}_{B}\left(A_{2}\right) .
$$

Remark 1.2. In the followings, for each positive number r, we denote by $S^{n-1}(r)$ the sphere of radius r and center at the origin of R^{n}. Let D be a closed $(n-1)$-disc in R^{n} and let a be a point outside of D. The set $C=\{t a+(1-t) d: d \in D, 0 \leq t \leq 1\}$ is called a cone with vertex a, over D. The following map is called a radial projection

$$
f: C \rightarrow D: f(t a+(1-t) d)=d
$$

If $x_{1}, x_{2} \in C$ and $x_{1} \rightarrow a, x_{2} \rightarrow a$ then $\left|x_{2}-x_{1}\right| \rightarrow 0$. Thus f is not Lipschitz (because $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|$ is bounded). But, if W is an open neighborhood of a in R^{n}, the map $f:(C-W) \rightarrow D$ is a Lipschitz map.

2. Proof of Theorem 1.1.

Step 1. Let $0<r_{2}<r_{1}, A\left(r_{1}, r_{2}\right)=\left\{x \in R^{n}: r_{2} \leq|x| \leq r_{1}\right\}, n>2$, and let K be a closed subset of $A\left(r_{1}, r_{2}\right)$, such that $\operatorname{dim}_{B}(K)<n-1$. Then there are points $a_{1} \in S^{n-1}\left(r_{1}\right)$ and $a_{2} \in S^{n-1}\left(r_{2}\right)$ such that the line segment $a_{2} a_{1}$, joining two points a_{1} and a_{2}, does not intersect K.

Proof. Since $\overline{\operatorname{dim}}_{B}(K)<n-1$, then $S^{n-1}\left(r_{1}\right)-K \neq \varnothing$. Let $a_{1} \in S^{n-1}\left(r_{1}\right)-K$ and let o be the origin of R^{n}. Denote by $o a_{1}$ the line segment joining o to a_{1}. Put $b=o a_{1} \cap S^{n-1}\left(r_{2}\right)$ and let c be the mid point of $o b$ and consider the $(n-1)$-disc D, with the center at c and boundary on $S^{n-1}\left(r_{2}\right)$, which is perpendicular to $o b$ at the point c. Since K is closed, there is an open neighborhood W of a_{1}, such that $K \cap W=\varnothing$. Let C be the cone over D with the vertex a_{1}, and consider the radial projection map $f:(C-W) \rightarrow D . f$ is a Lipschitz map. Thus

$$
\overline{\operatorname{dim}}_{B}(f(K \cap(C-W))) \leq \overline{\operatorname{dim}}_{B}(K \cap(C-W))<n-1 .
$$

Thus, $f(K \cap(C-W))$ does not cover D. If $d \in(D-f((C-W) \cap K))$ then the line segment $a_{1} d$ does not intersect K. If $a_{2}=a_{1} d \cap S^{n-1}\left(r_{2}\right)$, then $a_{1} a_{2}$ is the desired line segment.

Step 2. If $K \subset R^{n}, n>2$, and $\operatorname{dim}_{B}(K)<n-1$, then there is a path σ : $[0,1] \rightarrow R^{n}$ such that $\sigma(0)=o$ and for each $t \in(0,1], \sigma(t) \notin K$.

Proof. Consider the spheres $S^{n-1}\left(\frac{1}{m}\right), m \in N$. Since $\overline{\operatorname{dim}}_{B}(K)<n-1$, then for each $r>0, S^{n-1}(r)-K \neq \varnothing$. Let $a_{1} \in\left(S^{n-1}(1)-K\right)$. By Step 1, there is point $a_{2} \in S^{n-1}\left(\frac{1}{2}\right)$, such that $a_{1} a_{2} \cap K=\varnothing$. Let $\sigma_{1}:\left[\frac{1}{2}, 1\right] \rightarrow R^{n}$ be a path from a_{2} to a_{1} along the line segment $a_{2} a_{1}$. Now, by induction, we can find the points $a_{m} \in S^{n-1}\left(\frac{1}{m}\right), m>1$, and the paths $\sigma_{m-1}:\left[\frac{1}{m}, \frac{1}{m-1}\right] \rightarrow R^{n}$, along the line segments $a_{m} a_{m-1}$, such that $a_{m-1} a_{m} \cap K=\varnothing$. The following path is the desired path $\sigma:[0,1] \rightarrow R^{n}, \quad \sigma(0)=0, \quad$ and $\quad \sigma(t)=\sigma_{m}(t) \quad$ if $\quad t \in\left[\frac{1}{m}, \frac{1}{m-1}\right], \quad m>1$.

Let $\alpha, \beta: I=[0,1] \rightarrow M$ be two continuous paths in M with the same end-points. We recall that a continuous map $F:[0,1] \times[0,1] \rightarrow M$ with the following properties,
is called a homotopy equivalence between α and β

$$
\begin{aligned}
F(s, 0)=\alpha(s), & F(s, 1)=\beta(s), \quad s \in I, \\
F(0, t)=\alpha(0)=\beta(0), & F(1, t)=\alpha(1)=\beta(1), \quad t \in I .
\end{aligned}
$$

Step 3. Let E be a closed and bounded subset of $R^{n}, n>3$, such that $\operatorname{dim}_{B}(E)<$ $<n-3$. Let $\alpha, \beta: I \rightarrow\left(R^{n}-E\right)$ be two loops at the point $x_{0} \in\left(R^{n}-E\right)$ and $F: I \times I \rightarrow R^{n}$ be a differentiable homotopy equivalence between α and β (in R^{n}). If $\epsilon>0$ then there is a homotopy equivalence $G: I \times I \rightarrow\left(R^{n}-E\right)$ (homotopy equivalence in $\left.\left(R^{n}-E\right)\right)$ between α and β such that

$$
\max \{|F(s, t)-G(s, t)|:(s, t) \in I \times I\}<\epsilon
$$

Proof. Put $N=F(I \times I)$ and let

$$
\phi: N \times R^{n} \rightarrow R^{n}, \quad \phi(x, y)=y-x .
$$

Consider the following metric on $N \times R^{n}$:

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right| .
$$

Put $K=\phi(N \times E) . \phi$ is a Lipschitz map, so

$$
\begin{gathered}
\overline{\operatorname{dim}}_{B}(K)=\overline{\operatorname{dim}}_{B} \phi(N \times E) \leq \overline{\operatorname{dim}}_{B}(N \times E) \leq \\
\leq \overline{\operatorname{dim}}_{B}(N)+\overline{\operatorname{dim}}_{B}(E)<2+n-3=n-1
\end{gathered}
$$

By Step 2, there is a path $\sigma:[0,1] \rightarrow R^{n}$, such that $\sigma(0)=o$ and for each $t \in(0,1]$, $\sigma(t) \in\left(R^{n}-K\right)$. Let $\theta: I \times I \rightarrow[0,1]$ be a continuous function such that $\theta(s, t)=0 \quad$ if \quad and only if (s, t) belongs to the boundary of $I \times I$.

Since σ is continuous, there is a $\delta>0$ such that

$$
|\sigma(\delta \theta(s, t))|<\epsilon, \quad(s, t) \in I \times I
$$

Now, put

$$
G: I \times I \rightarrow R^{n}, \quad G(s, t)=F(s, t)+\sigma(\delta \theta(s, t)) .
$$

We have

$$
G(s, 0)=F(s, 0)=\alpha(s), \quad G(s, 1)=F(s, 1)=\beta(s), \quad s \in I,
$$

in similar way

$$
G(0, t)=G(1, t)=x_{0}, \quad t \in I
$$

Thus, G is a homotopy equivalence between α and β. Also we obtain

$$
G(s, t) \notin E, \quad(s, t) \in I \times I
$$

Because, if $G(s, t) \in E$ then

$$
(F(s, t), F(s, t)+\sigma(\delta \theta(s, t)) \in N \times E \Rightarrow(F(s, t)+\sigma(\delta(\theta(s, t)))-F(s, t)) \in K
$$

Therefore, $\sigma(\delta \theta(s, t)) \in K$, which is contradiction. This means that $G: I \times I \rightarrow\left(R^{n}-\right.$ $-E)$ is a homotopy equivalence between α and β in $\left(R^{n}-E\right)$. Also we have

$$
|G(s, t)-F(s, t)|=|\sigma(\delta \theta(s, t))|<\epsilon
$$

Step 4. Let U be an open subset of $R^{n}, n>3, E \subset U$ and $\operatorname{dim}_{B}(E)<n-3$. Then $\pi_{1}(U)$ is isomorphic to $\pi_{1}(U-E)$.

Proof. Let $x_{0} \in(U-E)$ and for each loop $\alpha: I \rightarrow(U-E)$ at x_{0}, denote by $[\alpha]_{1}$ and $[\alpha]_{2}$ the elements of $\pi_{1}\left(U-E, x_{0}\right)$ and $\pi_{1}\left(U, x_{0}\right)$ generated by α. Put

$$
\phi: \pi_{1}(U-E) \rightarrow \pi_{1}(U), \quad \phi\left([\alpha]_{1}\right)=[\alpha]_{2}
$$

We show that ϕ is one to one and onto. Let $[\alpha]_{1},[\beta]_{1} \in \pi_{1}(U-E)$. If $[\alpha]_{2}=[\beta]_{2}$ then there is a differentiable homotopy equivalence $F: I \times I \rightarrow U$ between α and β in U. By Step 3, for each $\epsilon>0$, there is a homotopy equivalence $G: I \times I \rightarrow\left(R^{n}-E\right)$ between α and β such that

$$
|G(s, t)-F(s, t)|<\epsilon, \quad(s, t) \in I \times I
$$

Since for each $(s, t), F(s, t) \in U$, we can choose ϵ sufficiently small, such that $G(s, t) \in$ $\in U$ (i.e., $G(s, t) \in U-E$). Thus G will be a homotopy equivalence between α and β in $U-E$. Then $[\alpha]_{1}=[\beta]_{1}$ and consequently ϕ is one to one.

Now, we show that ϕ is onto. let $[\gamma] \in \pi_{1}\left(U, x_{0}\right)$ and suppose that γ is a differentiable representative of $[\gamma]$ and let $L=\{\gamma(t): t \in[0,1]\}$. Consider the following metric on $L \times R^{n}$:

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right| .
$$

Put $\phi: L \times R^{n} \rightarrow R^{n}, \phi(x, y)=y-x$ and let $K=\phi(L \times E) . \phi$ is Lipschitz, so

$$
\overline{\operatorname{dim}}_{B} K \leq \overline{\operatorname{dim}}_{B}(L \times E) \leq \overline{\operatorname{dim}}_{B} L+\overline{\operatorname{dim}}_{B} E<1+n-3=n-2 .
$$

Thus, as like as the proof of Step 2, we can find a path $\sigma:[0,1] \rightarrow R^{n}$ such that $\sigma(0)=o$ and

$$
\sigma(t) \notin K, \quad t \in(0,1] .
$$

Let $\theta:[0,1] \rightarrow[0,1]$ be a continuous function such that

$$
\theta(s)=0 \quad \text { if } \quad \text { and only if } \quad s \in\{0,1\} .
$$

For each $\epsilon>0$, there is a $\delta>0$ such that

$$
|\sigma(\delta \theta(s))|<\epsilon, \quad s \in[0,1] .
$$

Put

$$
\alpha:[0,1] \rightarrow R^{n}, \quad \alpha(s)=\gamma(s)+\sigma(\delta \theta(s))
$$

and let

$$
H(s, t)=\gamma(s)+\sigma(\delta t \theta(s))
$$

Sine for each $s \in[0,1], \gamma(s) \in U$, we can choose the number ϵ, so small that

$$
\alpha(s) \in U, \quad H(s, t) \in U .
$$

Also we have $\alpha(s) \notin E$ (because, if $\alpha(s) \in E$ then $(\gamma(s), \alpha(s)) \in L \times E$, so $\alpha(s)-$ $-\gamma(s) \in K$, then $\sigma(\delta \theta(s)) \in K$, which is contradiction). Since $H: I \times I \rightarrow U$, is a homotopy equivalence between γ and α in U, we get that

$$
\phi[\alpha]_{1}=[\alpha]_{2}=[\gamma] .
$$

Thus ϕ is onto.

Step 5. By Nash's embedding theorem, M^{m} can be embedded in R^{n} for sufficiently large n. Consider the normal vector bundle $M \rightarrow T M^{\perp}: p \rightarrow\left(T_{p} M\right)^{\perp}$ over the submanifold M of R^{n} (i.e., $T M^{\perp}=\left\{(p, v): p \in M, v \in T_{p} M^{\perp}\right\}$). There exists a neighborhood U_{0} of the null section O_{M} in $(T M)^{\perp}$ such that the map \exp (see [3] for definition of $\exp)$ is a diffeomorphism of U_{0} on to an open subset $U \subset R^{n}(U$ is called a tubular neighborhood of M in R^{n})

$$
\exp : U_{0} \rightarrow U, \quad \exp (p, v)=\exp _{p}(v)
$$

The following map Ψ is a deformation retract of U_{0} on to O_{M} :

$$
\begin{gathered}
\Psi: U_{0} \times I \rightarrow U_{0}, \\
\Psi((p, v), t)=(p,(1-t) v) .
\end{gathered}
$$

Thus, the following map is a deformation retract of U on to M (i.e., $\pi_{1}(M)$ is isomorphic to $\pi_{1}(U)$).

$$
\Phi: U \times I \rightarrow U, \quad \Phi(x, t)=\exp \left(\Psi\left(\exp ^{-1}(x), t\right)\right)
$$

Consider the map $\varsigma: U \rightarrow M$ defined by $\varsigma(x)=\Phi(x, 1)$ and put $\hat{K}=\varsigma^{-1}(K)$. It easy to show that

$$
\operatorname{dim}_{B}(\hat{K}) \leq \operatorname{dim}_{B}(K)+(n-m)<(m-3)+(n-m)<n-3
$$

Now, we can use Step 4, to get that $\pi_{1}(U)$ is isomorphic to $\pi_{1}(U-\hat{K})$. Since M is a deformation retract of U, it is easy to show that $M-K$ is a deformation retract of $U-\hat{K}$. Thus $\pi_{1}(U-\hat{K})$ is isomorphic to $\pi_{1}(M-K)$. Therefore, $\pi_{1}(M-K)$ is isomorphic to $\pi_{1}(M)$.

1. Matheus C., Olivera K. K. Geometrical versus topological properties of manifols // J. Inst. Math. Jusseiu. - 2005. - 4, № 4. - P. 639-651.
2. Falconer K. Fractal geometry: mathematical foundations. - New York: Jon Wiley and Sons, 1990.
3. Do Carmo M. P. Riemannian geometry. - Boston; Berlin, 1992.
