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NEW OSCILLATION THEOREMS
FOR A CLASS OF SECOND-ORDER DAMPED
NONLINEAR DIFFERENTIAL EQUATIONS

HOBI OCHUJISIIIAHI TEOPEMHU .
JJI1 OAHOI'O KJIACY 3TACAIOYUX HEJIITHIMHUX
JAA®EPEHIIAJIBHUX PIBHAHDb APYI'OI'O NIOPAAKY

Some new oscillation criteria are established for the nonlinear damped differential equation
(r(t)k1 (z,2")) +p @) ka (z,2') 2’ +q () f (x () =0, t>to.
The results obtained extend and improve some existing results in the literature.

BcranoBineHo Jesiki HOBI OCIMUIIALIIHI KpUTepii 11 3racalodoro HeNiHiHHOTO PiBHSIHHS
(r(t)ks (z,2")) +p () ka2 (z,2") 2’ + q () f (x (t) =0, t>to.

OTpuMaHi pe3ysbTaTH y3arajbHIOITh 1 HOCHIIOIOTH JIEsKi ICHYIOUl pe3yabTaTH.

1. Introduction. We are concerned with oscillation behavior of solutions of second-
order nonlinear differential equations with nonlinear damping of the form

(r(Ok1 (,a")) +p (1) ka (z,2") 2’ + q (¢) f (2 (1)) = 0, (L.1)

where t > tg > 0, r € C([tg,00);(0,)), p,q € C([tp,0);R), f € C(R,R),
ki e Ct (RQ, R) and kp € C (RQ, R) . Throughout the paper, it is assumed that

(a) p(t) > 0 forall t > to;

(b) f(z)/x > K for some constant K > 0 and all z € R\ {0} ;

(c) q(t) > 0 for all t > ¢y and ¢(t) # 0 on [t.,0) for any t. > to;

(d) k2 (u,v) < ayvky(u,v) for some constant a; > 0 and all (u,v) € R?;

(€) uvks(u,v) > agk?(u,v) for some constant ap > 0 and all (u,v) € R?;

(e1) uvks(u,v) > asuky(u,v) for some constant ay > 0 and all (u,v) € R2.

We recall that a function x: [tg,t1) — (—00,00),¢1 > to, is called a solution of
equation (1.1) if x(t) satisfies equation (1.1) for all ¢ € [to,?1). In the sequel, it will
be always assumed that solutions of equation (1.1) exist on [tg, 00). A solution z(t) of
equation (1.1) is called oscillatory if it has arbitrary large zeros, otherwise it is called
nonoscillatory. Eq. (1.1) is called oscillatory if all solutions are oscillatory.

In the relevant literature, till now, oscillation behaviors of solutions of linear and
non-linear second order differential equations have been the subject of intensive investi-
gations for many authors. For instance, one can refer to [1—-39], as some related papers
or books on the subject.

The oscillation of Eq. (1.1) was first studied by Rogovchenko and Rogovchenko
in [1]. Afterward, under assumptions (a)—(e), Tiryaki and Zafer [21] established some
oscillation criteria for (1.1), which extend and improve the results in [1]. We also note
that the similar results for the differential equations those are near to (1) were established
before (see, for example [36]).

The motivation for the present work has been inspired basically by the paper of
[1, 21] and the works mentioned above. Our aim here is to improve the some results
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verified by [21] for the oscillation of solutions of Eq. (1.1) under assumptions (a)— (e).
On the other hand, under assumptions (a)—(d) and (e1) our results are new.

Let Do ={(t,8): t > s >1to}and D = {(t,s): t > s > to}. We say that the func-
tion H = H(t,s) € C (D, (—o00,00)) belongs to the class P if

(i) H(t,t) =0 for ¢t > to, H(t,s) > 0 on Dy;

(ii) H(t,s) has a continuous and nonpositive partial derivative on Dy with respect
to the second variable, and there is a function h € C (D, [0, +c0)) such that

—%—Ij(t, s) = h(t,s)\/H(t,s) forall (¢,s)¢€ Dy.

2. Main results. The main results of this paper are the following theorems.
Theorem 1. Let assumptions (a)—(d) and (e1) hold. Further, suppose that there
exists a function g € C* ([to,00) ; R) such that, for some 3 > 1 and for some H € P,

t

lim sup %/ (H(t, s)y(s) — Mh%, s)) ds =00, (2.1

et Htto) J 4
where t
u(t) = exp | -2 / (go(j) - OZ«}?S)) ds (2.2)
and

w@>=vu>(K«w+—“”¢““—wmpam@>—<wwmwy). 23)

(63}

Then Eq. (1.1) is oscillatory.

Proof. Let z(t) be a non-oscillatory solution of Eq. (1.1). Then there exists a Ty >
> to such that z(¢) # 0 for all ¢ > Ty > to. For t > Ty, define a generalized Riccati
transformation by

rk (z(t), 2" (1))

(1)

w(t) = v(t) { + r(t)g(t)] (2.4)

where v(t) is given by (2.2). Differentiating (2.4) and using (1.1), we have

"(t) = 7/(t)w v —p(t)ka (2 (t), 2 () 2" (t)
w'(t) = o0 (t) + v(t) [ o0
_Q(t);;f((g(t)) (ki (@ (2 (f)/ () ' (t) n <r<t)g(t>),]_ 25

agp(t)v(t)ks (x (1), 2" (1))

w(t) —

— Kq(t)v(t)—

—gm}—memw—
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20, awl0] ) cp@u)
= [ 22004 22 g - 22O L apigteyets) - Kawyo(o -
W), 20000 20 ,
o0 + o o +o(t) (r(t)g(t)) . (2.6)

So, (2.6) yields, for all ¢ > Ty,

2.7)

where ~y(¢) is defined by (2.3). Multiplying both sides of (2.7) by H (¢, s) and integrating
from T' to t, we have for some 5 > 1 and for all ¢t > T > Ty,

/H (t, s)y(s)ds < — /H (t, ) )dsT/tH(t,s)alf(i(;)(S)ds

t
] /H (5) ds =
Oél’f‘
T

:H@ﬂmﬂ—/}m@ H{(t, s)yw(s) + H(t,s) w“>}@=
J 1

:H@nwn_j}

ayr(s)v(s)

t 2

,/ Mw(s)wL} Baar(s)u(s)h(t,s) | ds. (2:8)
Baur(s)u(s) 2

T

ISSN 1027-3190. Vip. mam. scypn., 2011, m. 63, Ne 9



1266 E. TUNC, H. AVCI

So, for every t > Ty,

/t (H(t7 s)y(s) — %ﬁr(s)v(s)}ﬂ(t, s)) ds <

To

< H(t,To)w(Ty) < H(t,Tp) |lw(To)| < H(t,t0) |w(To)] -

Therefore,

To
< / H(t, 5) |y (3)) ds + H(t to) w(To)]| <

to

To
< H(t.to) / ()] ds + [w(To)|

to

for all ¢ > Ty. This gives

t Ty
/ <H(t s)v(s) — ajfr(s)v(s)hQ(t,s)) ds < H(t,to) [/ |v(s)|ds + |w(TO)|].
! (2.9)

It follows from (2.9) that

/t(H(t,S)V(S) - Ozﬁr(s)v(s)hQ(tS)) ds <

to

1
limsup ————
sl H(t, to)

< / ()] ds + [w(Ty)]| < +oo

to

which contradicts (2.1). Therefore, Eq. (1.1) is oscillatory.
Under a modification of the hypotheses of Theorem 1, we can obtain the following

result.
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Corollary 1. In Theorem 1, if condition (2.1) is replaced by the conditions

t
1
li Hi(t ds =
msup o [ (e (s)ds = o
to
and
t
limsup ——— [ r(s)v(s)h?(t, s)ds < oo,
g7 | HORE

to
then (1.1) is oscillatory.

Theorem 2. Let assumptions (a)—(d) and (e1) be fulfilled. Suppose that there
exists function H € P and

0 < inf [liminf H{(t,s)

< o0. 2.10
s>to t— o0 H(t,to)] =00 ( )

Assume that there exist functions g € C* ([tg,00);R) and b € C ([to, 00) ; R) such that,
for some B> 1,allt >ty and T > tgy,

h?isogp H(tl, T / (H(t,s)v(s) - a;ﬂr(s)v(s)hz(t,s)) ds > b(T), (2.11)
T

where (s),v(t) are as in Theorem 1. If

t
b2
hmmg/ “(8) s oo 2.12)
t—oo J T(s)v(s)
to

where by (t) = max{b(t),0}. Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). We may assume that z:(¢) # 0
for some t > Ty > to. Define w(t) as in (2.4). Then, following the proof of Theorem 1,
we obtain (2.8). Further, it follows that

2

_H(tl 7 /( Muﬂ@—!—% Balr(s)v(s)h(ts)) ds <
T

Bazr(s)v(s)

1 [ (B=1)H(ts)
< w(T) - H(t,T) T/ Baqr(s)v(s)
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Hence, fort > T > Ty,

y
e HE T)

—
H\“
/m\
=
@
SN~—
=
&
|

‘Q
I
=
=
&
[
—~
[
SN—
>
[\v]
—
:‘F
=
'
QL
o
IN

Thus, by (2.11) we have

1
S o
w(T) > b(T) + hggggf HET)

for all T > T, and for any 8 > 1. This implies that

w(T) >b(T) forall T>Tp (2.13)
and
t
s 1 H(tv 5) 2 ﬂal
htrgggf H(t,TO)T/ r(s)v(s)w (s)ds < B-1 (w(Tp) — b(Tp)) < c0.  (2.14)
Now, we calim that
7 W) e < oo (2.15)
r(s)v(s) ' '
To
Suppose to the contrary that
[ ws)
/ r(s)v(s)ds = 0. (2.16)
To

By (2.10), there exists a positive constant ¢ such that

B B D))
slélfo |:htIE>loIo}fH(t,t0):| >0 > 0. (2.17)
From (2.17),
. H(ts)
htrgg.}fH(t,to) > 6 >0,

and there exists a To > Ty such that H(¢,Ty)/H(t,tg) > 6, for all ¢ > T5. On the
other hand, by (2.16), for any positive number «, there exist a T} > Tp, such that, for

all ¢ > T],
t
w?(s) K
> —.
/T(s)v(s)ds )

To

Using integration by parts, we conclude that, for all ¢t > 717,
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mimT[ o=y [ [0 [ | o2

To To

t

1 OH(t H(t,T
> / _OHR )] o K HET) (2.18)
(S H(t,To) 88 6 H(t,To)
T
Hence, we have from (2.18)
H(t
tTO / s)ds >k forall t>Ts.
Since x is an arbitrary positive constant,
t
htn_1>1£fH /rs s)ds = +o0,
To

which contradicts assumption (2.14). Therefore we proved that (2.16) fails, so (2.15)
holds true. Then, it follows from (2.13) that b% (T') < w?(T) for all T > Ty, and

[ [ wts)
/ () </ (s <

To To

which contradicts (2.12). Hence, Eq. (1.1) is oscillatory.
Theorem 3. The conclusion of Theorem 2 remains valid, if assumptions (2.11) is
replaced by

t

lim inf ﬁ/ <H(t, s)y(s) — azll—ﬂr(s)v(s)hQ(t, s)) ds > b(T)
T

t—o0

for all T > ty and for some > 1.
Proof. Due to the fact that

t

1) < timint s [ (H9906) = S0 r(e0(sm(0,0) ) ds <

< limsup (tl, 7 / <H(t,s)7(s) - O‘fr(s)u(s)hm,s)) ds,
T

the conclusion follows immediately from Theorem 2.
From now on, we shall consider the oscillation for (1.1) under assumptions (a)—(e).
Theorem 4. Let assumptions (a)—(e) hold. Suppose that there exists a function
g € C ([tg, ) ; R) such that, for some 3 > 1 and for some H € P,
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t

i — paa r?(s)v(s)h3(t, s s = 00
sy 77 / (H(t,sms) oo e RO >>d ,
’ (2.19)
where
oy [ (9)  ew9)9)Y
v(t) = p( 2/( o + (5) )d ), (2.20)
30 = o) (K0 + "D s+ apr ) - vg) ) @2n

Then Eq. (1.1) is oscillatory.
Proof. Let x(t) be a non-oscillatory solution of the differential equation (1.1). Then
there exists a T > to such that z(¢) # 0 for all ¢ > Tp. Define

() = of0)[MOEEDLO) 4y oran o>,

where v(t) is given by (2.20). This and (1.1) imply

iy = YOy o | ZP@E2 (2 (1), 27 (1) 2" ()
_Q(t)i"((;(t)) _ Ok (2 (;3 (f)/ ®)2'(t) | (T(t)g(t)),]'

Taking into account (a)—(e), we conclude that for all t > T,

o) < fff;w(t) B aw(t)v(t)f;g @ 2®) e yote)
_T(t)v(t)illg((;) z' (1)) +v(t) (T(t)g(t))’ =
YO IO LR

=280 - axploye(0)| 0~ 0] - Kattyote)
[ 29() 2a2p(t)g(t)] wit) — aop(t)w(t) | 2a9p(t)g(t)w(t)
o r(t v(t)r3(t) r(t
w(t)
—aap(t)g* () = Ka(t)o(t) = s
L2000 rO@O0W

which yields
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(aragp(t) + () w?(t)
ayv(t)ri(t) ’

where 71 (t) is defined by (2.21). Multiplying both sides of (2.22) by H (¢, s) and inte-
grating from 7' to ¢, we have for some 8 > 1 and for all ¢t > T > Ty,

T/thS’Yl )ds < — T/ths ds—/H O‘laQilﬂ )(()§ 1) g

w'(t) < —m(t) -

(2.22)

= H(t, T)w(T) — } dsf/H (n0op(s) +1(s) wls) ;0

Ofsz (s)v(s)

’ﬂ\w

t r

— H(t, T)w(T) / Wt s) H(t,s)w(S)+H(t,8)(a1a2i(12()((i; ")) g5 =
J |

/ H(t,s) (arasp(s) + r(s))
T/ W St

1 Bair?(s)v(s) 5 Bay % (s)v(s) 204 §Vds—
+\/( ) ht, )>d+ /( Wt s)d

2\ (araap(s) + r(s)) 1) araap(s) +7(s))

[ (B DH(S) (@mamp(s) 1) 5
/ Soar(s)u(s) (o)

T

Thus, for all t > T > Tp, we obtain that

t Barr?(shols)
T/( (t, 8)y1(s Tlorap(s) +r(s))h (t,s)) ds < H(t, T)w(T)—
/ a1a2p< ) +7(5)
- [ v
T
o [EES o ) 1 [, Y
T/ (\/ Barr(£)0(5) ”*2\/ (@raap(s) + () )> o

(2.23)

Following the same lines as in the proof of Theorem 1, we conclude that

. 1 Ba 7"2(5)”(5) 2
hirisolip m/ (H(t, s)y1(s) — I (a1a12p(5) ) h2(t, s)) ds <

to
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< / I (8)] ds + [w(To)] < +oo,

which contradicts assumption (2.19). Therefore, we have proved that all solutions of
Eq. (1.1) are oscillatory.

Corollary 2. The conclusion of Theorem 4 remains intact if assumption (2.19) is
replaced with the following conditions:

t—o0

1
lim sup m/H(t’ $)v1(s)ds = o0

and

1 2
lim sup / r(s)u(s) R2(t, s)ds < co.
tooo H(t,to) ) araop(s) +7(s)

to
Theorem 5. Let assumptions (a)—(e) hold. Suppose that there exists function H &

€ P and

H
0< inf [iminf205) | < o (2.24)
s>ty | t—oo H(t,to)

Assume that there exist functions g € C' ([tg,00);R) and b € C ([to, 00) ; R) such that,
forallt > tg, all T > ty, and for some 5 > 1,

¢
Boar?(s)u(s) o )
1i (t, h2(t,s) ) ds > b(T),
mew gy | (H090) — e ) ) ds 2 0r)
T
(2.25)
where 1 (s), v(t) are as in Theorem 4, and furthermore suppose that
t
b2
limsup/ (a1a2p(s) +7()) b3.(s) ;0 (2.26)
100 r2(s)v(s)

to

where by (t) = max {b(t),0} . Then Eq. (1.1) is oscillatory.

Proof. Let 2(t) be a nonoscillatory solution of (1.1). We may assume that x(t) # 0
for some t > Ty > to. Define w(t) as in (2.4). As in the proof of Theorem 4, we can
obtain (2.23). Then,

t

L gy Baru(s) e N
H(t,T)T/(H(t’ )71 (8) 10 S))h (t, ))d < w(T)

arasp(s) +r(

t

) (rasp(s) £r(s)) 5 .
/ ﬂw?( o(s) w(s)ds

T

) (a1azp(s) +7(s))
/ <\/ far (o) OF
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1 2 ’
L1 Bt euls) ) g <
2\ (arazp(s) +r(s))

1 [ (= 1)H(t,s) (aamp(s) +7(5))
)/ Bonr2(3)0(s) w=(s)ds.

o)~ gaT

Consequently,

t Barr?(s)u(s)
I T/ < s o)mls 4<a1a2p<s>+r<s>>h(t’s>>d8§

T

fort > T > Ty. It follows from (2.25)

—1)H(t,s) (cnaap(s) +7r(s)) o
Bour?(s)u(s) ws)ds

1 [
w(T) = b(T) + lim inf H(t,T) /
T

for all T > T} and for any S > 1. This implies that,

w(T) > b(T) forall T >T, (2.27)
and
o H(t,s) a1a2p(8) +7(s) o
htrglorclf To / () w*(s)ds <
< fo‘ll) (w(Ty) — b(Tv)) < oo. (2.28)
Now, we claim that
(araop(s) +7(s))
/ 2(5)0(3) w(s)ds < 0. (2.29)
To
Suppose the contrary, that is,
[ (naop(s) +7()) o
T/ 72()0(5) w(s)ds = 0. (2.30)

It follows from (2.24) that there exists a positive constant J such that

o[y H(Es)
Slgtfo |:11t1’I_1>101;1fH(t’ to)] > 4. (2.31)

From (2.31),

ISSN 1027-3190. Vip. mam. scypn., 2011, m. 63, Ne 9



1274 E. TUNC, H. AVCI

H
lminf 2% S 55
t—00 H(t, t())
and there exists a T, > T3 such that H (¢, T1)/H (t,to) > 6, for all t > T5. On the other
hand, from (2.30), for any positive number &, there exist a 77 > Tp, such that, for all
t Z Tla

t

(crosp(s) + 7(5)
s 2

>l &

To

Using integration by parts, we obtain that, for all ¢ > T7,

H(t,s) a1a2p(5)+7’(5)) 2
0T / O

S /t[_amt,s)} j(maw()ﬂ(ﬂ)wzw b

H(t,TO 0Os ( ) (T)
To To
¢
ko1 OH (t, s) _ kH(t,T)
> S | e = SaeTy 232
T

Hence, we have from (2.32)

w?(s)ds > k forall t > Ty.

/H (t,s) alagp(S)JrT(S))

t TO (S)

Since « is an arbitrary positive constant,

w?(s)ds = +oo0,

o H(t,s) 041042p(5)+7"(5))
hmlnf To/ Yo(s)

t—o0

which conradicts (2.28). Therefore, (2.29) holds, and from (2.27)

[ (@10ap(s) +7(5)) 2 [ (@aap(s) +7() o0
T[ ety <T{ Rl ST

which contradicts (2.26). Therefore, Eq. (1.1) is oscillatory.
Remark 1. In Theorem 5, the condition

1 r2(s)v(s) o
h?:,)tolp Tt 1) / aroap(s) - 105 )h (t,8)ds < 00

to

is not necessary, however, an analogue of this condition is required in [21] (Theo-
rem 2.3).
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Theorem 6. Let all assumptions of Theorem 5 satisfied except that condition (2.25)
be replaced with

N B O . T C IO NP
hfﬂ?éfﬂ(t,fmT/ (H“’ 1)~ T anagp(s) 1 (@) " & ))d 2 b(T).

Then Eq. (1.1) is oscillatory.
Proof. By an similar argument to that in the proof of Theorem 3, one can complete
the proof of this theorem. Therefore, we omit the detailed proof for the theorem.
Remark 2. In Theorem 6, the condition

t
1 2
lim inf / r(s)u(s) h3(t,s)ds < oo
tmoo H(t,to) ) araep(s)+r(s)
to

is not necessary, however, an analogue of this condition is required in [21] (Theo-
rem 2.2).

3. Applications. Following the classical ideas of Kamenev [12], we define H (¢, s)
as

H(t,s)=(t—s)""", (t,s)eD,

where n > 2 is an integer. Evidently, H € P and
ht,s)=(m—1)(t—s)""?%  (t,5)eD.

Then, by Theorems 1 and 2 we have following two corollaries.
Corollary 3. Let (a)—(d) and (e1) hold. Suppose that there exists a function g €
€ C* ([tg, o) ; R) such that, for some integer n > 2 and some 3 > 1,

t

limsupt'=" / (t— s)"_?’ ((t - 5)27(3) _ c1fr(s)v(s) (n— 1)2> ds = 0o, (2.33)
t—oo 4
to
where v(t) and ~(t) are as in Theorem 1. Then Eq. (1.1) is oscillatory.
Corollary 4. Let assumptions (a)—(d) and (e1) be fulfilled. Assume that there exist
functions g € C* ([tg,00);R) and b € C ([to,00);R) such that, for all T > to, some
B > 1, and some integer n > 2,

t

limsupt!™" / ((t — )" y(s) — WT(S)U(S) (t— s)"—3> ds > b(T),

t—o0
T

(2.34)
where v(s), v(t) are as in Theorem 1. Suppose also that (2.12) is satisfied. Then Eq. (1.1)
is oscillatory.
Example 1. Fort > 1, consider the differential equation of the form
/
(1 112) + 2(11—';(:;)28t)x’ + (2 + 2cost — sint+cos2t) T (1 + 745)12) =0.
(2.35)
It is easy to see that conditions (a)—(d) and (e;) hold with K = a; = ay = 1. Let
g(t) = 14 cost; then v(t) = 1 and ~(¢) = 1. Applying Corollary 3 with n = 3, we
have
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t

1
limsupt—Q/ ((t —s)? 11— B) ds = 0.
t—o0
1
Hence, Eq. (2.35) is oscillatory by Corollary 3. Since condition (e) is not satisfied, the
results of [21] can not be used to Eq. (2.35).
Example 2. Consider the differential equation

! 2t3
<t21‘|l" 2) +1+ 2m/+(6t2_6t281n2t+t4+2)m(2+cosx)207 t217
T x
(2.36)
where
A
n_ v N 1
Ree) =10 k(@) =100

(1 =az=1) and f(z)=z(2+4cosz) (K =1).
We apply Corollary 4 with n = 3 and g(t) = t. Then, v(t) = 1 and v(¢) = 3t> —
— 6t2sin?t + 2. Let 8 = 2. A direct computation yields

t
1
lim sup e / ((t —s)° (3% — 6s?sin® s +2) — 252> ds =

t—o0
T

3 T
=3 (1 +cosTsinT — 2T cos® T — 3" 272 cosTsinT) =b(T).

Let b (t) = max (b(t),0). The relation
b2.()
r(t)v(t)

implies that the condition (2.12) is satisfied. Therefore, (2.36) is oscillatory by Corol-
lary 4. Note that in this example

=0(t*) as t— o0

t t

1 1
limsup — / Mr(s)v(s)hQ(t, s)ds = limsup— / 25%ds = 0. (2.37)
tooo 12 4 oo 12
1 1

(2.37) show that we do not need to impose any condition similar to the condition

t
1
lim sup e / a;—ﬂr(s)v(s)hQ(t, s)ds < o0

t—o00
1

in Theorem 2, but the analogue of this condition is necessary for Theorem 3.4, 3.7
in [21].
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