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A CLASS OF STRONG LIMIT THEOREMS

FOR NONHOMOGENEOUS MARKOV CHAINS
INDEXED BY A GENERALIZED BETHE TREE

ON A GENERALIZED RANDOM SELECTION SYSTEM "

ITPO OAUH KJIAC CHJIBHUX T'PAHUYHUX TEOPEM

JJII HEOJHOPIIHUX MAPKOBCBKHUX JIAHIIOXKKIB,
IO NPOIHAEKCOBAHI Y3ATAJIbHEHUM JIEPEBOM BETE
HA Y3ATAJIBHEHIV CUCTEMI BAIIAJIKOBOT'O BUBOPY

We study strong limit theorems for a bivariate function sequence of an nonhomogeneous Markov chain indexed
by a generalized Bethe tree on a generalized random selection system by constructing a nonnegative martingale.
As corollaries, we generalize results of Yang and Ye and obtain some limit theorems for frequencies of states,
ordered couples of states, and the conditional expectation of a bivariate function on Cayley tree.

BuBuarOThCS CHIBHI IpaHUYHI TEOPEMH JUIS MOCIIIOBHOCTI (QYHKIIN JBOX 3MIHHHX HEOJHOPIZHOTO MapKOB-
CBKOT0 JIAHIIIOXKKA, IO TIPOiH/IeKCOBAHHMIT y3araJbHEHHM JepeBoM bere Ha y3araiabHeHil cHCTeMi BHIIAIKOBOIO
BHOODY, IUISIXOM 1OOYIOBH HEBiJ’€MHOTO MapTHHTraia. SIk HacI;iJoK, y3arajlbHEHO pe3ynbratd SIHra Ta € i
OTPUMAHO AESKI IPAaHUYHI TEOPEMH AJIs YACTOT CTAHIB, YHOPSAAKOBAHUX I1ap Ta YMOBHOI'O CIIOJiBaHHS (QyHKLIT
JIBOX 3MIHHHX Ha nepesi Keumi.

1. Introduction and definition. Let 71" be a tree which is infinite, connected and contains
no circuits. Given any two vertices x # y € 7T, there exists an unique path z =
T1,T2,...,Tm = y from x to y with x, zs, ..., x,, distinct. The distance between =
and y is defined to m — 1, the number of edges in the path connecting x and y. To index
the vertices on T', we first assign a vertex as the ,,root”and label it as O. A vertex is said
to be on the nth level if the path linking it to the root has n edges. The root O is also
said to be on the Oth level.

Definition 1. Let T be a tree with root O, and let {N,,,n > 1} be a sequence of
positive integers. T is said to be a generalized Bethe tree or a generalized Cayley tree if
each vertex on the nth level has N, 1 branches to the n+ 1th level. For example, when
Ny =N+12>2and N,, = N, n > 2, T is rooted Bethe tree (a homogeneous tree)
Tp N on which each vertex has N + 1 neighboring vertices (I'p o drawn in Figure),
and when N, = N > 1, n > 1, T is rooted Cayley tree Tc n on which each vertex has
N branches to the next level.

In the following, we always assume that 7" is a generalized Bethe tree and denote by
T the subgraph of T' containing the vertices from level 0 (the root) to level . We use
(n,j), 1 <j < Nj...N,, n>1, todenote the jth vertex at the nth level and denote
by |B| the number of vertices in the subgraph B, L, the set of all vertices from level
m to level n, L, the set of all vertices on level n. It is easy to see that for n > 1,

|T<”>|:zn:NO...Nm:HZn:Nl...Nm. (1)

m=0 m=1

Let S = {s0,51,52,...}, = ST, w=w(-) € Q, where w(-) is a function defined on
T and takes values in S, and F be the smallest Borel field containing all cylinder sets in
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Q. Let X = {X,t € T} be the coordinate stochastic process defined on the measurable
space (2, F) (see [1, p. 412]); that is, for any w = {w(t),t € T}, define

Xi(w) =w(t), teT. )

Let 1 be an arbitrary probability measure defined on (€2, 7). Denote

¥T™ A {Xt,t c T(n)}, ,U(XT(M _ xT(M) _ M(Z‘T(")), 3)

where w(t) is in fact the sample point function with respect to ¢, X = {X;, ¢t € T}
is a stochastic process defined on the tree T, that is, X = {X;,t € T} is a se-
quence of random variables defined on all the vertices of T (i.e., {Xe,t € T} =
= {)(0717 X1,17 XLQ, veny Xl,NoNl y Xgﬁl, 7X2,N0N1N25 very Xm71, ’X’"%No-uNm’ }) .
We denote by 2T the realization of the stochastic process X 7 XT™ stands for
the sequence of the random variables defined on all the vertices from the root to level
n on the tree T'. ¢ ; is the realization of Xy ; which is the random variable defined on
the root.

Now we give a definition of Markov chains field on the tree 7" by using the cylinder
distribution directly, which is a natural extension of the classical definition of Markov
chains (see [2]).

Definition 2. Let {P, = P,(jli), i,j € S, n > 1} be stochastic matrices on S?,
p = (p(s0),p(s1),p(82),...) be a distribution on S, and pp be a measure on (Q, F). If

pp(zo1) = p(zo), “4)

n—1 N(]...Nm Nm+1i

pp(a™") = plo,) H H H Pri1(Tmi1,j|Tma), n>1. (5)

=0 i=1 j=Npp1(i—1)+1

3

Then pp will be called a Markov chains field on the tree T determined by the stochastic
matrices P, and the distribution p.

The tree model have recently drawn the increasing interest from specialists in
physics, probability and information theory. For the early studies on Markov chains
fields on trees see Spitzer [3]. Benjamini and Peres [4] have given the notion of the
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tree-indexed Markov chains and studied the recurrence and ray-recurrence for them.
Berger and Ye [5] have studied the existence of entropy rate for some stationary random
fields on a homogeneous tree. Pemantle [6] proved a mixing property and a weak law of
large numbers for a PPG-invariant and ergodic random field on a homogeneous tree. Ye
and Berger [7], by using Pemantle’s result and a combinatorial approach, have studied
the Shannon—McMillan theorem with convergence in probability for a PPG-invariant
and ergodic random field on a homogeneous tree. Yang [8, 9] and Liu [1] have studied
strong laws of large numbers for the frequency of occurrence of states for Markov chains
field on the Bethe tree and the generalized Bethe tree. Yang and Ye [2] have discussed
the strong limit theorems for nonhomogeneous Markov chain indexed by the homoge-
neous tree. Shi and Yang [10] have investigated a limit property of random transition
probability for a nonhomogeneous Markov chain indexed by a tree.

In this paper, we study a class of strong limit theorems for a bivariate function se-
quence for nonhomogeneous Markov chains field indexed by the generalized Bethe tree
on the the generalized random selection system by constructing a nonnegative martin-
gale. As corollaries, we generalize Yang and Ye’s results (see [2, 8]) and obtain some
limit theorems for frequencies of states, ordered couples of states, the harmonic mean
of the transition probabilities of the nonhomogeneous Markov chain and the conditional
expectation on Cayley tree.

Definition 3. Let {fm7i(l‘0717 L1153 L1, NgNyy--->Lm,1s--- ,Im,,i_l), 0<m<
<n,1 <4< Ny...Npn} be a series of real-valued functions defined on ST(n),
n=1,2,..., which take values in an arbitrary interval [a,b] (a,b € R). Denote

Yo = fo1=1,
Y, = fm,i(Xo1, Xi1, o, XiNgNys oo s Xomy1s oo Ximjie1),

1<m<n, 2<i<Ngy...Np,

Y11 = fnr1,1(Xo, 1, X115 Xinonss -0 X -5 X Nowoo N )
1<m<n-1. (6)

We call {Ypi, 0 <m <mn,1<i< Ngy...Np} as the generalized random selection
system on the generalized Bethe trees (the traditional random selection system takes
values in the set {0,1}).

We first explain the conception of the traditional random selection, which is the cru-
cial part of the gambling system. We give a set of real-valued functions f,(z1,...,2y)
defined on S™, n = 1,2,..., which will be called the random selection function if they
take values in a two-valued set {0, 1}. Then let

Y1 =y (y is an arbitrary real number),
)/TL-l-l:fTL(Xla"'vX’n)a Tl21

3

where {Y,,,n > 1} be called as the gambling system (the random selection system). Let
0;(j) be the Kronecker delta function on S, that is for i,j € S

ISSN 1027-3190. Vip. mam. scypn., 2011, m. 63, Ne 10
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0, @#J,

In order to explain the real meaning of the notion of the random selection, we con-
sider the traditional gambling model. Let {X,,,n > 0} be a nonhomogeneous Markov
chain, and {g,(z,y),n > 1} be a real-valued function sequence defined on S2. Inter-
pret X, as the result of the nth trial, the type of which may change at each step. Let
tn = Yngn(Xn—1,X,) denote the gain of the bettor at the n th trial, where Y,, repre-
sents the bet size, g, (X,,—1, X,,) is determined by the gambling rules, and {Y,,,n > 0}
is called a gambling system or a random selection system. The bettor’s strategy is to
determine {Y},,n > 1} by the results of the last trial. Let the entrance fee that the bettor
pays at the nth trial be b,,. Also suppose that b,, depends on X,,_; as n > 1, and by is

n
a constant. Thus Z Yigr(Xi_1, Xk) represents the total gain in the first n trials,

Z: ) b, the accumulated entrance fees, and Zk [Yigr(Xy_1, Xi) — by the accu-
mulated net gain. Motivated by the classical deﬁmtlon of ,,fairness”of game of chance
(see Kolmogorov [11]), we introduce the following definition:

Definition 4. The game is said to be fair, if for almost all w € {w: Z:O Y, =
= oo}, the accumulated net gain in the first n trial is to be of smaller order of magmtude
than the accumulated stake Z::1 Yy as n tends to infinity, that is

1 n )
lim —— Yigr(X,_1,Xk) —bx] =0 as. on {w: ZYk = oo}.

n—00 Z
py TR k=1

We generalize the traditional gambling system to the case of the nonhomogeneous
Markov chain indexed by the generalized Bethe tree, and obtain the following conclu-
sion:

2. Main results.

Theorem 1. Let X = {X;,t € T'} be a nonhomogeneous Markov chain indexed
by the generalized Bethe tree with the initial distribution and the transition matrices
defined as Definition 2. Let {g,(x,y),n > 1} be a series of real-valued functions
defined on S?. Let {a,,n > 0} be a nonnegative stochastic sequence, denote o > 0,

n—1 Ng...Npm, Ny

Fo(w) = Z Z Z Yo, igm+1(Xom,i, Xm41,5), @)

m=0 i=1 j=Np41(i—1)+1

n—1 No...N, Nonyi
Gn(w) = E [Yonigmt1(Xomir Ximt1,5)| Xmi],  (8)
m=0 =1 j=Np41(i—1)
n—1 Ny...N,, Npy1t
Hp(w) = E [exp{a |Ym,igm+1(Xm,ivXm+1,j)|}|Xm’i}'

m=0 i=1 j=Np4i(i—1)+1

)
Put
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1340 KANGKANG WANG

1
D= {w: lim a, = oo, limsup —H,(w) < oo}, (10)
n—oo n—oo An
then
. 1
l;m a—[Fn(w) —Gp(w)] =0 pp-as, weD. (11)

Proof. Consider the probability measure space (€2, F, up), letting A be an arbitrary
constant, we construct

T,(\w) =

_1 «—Ng...N Nypa1i
6)\ {Z:;:O DOREE Zi:ml\t,wrl(i—l)-#l Ym,ig7n+1(X7n,i7Xm+l,j)}

= ; ;o (12)

H 1 HNo...Nm, HNm-H E[e)\ym,igm+l(Xm,meJrl,j) |X ]

m=0L1i=1 F=Npi1(i—1)+1 m

n>1.
Noting that X = {X,¢ € T} satisfies (5), we have
(")
13()(11n _ an ‘XT(n—l) _ xT(n—l)) _ ,LLP(J) ) _
pp(xT1)
No...Np—1 N,i

= H Pn(xn,j|xn—1,i)~ (13)

Denoting F,, = a(XT(n) ), by (12), (13) and Markov’s property, we have
E[T,(\,w)|Fn_1] =

N Np—1 <Ny i e
E CA[Zizl Zj:’LNn(i—l)+1 Y’L*I»ign(anl,iaXn,j)] |XT( 1):|

=T, _1()\ w) - =
n s No...N,_1 HNM E[e)\Yn,lyig"(anLi,Xn,]') ‘anl z]
=1 Jj=Np(i—1)+1 ’

No---Np_1 Nni
A 2 ) > Yn—1,ign(Xn—1,i,%n,;)
Tn—l(/\’w) Z e i=1  j=Np(i—1)+1
rzlnecShn
No...Np_1 Nypi

H H E[eAYnfl,i!]n(X'nfl,'th,j)|Xn71 Z]
=1 j=Na(i—1)+1

No...Np—1 Npi

X H H Pn(xn,j

i=1  j=N,(i—1)+1

Xn-1,) =
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Np_1 Nyt

H H e/\Ynf1,ign(X'"*1=i’w"’j)Pn(xn,j‘anlvi)
mL,ZLesLn =L j=Na(i-D+1
—Tn 1()\,(4.)) No...Np_1 Nni )
AYn—1,i9n(Xn-1,i,Xn,j
H Ele?n-tionXn-vioXnid| x, ) ]
i=1 J=Nnp(i—1)+1
No...Np,_1 Nyi
AYin—1,i9n(Xn—1,i,Tn,;
H 2 : 1,i9n( L, *J)Pn(1'7L7j|Xn—l,i)
=1 j=Nu(i—1)+1an €S
_Tn—l(A’w) No...Np_1 Nyi )
H H E[e)\ynfl,ign(anlvi’X”’j)|Xn71,’i]
i=1  j=N,(i—1)+1
No...Ny, — Npi
H o 1H " E[eYr-1i9nXn-10Xni) | X ) ]
=Th-1(A i=1 J=Nn(i=1)+1 — =
= n—l( ,W) No...Np 1 Nyi -
H H E[e)\ynfl,ign(anlj’X"’j) ‘anl z]
i=1 J=Nn(i—1)+1 ,

=T 1(\w). (14)
Therefore, {1}, (\,w), Fpn,n > 1} is a nonnegative martingale. By Doob’s martingale

convergence theorem, we obtain

lim T,,(\,w) = Too(A\,w) < 00 pp-as. (15)

n—oo

By the first equation ILm an, = oo of (10) and (15) we have

1
limsup —InT,,(\,w) <0 pp-as., wéeD. (16)

n—oo an

By (7), (12) and (16), we obtain

— N, ‘m+1'L
lim sup {)\F Z Z Z lnE[e)‘ym,ingrl(Xm,z‘,Xerl,j)|Xm7i]}§

a
noree Tn m=0 =1 j=Np41(i—1)+1

<0 uwpp-as., weD. (17)

By (8), (17) and the inequalities Inz < z—1(z > 0), e* —1—2z < (1/2)22¢/*l, noticing
that

de -2
max{x2e x>0}——, h >0,

letting 0 < |A\| < «, we have

lim sup —)\{Fn( ) = Gn(w)} <

n—r oo an

n—1 N() Nm N7n+1’i
< limsup — E E {hl E[eAY’"'=igm+1(X”‘v"”X’"“*-f)\Xmﬂ-}—

a .
n—oo Hn i=1  j=Npyy1(i—1)+1

ISSN 1027-3190. Vip. mam. scypn., 2011, m. 63, Ne 10
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_EP\Ym,igm+1(Xm,i7Xm+1,j)|Xm,i]} <

n—1 Np.. N1t

< limsup — Z Z Z { E[e*migmt1Xm i Xmr1r0)| X ]~

a
=00 " m=0 i=1 J=Npm41(i—1)+1

—-1- E[)\Ym,igm+1(Xm,i7Xm+1,j)|Xm,i]} <

n—1 Np.. m+11 )\2
< lim sup a— Z Z Z E |:2Yri,iggz+1(mei7Xm+17j)x
no0 An 0 il =N (i—1)+1

MY, igm X, i X j —
Xe‘ Y, igm+1(Xm,i m+1'9)||Xm,i:| —

n—1 No.. Npmta1t

)\— lim sup — Z Z Z E [Yé,iggnJrl(Xm,iu Ximt1,5) %

a
n—00 " m=0 i=1 Jj=Npm41(i—1)+1

A=) Ym,igm+1(Xm i, Xm41,5)| p0lYm,igm+1(Xm i, Xm41,5
s e (M=) Yo, igm1 (X is Xome41,5)] @ Y i Gom+1 (X, +1,J>|Xm’i} <

9 n—1 No...Ny, Nim+11 e Ym igm1(Xm, i, Xm11,5) 42
< — limsup — E E E E 0 2 ‘ mai
a —a
PO TN =0 i=1  j=Npi1(i—1)+1
up-a.s.,, w € D. (18)

Taking 0 < A < «a, dividing two sides of (18) by A, we arrive at

1 2Xe 2
lirrisolép a{Fn(w) —Gp(w)} < ﬁx
n—1 Nop.. ‘m+1'L
% lim sup — Z Z Z E[eoé\ym,igm+1(Xm,uXerl,j) |Xm,i] < 00
n—oo Qn ~ 7, T J=Norr (i—1)+1
pp-a.s., weD. (19)
Since 2Xe™2 /(A 2 5 0as A — +0, by (19) we obtain
lim sup —{F (W) —Gp(w)} <0 pp-as., weD. (20)

n— oo ’fl

Taking —a < A < 0, dividing two sides of (18) by A, we have

lim 1nf—{F } 2he”? limsu 1 —H,(w) as, weD
n—oc Qn - (A4 a) nﬂoop an " Hpma.S. ’
(21)
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Since 2Xe™2 /(A + a)? — 0 as A — —0, by (21) we obtain

lim inf %{Fn(w) —Gpw)} >0 pp-as, weD. (22)
Therefore, it follows from (20) and (22) that (11) holds.

Theorem 2. Let X = {Xy,t € T'} be a nonhomogeneous Markov chain indexed
by the generalized Bethe tree with the initial distribution and the transition matrices
defined as Definition 2. Let {gn(z,y), n > 1}, {an,n > 0}, F,(w) and G, (w) be all
defined as Theorem 1. Denote o > 0,

n—1 Np.. Npg1i

Z Z Z E [Yri,ig’?n+1(Xm7i,Xm+17j)X

m=0 =1 j=Npi1(i—1)+1

Xea‘Ym,ig7n+1(Xm,,inm#»l‘j)‘ |Xm z} ] (23)
Put
. . 1
L(w) = {w: lim a, = oo, limsup — B, (w) < oo} , 24
n— oo n—ooo Qn
then
1
lim — [F,(w) — Gp(w)] =0 pp-as., we L(w). (25)

Proof. By the third inequality of (18) in the proof of Theorem 1, taking 0 < |A| < «,
we arrive at

lim sup i)\{Fn(w) —Gpw)} <

n—oo an

n—1 No...Np, Nyt /\2
2 2
<hmsupCTZ DD DI 1S CHVANC NS
OO T m=0 =1 =N (i-1)+1

Xe‘A||Ym,ig7n+1(X7n,i7Xm,+1,j)| |Xm Z:| <

n—1 Ng.. Npg1t

< )\— lim sup — Z Z Z [Yri,igrzn—l—l(Xm,i’X"L+17j)x

oo =1 j=Np41(i—1)+1
Xealym,igm+1(Xm,i7Xm+1,j)||Xm7i:| < 00
up-a.s.,, w€D. (26)
Take 0 < A\ < «, dividing two sides of (26) by A\, we have

l1msupf{F( ) = Gn(w)} <

n—oo Qn
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)\ n—1 NO m ”m+17’
2 2
< 5 nnsup— Z Z Z E {Ym,igmH(Xm,meH,j)x
n—00 m=0 i=1 j=Np,41(i—1)+1
xea‘Ym,iQm_*_l(Xm,hX‘m‘Fl,j)"Xmﬂv] < oo pp-as., weD. (27)

Letting A — +0, we have by (27) that

hmsup—{F (W) —Gp(w)} <0 pp-as, weD. (28)

n— oo

Taking —a < A < 0 in (26), we similarly obtain

lim inf i{Fn(w) —Gp(w)} >

n—00 Oy -

n—1 No.. Nyt

- hmsup — Z Z Z E {Yr?z,i972n+1(Xm,i7Xm+Lj)><
m=0 =1

Q.
n—oo Un = Ny1 (i—1)+1
Xealym,ig.m+1(X77L.i7X77L+1,j)||Xm-’i:| ,LLP'a.S., w E D.
Letting A — —0, we have

lim inf i{Fn(w) —Gp(w)} >0 pp-as, weD. (29)
n—co @,
It follows from (28) and (29) that (25) holds.
Corollary 1[2]. Let X = {X;,t € T} be a nonhomogeneous Markov chain in-
dexed by a homogeneous tree Tg n. Let {gn(z,y),n > 1}, {an,n > 0} be defined as
Theorem 1. Denote o > 0,

n—1 (N+1)N™~1 Ni
SHRES S SED S TRE S
m=1 i=1 j=N(i—1)+1
Xea|gm+1(Xm,7;,Xm+l‘j)"Xm i:|- (30)
Put
. : 1
J(w) = {w: lim a, = oo, limsup —G,(w) < OO} , (31
n—00 n—oo Qn
then
n—1 (N+1)N™1 Ni
P> DEED DEND DR CANCEME IS
i= J=N(i—1)+1
_E[gm+1(Xm,iaXm+1,j)|Xm,i]} =0 pp-as, weJ(w). (32)
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Proof. Letting No =1, Ny =N+1, N, = N(n > 2),Y,,;, =1 in Theorem 2,
(30), (31) and (32) follow from (23), (24) and (25).

Remark. The corollary is Theorem 1 of Yang and Ye (see [2]). Letting Y,,, ; = 1 in
Theorem 1, it can be seen that the condition (9), (10) weakens the condition (30), (31) of
Theorem 1 in the paper of Yang and Ye. Correspondingly the conclusion is strengthened.

Corollary 2 [8). Let X = {X;,t € T} be a nonhomogeneous Markov chain in-
dexed by the homogeneous tree. Let g(x,y) be a function defined on S? taking values
in {0,1}, {an,n > 0} be defined as Theorem 1. Put

n—oo

Gw) = {w: lim a, = oo,

n—1 (N+1)N™~t

lim sup — Z Z Z E [Q(Xm,i7Xm+1,j)|Xm,i] < OO}, (33)

a
n—00 n — J=N(i—1)+1

then
n—1 (N+1)N™~? Ni
hrrln a— Z Z Z {Q(Xm,iaXm+1,j)_
m=1 J=N(i—1)+1
—Elg(Xmis Xmn10) Xl } =0 ppeas, w € G(w). (34)

Proof. Letting g,(z,y) = g(z,y), n > 1, Y,,;, = 1 in Theorem 2, by (23), (33)
and the definition of g(x,y), we have

n—1 (N+1)N™~1

lim sup — Z Z Z E |:Y73L,i93n+1(Xm7i’Xm+17j)x

a
n—o00 n i=1 Jj=N(i—1)+1
Xea‘Ym,,lgnL+l(Xm‘7"’X7n+1"j)‘|Xm z:| <

n—1 (N+1)N™~1

< hmsup—ea Z Z Z E [9(Xomi, Xmt1,)| Xmi] <00, (35)

a
n—oo Un i— G=N(—1)+1

Hence G(w) C J(w), (34) follows from Theorem 2.
Corollary 3. Let S ={1,2,...,N}, and

Brn = min{ P, (y|z),z,y € S}, n>1. (36)

If there exists o > 0, such that

m4+1
lim sup —— |T(n)| Z e Pmit H N;j =M < oo, (37)

n—oo

then the harmonic mean of the transition probabilities { Py, 11(Xm+1,|Xm,i), 0 <m <
<n—-1,1<i< Ny...Np, Npi1(i—1)+1 < j < Nyyy1i} for the nonhomogeneous
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Markov chain indexed by the generalized bethe tree converges to N1 a.s., that is

)] _1
= N Hp-a.s.

lim

n—oo n—1 N Nomt1i —
Zm =0 Z Z] =Np+1(i—1)+ Pm+1(Xm+17J|Xm,z)
(38

Proof. Letting a,(w) = |T™|, g1 (Xmis Xmt1,7) = Pt (Xomg1,j1Xmi) 7L,
Ypm,s = 1 in Theorem 1, by (9), (10), (36) and (37) we have

n—1 Ng...Np, Ny

lim sup — Z Z Z E [GXP{@ |Ym,igm+1(Xm,i7 Xm+1,j)|}|Xm,i] =

a
n—oo " m=0 i=1 Jj=Nm41(i—1)+1

n—1 Np.. Npy1t

hm Sup |T(n)| Z Z Z E[exp{a ‘Pm+l(Xm+1,]'

i=1 j=Nmi1(i—1)+1

Xm,i)_l‘HXm,i] S

Ele"mi1 | Xpm.] =

i
= h,?l_ﬂip 7]

n—1
1 N, Ny Nypp1ePm+1t =
e 5 e
1 n—1 w m+1
= limsup ——— ePm+1 N:. =M < . 39
ey 2 ¢ 1L (9

By (10) and (39) we obtain D = (). Noticing that

E [gm—&-l(Xm,iaX7n+1,j)|Xm,i} =E [Pm—&-l(Xm—&-l,j|Xm,i)71|Xm,i] ==

= Z P7n+1 Tm+1 ]‘Xm 1) 1Pm+1(xm+1,j|Xm,i) = N. (40)

Tm4+1, JGS
By (11) and (40), we arrive at

lim i[Fn(w) - Gp(w)] =

Nn—00 (p,

n—1 Np.. Npy1t

n—>oo |T(’ﬂ)| Z Z Z [Pm+l(Xm+l,j|Xm7i)_1 - N] =
i=1

Nm+1(2 1)+1
n—1 No...Npm, Nin41i
= W ] n>| Z > > Prn(XonsaglXm ) ™'

i=1  j=Np4+1(i—1)+1

™| 1
— lim ———
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n—1 No.. N1t

= Jim i DD S A )

=1 j=Np41(i—1)+1

Hence, (38) follows from the above equation.
Remark. The corollary is a generalization of Theorem 1 of Shi and Yang (see [10]).
3. Derivation results. In the Definition 2, if for all n,

P,=P=(P(ylz)) VayeS. (41)

X ={X,,0 € T} will be also called S-valued homogeneous Markov chain indexed by
a generalized Bethe tree. At the moment, we have

pp(zo,1) = p(zo,1), (42)

n—1 Ng...Np, Nipg1i

/,LP(Z‘T(TL) J?o 1 H H H P(l‘m+17j|$m7i), n Z 1. (43)

m=0 i=1 j=Np41(i—1)+1

Theorem 3. Let X = {X;,t € T} be a homogeneous Markov chain indexed by
the generalized Bethe tree, g(x,y), F,(w) and G, (w) be defined as before. { Yy, ;, 0 <
<m<mn, 1 <i1<Ng. ..Nm} take values in a real-valued interval [a,b], where
a,b € R. Denote M = max{|al, b}, if

>N exp{aM |g(k,1)[}P(I|k) < oo. (44)
leS kesS
Then
lim o (Fu(w) — Gu(@)]| =0 pp-as 45)

n—oo |T ”)|
Proof. Letting a,, = |T(™| in Theorem 1, by (10) we have
n—1 No.. Nyt

lim sup — Z Z Z E [exp{a [Yin,ig(Xm,i» Xm+1,) | HXm,i] =

Q.
nree B —0 =1 Jj=Nm41(i—1)+1

n—1 Np.. Nyt
lunsup |T(")| Z Z Z Z exp{a Yo ig(Xm,is Tm1,5)|} %
=1  j=Npy1(i—1)+1Tm41,;E€S

><P($m+1,j \Xm,i) =

—1 No...Np, Ny
= ligsolép |T(") Z Z ‘ Z Z Z 0k (Xom,i) exp{a |Ym ig(k, ]} x
m=0 i=1 j=N,,41(i—1)+11€S keS
n—1 Np.. Npyi1i
P(l|k) < limsup —— |T(”)| Z Z Z ZZexp{onm (k,D)|}x
n—oo i=1  j=Npy1(i—1)+11ES kES
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)
P(lk) < Zthsup -1 exp{aM |g(k,1)|} P(I|k) =

leS kes " 7|
=Y exp{aM [g(k, 1)} P(I|k). (46)
leS kesS

By (44) and (46), we have D = Q. Therefore, (45) follows from Theorem 1.

Corollary 4 [2]. Let X = {X;,t € T} be a homogeneous Markov chain indexed
by a Cayley tree To v, Sn(k,l) be the number of couple (k,j) in the set of random
couple {( Xy iy Xim41,5),0 <m<n—-1,1<i< N N@iE—-1)+1< 5 < Ni},
S,.(k) be the number of k in the set of random variables X = {X;,t € T(™}. Then

Sn(k, 1) Sp—1(k)

T o)t (Uk)| =0 pup-as (47)

lim {

n— oo

Proof. Letting a, = ||, g,(z,9) = g(z,y) = I(z)I;(y), n > 1, Ny = 1,
N, =N, n>1,Y,,; =1 in Theorem 1, we have by (10) that

1 n—1 Ng...Ny, Nm+!i
hmsu a— Z Z Z E [exp{a |Yin,ig(Xm.is Xm+1,5) [ HXm,i] =
m=0 =1 j=Npi(i—1)+1

n—1 N™

- limnsup |T(n)| > Z E [exp{a [I1(Xm.)) [;(Xim+1,) [ H Xmi] <

m=0 i=1 j=N(i—1)+1

TM™| —1
< limsup |T(|n)|ea =e% < 0. (48)

Hence it implies that D = ). By (7) and (8), we obtain

n—1 N™

Z Z Z I (X, ) It (X m1,5) = Sn(k, 1), (49)

m=0 i=1 j=N(i—1)+1

n—1 N™ N1
Gp(w) = Z Z Z E [In(Xn,i) I (Xin41,5)| Xini] =
m=0i=1 j=N(i—1)+1
n—1 N™ Ni

_ S (X)) PUIXm) =

m=0i=1 j=N(i—1)+1

=3 Y RGP =

By (49), (50) and (11), noticing lim |7 |/|T("~1| = N, we have
n— o0
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lim i[Fn(w) —Gp(w)] =

N—>00 (p,

1

=1 1 Sn(k, 1 L S. kK)P(llk)| =0 51
—n;ngoﬁn(v)—mm()(l)—- (51)

Hence (47) follows from (51) directly.

Lemma 1 [9]. Let X = {X;,t € T™} be a homogeneous Markov chain
indexed by a Cayley tree Tc N which takes values in the finite alphabet set S =
= {1,2,..., N} with the initial distribution p = (p(1),p(2)...,p(N)) and transition
matrix (41), assume that the matrix (41) is ergodic. Let Sy, (k,w) be the number of k in

X7 = {Xy,t € T™Y. Then for all k € S,
 Sulk,w)
11717:11 W = 71'(]{3) up-a.s., (52)

where m = (w(1),...,m(N)) is the stationary distribution determined by P.
Theorem 4. Under the hypothesis of Lemma 1,

i |T(n)|zz Z E [exp{a [9(Xom,i» Xms1,) [} Xm,i] =

=N 5" w(k) explalg(k, D} P(UK)  pp-as. (53)

keSles

Proof. By (52) and the definition of S, (k), we have

n—1 N™

Z Z Z E [exp{a|g(Xom,i, Xm+1,j) [ HXm,i] =

m=01i=1 j=N(i—1)+1

n—1 N™ Ni

N
> Y exp{alg(Xmi, T )P @151 Xm,i) =

m=0i=1j=N(i—1)+1Zm41,;ES

n—1 N™ Ni

“Y Y S 6K expalg(k, DIFP(IR) =

m=0i=1 j=N(i—1)+1 LS k€S

n—1 N™ N1
=3 N explalge DIPUR) SN YT Sk(Xa) =
leS kesS m=0i=1 j=N(i—1)+1
=> Y exp{alg(k, )|} P(UIk)N S, _1 (k). (54)

lesS kes

By (52) and (54), noticing that lim |[7™)|/|T("~Y| = N, we obtain
n—oo
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-
i 3030 0 Blewp{aly(mi Xoners)[Hm] =

m=0 i=1 j=N(i—1)+1

—1im 3 explalg(k. D[} () ot E)
leS keS |T |
= hmz ZGXP{CY|9 (k, DI}P( l|k) (:Lk)
leS keS |T( )|
=3 3" w(k) exp{alg(k, D[} PUIK)  pp-as. (53)
leS kes

Theorem 5. Let X7 = {X;,t € T™} be a homogeneous Markov chain in-
dexed by a Cayley tree Tc n, we have

—1 N™ Ni
ZZ S Elexp{alg(Xmi Xme1 )|} =

1=0 i=1 j=N(i—1)+1

=> > plk)exp{alg(k, D)} PIk) pp-as. (56)

keSles

Proof. In virtue of properties of Markov chain, we obtain

- Ni
lim |T(n ZZ Y Elexp{alg(Xmi Xmir)} =
m=0i=1 j=N(i—1)+1

n—1 N™

hm |T(n)| Z Z Z Z Z exp{a |g Tm 1793m+171)|}><

m=0i=1 j=N(i—1)+1 Zm €S Tm11,;ES

XP(xm,i, $m+1,j) =

n—1 N™
. 1
= hTILn ‘T(n)| Z Z Z me z eXp{Oé |g(xm iy Tm+1 j)|}><
m=01i=1 j=N(i—1)4+1ZTm,i €S Tm41,;ES
XP(@mt1,j | Tmi) =
n—1 N™ Ni
= lim |T(n)| ST 30> p(k)explalg(k, DIYP(Ik) =

m=0i=1 j=N(i—1)+1 keS leS

>SS XY >° uk)explalo(hHPUIN) -

keS les m=0 i=1 j=N(i—1)+1
= 575" k) expla lg(k, DIPR)  pp-as. (57)
keS leS
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Hence (56) follows from (57). We have accomplished the proof.
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