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STRONGLY RADICAL SUPPLEMENTED MODULES

СИЛЬНО РАДИКАЛЬНО ДОПОВНЕНI МОДУЛI

Zöschinger studied modules whose radicals have supplements and called these modules radical supplemented.
Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing
the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and
only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented
modules coincide. Over a no-local Dedekind domain, an srs-module is the sum of its torsion submodule and
the radical submodule.

Зошiнгер вивчав модулi, радикали яких мають доповнення, i назвав цi модулi радикально-доповненими.
Мотивуючись цим, будемо називати модуль сильно радикально доповненим (або, скорочено, srs-модулем)
якщо кожен пiдмодуль, що мiстить радикал, має доповнення. Доведено, що кожен (скiнченнопородже-
ний) лiвий модуль є srs-модулем тодi i тiльки тодi, коли кiльце є лiвим (напiв)досконалим. Над локаль-
ною дедекiндовою областю srs-модулi та радикально доповненi модулi збiгаються. Над нелокальною
дедекiндовою областю srs-модуль є сумою свого пiдмодуля скруту i радикального пiдмодуля.

1. Introduction. Throughout, R is an associative ring with identity and all modules
are unital left R-modules. Let M be an R-module. By N ⊆ M , we mean that N is a
submodule of M . A submodule L ⊆M is said to be essential in M , denoted as L�M ,
if L ∩ N 6= 0 for every nonzero submodule N ⊆ M . A submodule S of M is called
small (in M), denoted as S � M , if M 6= S + L for every proper submodule L of
M . By RadM we denote the sum of all small submodules of M or, equivalently the
intersection of all maximal submodules of M . A module M is called supplemented (see
[1]), if every submodule N of M has a supplement, i.e., a submodule K minimal with
respect to N +K = M . K is a supplement of N in M if and only if N +K = M and
N ∩K � K (see [1]). An R-module M is said to be radical supplemented if RadM
has a supplement in M . Radical supplemented modules are studied by Zöschinger in [2]
and [3]. Motivated by this definition, we call a module strongly radical supplemented
if every submodule containing the radical has a supplement. srs-modules lies between
radical supplemented modules and supplemented modules. Some examples are provided
to show that these inclusions are proper.

In this paper, among other results, we prove that srs-modules are closed under factor
modules and finite sums. Every left R-module is an srs-module if and only if R is
left perfect. For modules with small radical the notions of supplemented and being srs-
module coincide. This gives us, every finitely generated R-module is an srs-module
if and only if R is semiperfect. Over a commutative non-local domain, we prove that
every reduced srs-module M is of the form M = T (M) +RadM , where T (M) is the
torsion submodule of M . A commutative domain is h-local if and only if every finitely
generated torsion module is an srs-module. Over a local Dedekind domain (i.e., over
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a DVR), a module is an srs-module if and only if it is radical supplemented. Over a
non-local Dedekind domain an srs-module M is of the from M = T (M) + RadM .

2. Strongly radical supplemented modules. Firstly we show some properties of
srs-modules.

Proposition 2.1. Every homomorphic image of an srs-module is an srs-module.
Proof. Let L ⊆ N ⊆ M and Rad(M/L) ⊆ N/L. Since (RadM + L)/L ⊆

⊆ Rad(M/L), we have RadM ⊆ N. By assumption N has a supplement, say K, in
M. Then by [1] (41.1(7)), (K +L)/L is a supplement of N/L in M/L. Hence M/L is
an srs-module.

Proposition 2.2. If M is an srs-module, then M/RadM is semisimple.
Proof. By Proposition 2.1, M/RadM is an srs-module. Rad(M/RadM) = 0,

therefore M/RadM is supplemented. By [1] (41.2(3)), M/RadM is semisimple.
To prove that the finite sum of srs-modules is an srs-module, we use the following

standard lemma (see [1] (41.2)).
Lemma 2.1. Let M be an R-module and M1, N be submodules of M with

RadM ⊆ N. If M1 is an srs-module and M1 +N has a supplement in M, then N has
a supplement in M.

Proof. Let L be a supplement of M1 + N in M. Since RadM1 ⊆ RadM ⊆ N ,
we have RadM1 ⊆ (L+N) ∩M1. Then (L+N) ∩M1 has a supplement, say K, in
M1 because M1 is an srs-module. So

M = M1 +N + L = K + [(L+N) ∩M1] +N + L = (K +N) + L.

Since N + K ⊆ N + M1, L is also a supplement of N + K in M. Then by [4]
(Lemma 1.3a), K + L is a supplement of N in M.

Proposition 2.3. Let M = M1 +M2, where M1 and M2 are srs-modules, then
M is an srs-module.

Proof. Suppose that N ⊆ M with RadM ⊆ N. Clearly M1 + M2 + N has the
trivial supplement 0 in M , so by Lemma 2.1, M1+N has a supplement in M. Applying
the Lemma once more, we obtain a supplement for N in M.

Corollary 2.1. Every finite sum of srs-modules is an srs-module.
Lemma 2.2. Let M be a module with RadM = M . Then M is an srs-module.
Proof. Clearly M has the trivial supplement 0 in M. Since M = RadM is the

unique submodule containing the radical, M is an srs-module.
Let M be an R-module. By P (M) we denote the sum of all submodules V of M

such that RadV = V .
Corollary 2.2. Let M be an R-module. Then P (M) is an srs-module.
Proof. For any module M, RadP (M) = P (M). Then by Lemma 2.2, P (M) is an

srs-module.
The following example shows that srs-modules need not be supplemented.
Example 2.1. Consider the Z-module M =Z Q. Then M is an srs-module, because

RadQ = Q. On the other hand, M is not supplemented by [4] (Theorem 3.1).
Proposition 2.4. Let M be anR-module with RadM �M. Then M is supplemen-

ted if and only if M is an srs-module.
Proof. One direction is clear. Suppose that M is an srs-module. Let N be a

submodule of M. Then N+RadM has a supplement, say L, in M. So N+RadM+L =

= M and (N +RadM)∩L� L. Since RadM �M , we have N +L = M and also
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N ∩ L ⊆ (N + RadM) ∩ L � L, i.e., N ∩ L � L. Hence N has a supplement L in
M. Thus M is supplemented.

In [6], a ring R is called left max if every non-zero R-module has a maximal sub-
module. It is well known that R is a left max ring if and only if RadM �M for every
non-zero left R-module M. By using Proposition 2.4, we obtain the following corollary.

Corollary 2.3. Every srs-module over a left max ring is supplemented.
Proposition 2.5. Let M be an R-module. Suppose that RadM is supplemented

and M is an srs-module. Then M is supplemented.
Proof. Let N be a submodule of M. By the hypothesis, RadM+N has a supplement

in M. Since RadM is supplemented, N has a supplement in M by [1] (41.2). Hence
M is supplemented.

A submodule U ⊆ M is said to be cofinite if M/U is finitely generated. In [5], M
is called cofinitely supplemented if every cofinite submodule of M has a supplement
in M. It is also shown that M is cofinitely supplemented if and only if every maximal
submodule of M has a supplement in M (see [5], Theorem 2.8). Since RadM is contai-
ned in every maximal submodule of M, every srs-module is cofinitely supplemented.
But the converse need not be true in general, as it is shown in the following example.

Firstly, we need the following lemma.
Lemma 2.3. Let M be an R-module and U, V ⊆ M. If V is a supplement of U

in M and RadV ⊆ U, then RadV � V.

Proof. Suppose that RadV + T = V for some T ⊆ V. Then

M = U + V = U +RadV + T = U + T.

Since V is a supplement and T ⊆ V, we have T = V. Hence RadV � V.

Example 2.2. Let Z be the ring of integers and p be a prime in Z. Consider
the Z-module, M =

⊕
n>1 Zpn , where Zpn = Z/pnZ. Then M is a torsion module

and it is cofinitely supplemented by [5] (Corollary 4.7). To see that M is not an srs-
module, consider the submodule pM of M. Since M/pM is a semisimple module,
RadM ⊆ pM. We shall prove that pM has not a supplement in M. Suppose pM

has a supplement, say N in M. Then RadN � N by Lemma 2.3. Now since every
element of M is annihilated by some power of p, the module M can be considered as
a module over the local ring Z(p). Then N is a bounded module by [5] (Lemma 2.1).
Therefore pnN = 0 for some n > 1. On the other hand, since N is a supplement of
pM, we have M = pM +N, and so pnM = pn+1M + pnN = pn+1M. So that pnM
is divisible module by [5] (Lemma 4.4). But M has no nonzero divisible submodule.
Hence pnM = 0, a contradiction. Therefore pM has not a supplement in M , i.e., M is
not an srs-module.

Proposition 2.6. Let R be any ring and M be an R-module. Suppose that
M/RadM is finitely generated. Then M is cofinitely supplemented if and only if it
is an srs-module.

Proof. Let M be an R-module and N be a submodule of M with RadM ⊆ N.

Note that
[M/RadM ]/[N/RadM ] ∼= M/N

is finitely generated and thus N is a cofinite submodule of M . Since M is cofinitely
supplemented, N has a supplement in M. Therefore M is an srs-module. The converse
is clear.
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Now, we have the following implications on modules:

supplemented =⇒ srs-module =⇒ cofinitely supplemented.

Proposition 2.7. Let M be an R-module and RadM ⊆ U ⊆ M. If V is a
supplement of U in M, then RadV � V.

Proof. Since RadM ⊆ U , we have RadV ⊆ U . Then RadV � V by Lemma 2.3.

Recall from [6] that a submodule L of a module M is called a Rad-supplement of a
submodule N of M in M if N+L = M and N ∩L ⊆ RadL. Clearly every supplement
submodule is a Rad-supplement.

Corollary 2.4. Let M be an R-module and N ⊆ M such that RadM ⊆ N .
Suppose that N + L = M for some L ⊆M . Then L is a supplement of N in M if and
only if L is a Rad-supplement of N and RadL� L.

In the following proposition, we characterize supplements of the radical of a module
over semilocal rings.

Proposition 2.8. Let R be a semilocal ring and M be an R-module. A submodule
N ⊆ M is a supplement of RadM in M if and only if N is coatomic, M/N has no
maximal submodules and RadN = N ∩ RadM.

Proof. (⇒) Let N be a supplement of RadM in M . Then by [1] (41.1(5)), RadN =

= N ∩RadM. If N = M, then clearly RadM �M. Since R is semilocal, M/RadM

is semisimple. Therefore every proper submodule of M is contained in a maximal sub-
module, i.e., M is coatomic. Suppose that N is a proper submodule of M . If K is a
maximal submodule of M with N ⊆ K, then M = RadM +N ⊆ K, a contradiction.
So that N is not contained in any maximal submodule of M, i.e., M/N has no maximal
submodules. By Proposition 2.7, we have RadN � N. Since N/RadN is semisimple,
N is coatomic.

(⇐) Suppose that N + RadM 6= M. Then (N + RadM)/RadM $ M/RadM.

Since R is semilocal, M/RadM is semisimple and so there exists a maximal submodule
K/RadM of M/RadM such that (N + RadM)/RadM ⊆ K/RadM. So N +

+RadM ⊆ K, this implies N ⊆ K. Therefore K/N is a maximal submodule of M/N ,
a contradiction. So N +RadM = M. By the hypothesis, N ∩RadM = RadN � N.

Hence N is a supplement of RadM in M.

Now, we shall characterize the rings over which all (finitely generated) modules are
srs-modules.

Corollary 2.5. For a ring R, the following statements are equivalent.

(1) R is semiperfect.

(2) RR is an srs-module.

(3) Every finitely generated left R-module is an srs-module.

Proof. For every finitely generated module M , we have RadM �M . On the other
hand, by [1] (42.6), R is semiperfect if and only if every finitely generated R-module is
supplemented. From this fact and Proposition 2.4, the implications (1)⇔ (2)⇔ (3) are
clear.

Corollary 2.6. For a ring R, the following statements are equivalent.

(1) R is left perfect.

(2) The left R-module R(N) is an srs-module.

(3) Every left R-module is an srs-module.
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Proof. (1)⇒ (3) and (3)⇒ (2) are clear.

(2) ⇒ (1) By Proposition 2.1, RR is an srs-module. So R is semilocal by Proposi-
tion 2.2. Since R(N) is an srs-module, RadR(N) has a (weak) supplement in R(N).
Therefore R is left perfect by [7] (Theorem 1).

The following is a slight modification of [4] (Lemma 1.3 (Folgerung)).
Proposition 2.9. Let M be an R-module and K be a submodule of M. If K and

M/K are srs-modules and K has a supplement L in P for every submodule P with
K ⊆ P ⊆M, then M is an srs-module.

Proof. Let N be a submodule of M with RadM ⊆ N. It follows from [4] (Lem-
ma 1.1(d)) that we can write Rad(M/K) = (RadM +K)/K ⊆ (N +K)/K. Since
M/K is an srs-module, (N +K)/K has a supplement in M/K. That is, there exists a
submodule V/K of M/K such that (N +K)/K + V/K = M/K and [(N +K)/K]∩
∩ [V/K]� V/K. Since K ⊆ V, K has a supplement in V. Therefore V = K + L and
K ∩ L� L for some L ⊆ V . Now

M = N + V = N + (K + L) = (N +K) + L.

Suppose that M = (N +K)+L′ for some L′ ⊆ L. Then M/K = (N +K)/K+(L′+

+K)/K. But V/K is a supplement of (N +K)/K in M/K and (L′+K)/K ⊆ V/K.
By minimality of V/K, we obtain (L′ +K)/K = V/K. It follows that V = L′ +K.

Since L is a supplement of K in V, we have L′ = L. So L is a supplement of N +K

in M. By Lemma 2.1, N has a supplement in M. Hence M is an srs-module.

The following corollary is a direct consequence of Proposition 2.9.
Corollary 2.7. Let M be an R-module which contains an artinian submodule K.

Then M is an srs-module if and only if M/K is an srs-module.

Proof. One direction follows from Proposition 2.1. Conversely, suppose that M/K

is an srs-module. By assumption, K is supplemented and so it is an srs-module. It
follows from [3] that K has a supplement in every P with K ⊆ P ⊆M . Therefore M

is an srs-module by Proposition 2.9.

3. srs-Modules over Dedekind domains. Throughout this section, unless otherwise
stated, we shall consider commutative rings. The following result is due to Zöschinger.

Lemma 3.1 [3] (Satz 3.1). For a module over a discrete valuation ring (DVR), the
following statements are equivalent.

(1) M is radical supplemented,

(2) M = T (M) ⊕X , where the reduced part of T (M) is bounded and X/RadX

is finitely generated,

Now we shall prove that radical supplemented modules and srs-modules coincide
over discrete valuation rings. Firstly we need the following lemma.

Lemma 3.2. Let R be a local ring and M be an R-module. If M/RadM is
finitely generated, then M is an srs-module.

Proof. Let N be a submodule of M such that RadM ⊆ N . Then M/N is finitely
generated, and so M = N + L for some finitely generated submodule L of M . Since

RR is supplemented, L is also supplemented as it is finitely generated. So N has a
supplement in M by Lemma 2.1.

Proposition 3.1. Let R be a DVR and M be an R-module. Then M is an srs-
module if and only if M is radical supplemented.
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Proof. One direction is clear. Suppose that M is radical supplemented. Then M =

= T (M) ⊕ X as in Lemma 3.1. Since T (M) is bounded, it is supplemented by [4]
(Theorem 2.4). By Lemma 3.2, X is an srs-module. Therefore M is an srs-module by
Corollary 2.1.

Note that, by Example 2.2, Proposition 3.1 is not true in general for modules over
Dedekind domains which are not DVR.

Proposition 3.2. Let R be a non-local domain and M be a reduced R-module. If
M is an srs-module, then M = T (M) + RadM .

Proof. Suppose that T (M) + RadM 6= M. Since RadM ⊆ T (M) + RadM ,
T (M) + RadM has a supplement, say L, in M. Then L has a maximal submodule K,

because M is reduced. Let K ′ = T (M) + RadM + K. It is easy to see that K ′ is a
maximal submodule of M. Then K ′ has a supplement V in M . By [1] (41.1(3)), V is
local, and so V ∼= R/I for some nonzero I ⊆ R. Therefore V is torsion, and so V ⊆
⊆ T (M). We get M = K ′+V = T (M)+RadM+K+V = T (M)+RadM+K = K ′,

a contradiction. Hence M = T (M) + RadM.

Now we shall prove that, the converse of Proposition 3.2 is true, under a certain
condition.

Proposition 3.3. Let R be a domain and M be an R-module. Suppose that M =

T (M) + RadM and T (M) is supplemented. Then M is an srs-module.
Proof. Let N be a submodule of M such that RadM ⊆ N. Then N = N ∩

∩ T (M) +RadM = T (N) +RadM. Let L be a supplement of T (N) in T (M). Then
T (N) + L = T (M) and T (N) ∩ L � L. It follows that M = T (M) + RadM =

= T (N) + L + RadM ⊆ N + L and so M = N + L. Since L is torsion, N ∩ L =

= T (N) ∩ L. Therefore L is a supplement of N in M.

Let R be a Dedekind domain and M be an R-module. Since R is a dedekind domain,
P (M) is the divisible part of M . By [5] (Lemma 4.4), P (M) is (divisible) injective and
so there exists a submodule N of M such that M = P (M)⊕N. Here N is called the
reduced part of M . Note that P (M) ⊆ RadM. By Corollary 2.2, we know that P (M)

is an srs-module. Using these facts, we have the following result.
Proposition 3.4. Let R be a Dedekind domain and M be an R-module. Then M

is an srs-module if and only if the reduced part N of M is an srs-module.
Proof. N is an srs-module as a homomorphic image of M by Proposition 2.1. The

converse is by Proposition 2.3.
Proposition 3.5. Let R be a non-local Dedekind domain and M be an srs-module.

Then M = T (M) + RadM.

Proof. Let M = P (M)⊕N with N reduced. Then N is an srs-module as a direct
summand of M . By Proposition 3.2, N = T (N) + RadN . So that

M = P (M)⊕N = P (M) + T (N) + RadN ⊆ T (M) + RadM.

Hence M = T (M) + RadM.

Recall from [5] that a commutative domain R is called h-local if every non-zero
non-unit of R belongs to only finitely many maximal ideals and R/P is a local ring for
every prime ideal P of R. It is also proved that a commutative domain R is h-local if and
only if R/I is a semiperfect ring for every non-zero ideal I of R (see [5], Lemma 4.5).
In [5], it is proved that, R is h-local if and only if every finitely generated torsion
R-module is supplemented. Since for finitely generated modules supplemented modules
and srs-modules coincide, we obtain the following .
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Proposition 3.6. Let R be a commutative domain. Then R is h-local if and only
if every finitely generated torsion R-module is an srs-module.
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