UDC 512.5

E. Büyükaşık (Izmir Inst. Technol., Turkey), E. Türkmen (Amasya Univ., Turkey)

STRONGLY RADICAL SUPPLEMENTED MODULES

СИЛЬНО РАДИКАЛЬНО ДОПОВНЕНІ МОДУЛІ

Zöschinger studied modules whose radicals have supplements and called these modules *radical supplemented*. Motivated by this, we call a module *strongly radical supplemented* (briefly *srs*) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an *srs*-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, *srs*-modules and radical supplemented modules coincide. Over a no-local Dedekind domain, an *srs*-module is the sum of its torsion submodule and the radical submodule.

Зошінгер вивчав модулі, радикали яких мають доповнення, і назвав ці модулі *радикально-доповненими*. Мотивуючись цим, будемо називати модуль *сильно радикально доповненим* (або, скорочено, *srs*-модулем) якщо кожен підмодуль, що містить радикал, має доповнення. Доведено, що кожен (скінченнопороджений) лівий модуль є *srs*-модулем тоді і тільки тоді, коли кільце є лівим (напів)досконалим. Над локальною дедекіндовою областю *srs*-модуль є сумою свого підмодуля скруту і радикального підмодуля.

1. Introduction. Throughout, R is an associative ring with identity and all modules are unital left R-modules. Let M be an R-module. By $N \subseteq M$, we mean that N is a submodule of M. A submodule $L \subseteq M$ is said to be *essential* in M, denoted as $L \trianglelefteq M$, if $L \cap N \neq 0$ for every nonzero submodule $N \subseteq M$. A submodule S of M is called *small* (*in* M), denoted as $S \ll M$, if $M \neq S + L$ for every proper submodule L of M. By Rad M we denote the sum of all small submodules of M or, equivalently the intersection of all maximal submodules of M. A module M is called *supplemented* (see [1]), if every submodule N of M has a *supplement*, i.e., a submodule K minimal with respect to N + K = M. K is a supplement of N in M if and only if N + K = M and $N \cap K \ll K$ (see [1]). An R-module M is said to be *radical supplemented* if Rad M has a supplement in M. Radical supplemented modules are studied by Zöschinger in [2] and [3]. Motivated by this definition, we call a module *strongly radical supplemented* if every submodule containing the radical has a supplement. *srs*-modules lies between radical supplemented modules and supplemented modules. Some examples are provided to show that these inclusions are proper.

In this paper, among other results, we prove that srs-modules are closed under factor modules and finite sums. Every left *R*-module is an srs-module if and only if *R* is left perfect. For modules with small radical the notions of supplemented and being srsmodule coincide. This gives us, every finitely generated *R*-module is an srs-module if and only if *R* is semiperfect. Over a commutative non-local domain, we prove that every reduced srs-module *M* is of the form M = T(M) + Rad M, where T(M) is the torsion submodule of *M*. A commutative domain is h-local if and only if every finitely generated torsion module is an srs-module. Over a local Dedekind domain (i.e., over

© E. BÜYÜKAŞ1K, E. TÜRKMEN, 2011 1140 a DVR), a module is an *srs*-module if and only if it is radical supplemented. Over a non-local Dedekind domain an *srs*-module M is of the from M = T(M) + Rad M.

2. Strongly radical supplemented modules. Firstly we show some properties of *srs*-modules.

Proposition 2.1. Every homomorphic image of an srs-module is an srs-module. **Proof.** Let $L \subseteq N \subseteq M$ and $\operatorname{Rad}(M/L) \subseteq N/L$. Since $(\operatorname{Rad} M + L)/L \subseteq \subseteq \operatorname{Rad}(M/L)$, we have $\operatorname{Rad} M \subseteq N$. By assumption N has a supplement, say K, in M. Then by [1] (41.1(7)), (K + L)/L is a supplement of N/L in M/L. Hence M/L is an srs-module.

Proposition 2.2. If M is an srs-module, then M / Rad M is semisimple.

Proof. By Proposition 2.1, $M / \operatorname{Rad} M$ is an *srs*-module. $\operatorname{Rad}(M / \operatorname{Rad} M) = 0$, therefore $M / \operatorname{Rad} M$ is supplemented. By [1] (41.2(3)), $M / \operatorname{Rad} M$ is semisimple.

To prove that the finite sum of srs-modules is an srs-module, we use the following standard lemma (see [1] (41.2)).

Lemma 2.1. Let M be an R-module and M_1 , N be submodules of M with Rad $M \subseteq N$. If M_1 is an srs-module and $M_1 + N$ has a supplement in M, then N has a supplement in M.

Proof. Let L be a supplement of $M_1 + N$ in M. Since $\operatorname{Rad} M_1 \subseteq \operatorname{Rad} M \subseteq N$, we have $\operatorname{Rad} M_1 \subseteq (L+N) \cap M_1$. Then $(L+N) \cap M_1$ has a supplement, say K, in M_1 because M_1 is an *srs*-module. So

$$M = M_1 + N + L = K + [(L+N) \cap M_1] + N + L = (K+N) + L.$$

Since $N + K \subseteq N + M_1$, L is also a supplement of N + K in M. Then by [4] (Lemma 1.3a), K + L is a supplement of N in M.

Proposition 2.3. Let $M = M_1 + M_2$, where M_1 and M_2 are srs-modules, then M is an srs-module.

Proof. Suppose that $N \subseteq M$ with $\operatorname{Rad} M \subseteq N$. Clearly $M_1 + M_2 + N$ has the trivial supplement 0 in M, so by Lemma 2.1, $M_1 + N$ has a supplement in M. Applying the Lemma once more, we obtain a supplement for N in M.

Corollary 2.1. Every finite sum of srs-modules is an srs-module.

Lemma 2.2. Let M be a module with $\operatorname{Rad} M = M$. Then M is an srs-module.

Proof. Clearly M has the trivial supplement 0 in M. Since $M = \operatorname{Rad} M$ is the unique submodule containing the radical, M is an *srs*-module.

Let M be an R-module. By P(M) we denote the sum of all submodules V of M such that $\operatorname{Rad} V = V$.

Corollary 2.2. Let M be an R-module. Then P(M) is an srs-module.

Proof. For any module M, Rad P(M) = P(M). Then by Lemma 2.2, P(M) is an *srs*-module.

The following example shows that srs-modules need not be supplemented.

Example 2.1. Consider the \mathbb{Z} -module $M =_{\mathbb{Z}} \mathbb{Q}$. Then M is an *srs*-module, because Rad $\mathbb{Q} = \mathbb{Q}$. On the other hand, M is not supplemented by [4] (Theorem 3.1).

Proposition 2.4. Let M be an R-module with $\operatorname{Rad} M \ll M$. Then M is supplemented if and only if M is an srs-module.

Proof. One direction is clear. Suppose that M is an *srs*-module. Let N be a submodule of M. Then N + Rad M has a supplement, say L, in M. So N + Rad M + L = M and $(N + \text{Rad } M) \cap L \ll L$. Since $\text{Rad } M \ll M$, we have N + L = M and also

 $N \cap L \subseteq (N + \operatorname{Rad} M) \cap L \ll L$, i.e., $N \cap L \ll L$. Hence N has a supplement L in M. Thus M is supplemented.

In [6], a ring R is called left max if every non-zero R-module has a maximal submodule. It is well known that R is a left max ring if and only if $\operatorname{Rad} M \ll M$ for every non-zero left R-module M. By using Proposition 2.4, we obtain the following corollary.

Corollary 2.3. Every srs-module over a left max ring is supplemented.

Proposition 2.5. Let M be an R-module. Suppose that $\operatorname{Rad} M$ is supplemented and M is an srs-module. Then M is supplemented.

Proof. Let N be a submodule of M. By the hypothesis, $\operatorname{Rad} M + N$ has a supplement in M. Since $\operatorname{Rad} M$ is supplemented, N has a supplement in M by [1] (41.2). Hence M is supplemented.

A submodule $U \subseteq M$ is said to be *cofinite* if M/U is finitely generated. In [5], M is called *cofinitely supplemented* if every cofinite submodule of M has a supplement in M. It is also shown that M is cofinitely supplemented if and only if every maximal submodule of M has a supplement in M (see [5], Theorem 2.8). Since Rad M is contained in every maximal submodule of M, every *srs*-module is cofinitely supplemented. But the converse need not be true in general, as it is shown in the following example.

Firstly, we need the following lemma.

Lemma 2.3. Let M be an R-module and U, $V \subseteq M$. If V is a supplement of U in M and Rad $V \subseteq U$, then Rad $V \ll V$.

Proof. Suppose that $\operatorname{Rad} V + T = V$ for some $T \subseteq V$. Then

$$M = U + V = U + \operatorname{Rad} V + T = U + T.$$

Since V is a supplement and $T \subseteq V$, we have T = V. Hence $\operatorname{Rad} V \ll V$.

Example 2.2. Let \mathbb{Z} be the ring of integers and p be a prime in \mathbb{Z} . Consider the \mathbb{Z} -module, $M = \bigoplus_{n \ge 1} \mathbb{Z}_{p^n}$, where $\mathbb{Z}_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$. Then M is a torsion module and it is cofinitely supplemented by [5] (Corollary 4.7). To see that M is not an *srs*module, consider the submodule pM of M. Since M/pM is a semisimple module, Rad $M \subseteq pM$. We shall prove that pM has not a supplement in M. Suppose pMhas a supplement, say N in M. Then Rad $N \ll N$ by Lemma 2.3. Now since every element of M is annihilated by some power of p, the module M can be considered as a module over the local ring $\mathbb{Z}_{(p)}$. Then N is a bounded module by [5] (Lemma 2.1). Therefore $p^nN = 0$ for some $n \ge 1$. On the other hand, since N is a supplement of pM, we have M = pM + N, and so $p^nM = p^{n+1}M + p^nN = p^{n+1}M$. So that p^nM is divisible module by [5] (Lemma 4.4). But M has no nonzero divisible submodule. Hence $p^nM = 0$, a contradiction. Therefore pM has not a supplement in M, i.e., M is not an *srs*-module.

Proposition 2.6. Let R be any ring and M be an R-module. Suppose that $M/\operatorname{Rad} M$ is finitely generated. Then M is cofinitely supplemented if and only if it is an srs-module.

Proof. Let M be an R-module and N be a submodule of M with $\operatorname{Rad} M \subseteq N$. Note that

$$[M/\operatorname{Rad} M]/[N/\operatorname{Rad} M] \cong M/N$$

is finitely generated and thus N is a cofinite submodule of M. Since M is cofinitely supplemented, N has a supplement in M. Therefore M is an *srs*-module. The converse is clear.

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 8

Now, we have the following implications on modules:

supplemented \implies srs-module \implies cofinitely supplemented.

Proposition 2.7. Let M be an R-module and Rad $M \subseteq U \subseteq M$. If V is a supplement of U in M, then Rad $V \ll V$.

Proof. Since $\operatorname{Rad} M \subseteq U$, we have $\operatorname{Rad} V \subseteq U$. Then $\operatorname{Rad} V \ll V$ by Lemma 2.3.

Recall from [6] that a submodule L of a module M is called a *Rad-supplement* of a submodule N of M in M if N + L = M and $N \cap L \subseteq \text{Rad } L$. Clearly every supplement submodule is a Rad-supplement.

Corollary 2.4. Let M be an R-module and $N \subseteq M$ such that $\operatorname{Rad} M \subseteq N$. Suppose that N + L = M for some $L \subseteq M$. Then L is a supplement of N in M if and only if L is a Rad-supplement of N and $\operatorname{Rad} L \ll L$.

In the following proposition, we characterize supplements of the radical of a module over semilocal rings.

Proposition 2.8. Let R be a semilocal ring and M be an R-module. A submodule $N \subseteq M$ is a supplement of $\operatorname{Rad} M$ in M if and only if N is coatomic, M/N has no maximal submodules and $\operatorname{Rad} N = N \cap \operatorname{Rad} M$.

Proof. (\Rightarrow) Let N be a supplement of Rad M in M. Then by [1] (41.1(5)), Rad $N = N \cap \text{Rad } M$. If N = M, then clearly Rad $M \ll M$. Since R is semilocal, M / Rad M is semisimple. Therefore every proper submodule of M is contained in a maximal submodule, i.e., M is coatomic. Suppose that N is a proper submodule of M. If K is a maximal submodule of M with $N \subseteq K$, then $M = \text{Rad } M + N \subseteq K$, a contradiction. So that N is not contained in any maximal submodule of M, i.e., M/N has no maximal submodules. By Proposition 2.7, we have Rad $N \ll N$. Since N / Rad N is semisimple, N is coatomic.

(\Leftarrow) Suppose that $N + \operatorname{Rad} M \neq M$. Then $(N + \operatorname{Rad} M) / \operatorname{Rad} M \subsetneq M / \operatorname{Rad} M$. Since R is semilocal, $M / \operatorname{Rad} M$ is semisimple and so there exists a maximal submodule $K / \operatorname{Rad} M$ of $M / \operatorname{Rad} M$ such that $(N + \operatorname{Rad} M) / \operatorname{Rad} M \subseteq K / \operatorname{Rad} M$. So $N + \operatorname{Rad} M \subseteq K$, this implies $N \subseteq K$. Therefore K / N is a maximal submodule of M / N, a contradiction. So $N + \operatorname{Rad} M = M$. By the hypothesis, $N \cap \operatorname{Rad} M = \operatorname{Rad} N \ll N$. Hence N is a supplement of $\operatorname{Rad} M$ in M.

Now, we shall characterize the rings over which all (finitely generated) modules are *srs*-modules.

Corollary 2.5. *For a ring R*, *the following statements are equivalent.*

- (1) R is semiperfect.
- (2) $_{R}R$ is an srs-module.
- (3) Every finitely generated left R-module is an srs-module.

Proof. For every finitely generated module M, we have $\operatorname{Rad} M \ll M$. On the other hand, by [1] (42.6), R is semiperfect if and only if every finitely generated R-module is supplemented. From this fact and Proposition 2.4, the implications $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ are clear.

Corollary **2.6.** *For a ring R, the following statements are equivalent.*

- (1) R is left perfect.
- (2) The left *R*-module $R^{(\mathbb{N})}$ is an srs-module.
- (3) Every left R-module is an srs-module.

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 8

Proof. (1) \Rightarrow (3) and (3) \Rightarrow (2) are clear.

(2) \Rightarrow (1) By Proposition 2.1, $_RR$ is an *srs*-module. So R is semilocal by Proposition 2.2. Since $R^{(\mathbb{N})}$ is an *srs*-module, $\operatorname{Rad} R^{(\mathbb{N})}$ has a (weak) supplement in $R^{(\mathbb{N})}$. Therefore R is left perfect by [7] (Theorem 1).

The following is a slight modification of [4] (Lemma 1.3 (Folgerung)).

Proposition 2.9. Let M be an R-module and K be a submodule of M. If K and M/K are srs-modules and K has a supplement L in P for every submodule P with $K \subseteq P \subseteq M$, then M is an srs-module.

Proof. Let N be a submodule of M with Rad $M \subseteq N$. It follows from [4] (Lemma 1.1(d)) that we can write Rad $(M/K) = (\text{Rad } M + K)/K \subseteq (N + K)/K$. Since M/K is an *srs*-module, (N + K)/K has a supplement in M/K. That is, there exists a submodule V/K of M/K such that (N + K)/K + V/K = M/K and $[(N + K)/K] \cap [V/K] \ll V/K$. Since $K \subseteq V$, K has a supplement in V. Therefore V = K + L and $K \cap L \ll L$ for some $L \subseteq V$. Now

$$M = N + V = N + (K + L) = (N + K) + L.$$

Suppose that M = (N + K) + L' for some $L' \subseteq L$. Then M/K = (N + K)/K + (L' + K)/K. But V/K is a supplement of (N + K)/K in M/K and $(L' + K)/K \subseteq V/K$. By minimality of V/K, we obtain (L' + K)/K = V/K. It follows that V = L' + K. Since L is a supplement of K in V, we have L' = L. So L is a supplement of N + K in M. By Lemma 2.1, N has a supplement in M. Hence M is an srs-module.

The following corollary is a direct consequence of Proposition 2.9.

Corollary 2.7. Let M be an R-module which contains an artinian submodule K. Then M is an srs-module if and only if M/K is an srs-module.

Proof. One direction follows from Proposition 2.1. Conversely, suppose that M/K is an *srs*-module. By assumption, K is supplemented and so it is an *srs*-module. It follows from [3] that K has a supplement in every P with $K \subseteq P \subseteq M$. Therefore M is an *srs*-module by Proposition 2.9.

3. *srs*-Modules over Dedekind domains. Throughout this section, unless otherwise stated, we shall consider commutative rings. The following result is due to Zöschinger.

Lemma 3.1 [3] (Satz 3.1). For a module over a discrete valuation ring (DVR), the following statements are equivalent.

(1) M is radical supplemented,

(2) $M = T(M) \oplus X$, where the reduced part of T(M) is bounded and $X / \operatorname{Rad} X$ is finitely generated,

Now we shall prove that radical supplemented modules and *srs*-modules coincide over discrete valuation rings. Firstly we need the following lemma.

Lemma 3.2. Let R be a local ring and M be an R-module. If M / Rad M is finitely generated, then M is an srs-module.

Proof. Let N be a submodule of M such that $\operatorname{Rad} M \subseteq N$. Then M/N is finitely generated, and so M = N + L for some finitely generated submodule L of M. Since $_{R}R$ is supplemented, L is also supplemented as it is finitely generated. So N has a supplement in M by Lemma 2.1.

Proposition 3.1. Let R be a DVR and M be an R-module. Then M is an srsmodule if and only if M is radical supplemented.

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 8

1144

Proof. One direction is clear. Suppose that M is radical supplemented. Then $M = T(M) \oplus X$ as in Lemma 3.1. Since T(M) is bounded, it is supplemented by [4] (Theorem 2.4). By Lemma 3.2, X is an *srs*-module. Therefore M is an *srs*-module by Corollary 2.1.

Note that, by Example 2.2, Proposition 3.1 is not true in general for modules over Dedekind domains which are not DVR.

Proposition 3.2. Let R be a non-local domain and M be a reduced R-module. If M is an srs-module, then M = T(M) + Rad M.

Proof. Suppose that $T(M) + \operatorname{Rad} M \neq M$. Since $\operatorname{Rad} M \subseteq T(M) + \operatorname{Rad} M$, $T(M) + \operatorname{Rad} M$ has a supplement, say L, in M. Then L has a maximal submodule K, because M is reduced. Let $K' = T(M) + \operatorname{Rad} M + K$. It is easy to see that K' is a maximal submodule of M. Then K' has a supplement V in M. By [1] (41.1(3)), V is local, and so $V \cong R/I$ for some nonzero $I \subseteq R$. Therefore V is torsion, and so $V \subseteq CT(M)$. We get $M = K' + V = T(M) + \operatorname{Rad} M + K + V = T(M) + \operatorname{Rad} M + K = K'$, a contradiction. Hence $M = T(M) + \operatorname{Rad} M$.

Now we shall prove that, the converse of Proposition 3.2 is true, under a certain condition.

Proposition 3.3. Let R be a domain and M be an R-module. Suppose that M = T(M) + Rad M and T(M) is supplemented. Then M is an srs-module.

Proof. Let N be a submodule of M such that $\operatorname{Rad} M \subseteq N$. Then $N = N \cap \cap T(M) + \operatorname{Rad} M = T(N) + \operatorname{Rad} M$. Let L be a supplement of T(N) in T(M). Then T(N) + L = T(M) and $T(N) \cap L \ll L$. It follows that $M = T(M) + \operatorname{Rad} M = T(N) + L + \operatorname{Rad} M \subseteq N + L$ and so M = N + L. Since L is torsion, $N \cap L = T(N) \cap L$. Therefore L is a supplement of N in M.

Let R be a Dedekind domain and M be an R-module. Since R is a dedekind domain, P(M) is the divisible part of M. By [5] (Lemma 4.4), P(M) is (divisible) injective and so there exists a submodule N of M such that $M = P(M) \oplus N$. Here N is called the reduced part of M. Note that $P(M) \subseteq \text{Rad } M$. By Corollary 2.2, we know that P(M)is an srs-module. Using these facts, we have the following result.

Proposition 3.4. Let R be a Dedekind domain and M be an R-module. Then M is an srs-module if and only if the reduced part N of M is an srs-module.

Proof. N is an srs-module as a homomorphic image of M by Proposition 2.1. The converse is by Proposition 2.3.

Proposition 3.5. Let R be a non-local Dedekind domain and M be an srs-module. Then M = T(M) + Rad M.

Proof. Let $M = P(M) \oplus N$ with N reduced. Then N is an srs-module as a direct summand of M. By Proposition 3.2, N = T(N) + Rad N. So that

$$M = P(M) \oplus N = P(M) + T(N) + \operatorname{Rad} N \subseteq T(M) + \operatorname{Rad} M.$$

Hence M = T(M) + Rad M.

Recall from [5] that a commutative domain R is called *h*-local if every non-zero non-unit of R belongs to only finitely many maximal ideals and R/P is a local ring for every prime ideal P of R. It is also proved that a commutative domain R is h-local if and only if R/I is a semiperfect ring for every non-zero ideal I of R (see [5], Lemma 4.5). In [5], it is proved that, R is *h*-local if and only if every finitely generated torsion R-module is supplemented. Since for finitely generated modules supplemented modules and *srs*-modules coincide, we obtain the following .

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 8

Proposition 3.6. Let R be a commutative domain. Then R is h-local if and only if every finitely generated torsion R-module is an srs-module.

- 1. Wisbauer R. Foundations of modules and rings. Gordon and Breach, 1991.
- Zöschinger H. Basis-Untermoduln und Quasi-kotorsions-Moduln über diskreten Bewertungsringen // Bayer. Akad. Wiss. Math-Nat. Kl. Sitzungsber. – 1977. – S. 9–16.
- Zöschinger H. Moduln, die in jeder Erweiterung ein Komplement haben // Math. scand. 1974. 35. P. 267–287.
- 4. Zöschinger H. Komplementierte moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42-56.
- Alizade R., Bilhan G., Smith P. F. Modules whose maximal submodules have supplements // Communs Algebra. – 1987. – 29, № 6. – P. 2389–2405.
- Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting modules. Supplements and projectivity in module theory. Frontiers in mathematics. – Basel: Birkhäuser, 2006.
- Büyükaşık E., Lomp C. Rings whose modules are weakly supplemented are perfect. Application to certain ring extension // Math. scand. – 2009. – 106. – P. 25–30.

Received 04.02.10, after revision -20.03.11