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Q-PERMUTABLE SUBGROUPS OF FINITE GROUPS”
Q-IIEPECTABHI HNIATI'PYIIN CKiHYEHHUX I'PYII

A subgroup H of a group G is called Q-permutable in G if there exists a subgroup B of G such that (1)
G = HB and (2) if Hy is a maximal subgroup of H containing Hye, then H1 B = BH; < G, where
Hgg is the largest permutable subgroup of G contained in H. In this paper we prove that: Let F be a
saturated formation containing U and G be a group with a normal subgroup H such that G/H € F. If every
maximal subgroup of every noncyclic Sylow subgroup of F*(H) having no supersolvable supplement in G
is Q-permutable in G, then G € F.

Minrpyny H rpynu G Ha3suBaroTh (Q-nepecTaBHOIO B (7, KO icHye miarpyna B rpymu G Taka, mo: 1) G =
= HB ta 2) sxmo H; — makcumaneha niarpyna H, mo mictute Hgpg, 10 H1B = BH; < G, ne
Hgg e naiiGinbioro nepectaBHoo miarpynoro G, mo mictutbes B H. Y wilt poGoTi 10BeeHO HacTymHe
tBepukeHHs. Hexait F — Hacuuena dopmauist, mo mictute U, a G — rpyna 3 HOPMAIIbHOKO MiTrPyNO0
H rakoto, mo G/H € F. SIkumio KoXKHa MakCUMalbHa MIArpyna KOXHOI HELHKIYHOT CHIIOBCHKOI MIArPyIH
F*(H), wo He Ma€ HaJpO3B’A3HOrO JONOBHEHHS B (G, € Q-mepectaBHoio B G, 10 G € F.

1. Introduction. All groups considered in this paper are finite. Our terminology and
notation are standard (see [2, 6, 12]). In what follows, U/ denotes the formation of all
supersolvable groups.

It has been of interest to use the supplementation of subgroups to characterize the
structure of a group. In this context, Hall and Kegel proved some interesting results
for solvable groups (see [5, 8, 9]). Recently, by considering some special supplemented
subgroups, Wang introduced the concept of c-normal [14] and Ballester — Bolinches,
Guo and Wang introduced the notion of c-supplemented subgroups [1]. More recently,
A. N. Skiba introduced the concept of weakly s-permutable subgroups [13] and Miao
and Lempken introduced the definition of M-supplemented subgroups [10]. They used
certain types of supplement to study conditions for solvability and supersolvability of
finite groups.

In these paper, we continue this work and introduce the concept of Q)-permutable
subgroups.

Definition 1.1. A subgroup H of a group G is called Q-permutable in G if there
exists a subgroup B of G such that (1) G = HB and (2) if Hy is a maximal subgroup
of H containing Hog, then H1B = BHy < G, where Hgg is the largest permutable
subgroup of G contained in H.

Recall that a subgroup H is called M-supplemented in G, if there exists a subgroup
B of G such that G = HB and H; B is a proper subgroup of G for every maximal
subgroup H; of H. Moreover, a subgroup H is called weakly s-permutable in G if there
exists a subnormal subgroup K of G such that G = HK and H N K < Hgg where
H,¢ is the largest s-permutable subgroup of G contained in H.

The following examples indicate that the ()-permutability of subgroups cannot be
deduced from Skiba’s result nor from other related results.

Example 1.1. Let G = S, be the symmetric group of degree 4 and H = ((1234))
be a cyclic subgroup of order 4. Then G = H A, where A, is the alternating group of
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degree 4. Clearly, since A4 < G, we have A4 permutes all maximal subgroups of H
and hence H is @-permutable in G. On the other hand, we have Hyg = 1. Otherwise,
if H is s-permutable in G, then H is normal in G, a contradiction. If Hye = ((13)(24))
is s-permutable in G, then we also have ((13)(24)) is normal in G, a contradiction.
Therefore we know that H is not weakly s-permutable in G.

Example 1.2. Let G = S, be the symmetrical group of degree 4 and H be a Sylow
2-subgroup of G. Clearly, H is Q-permutable in G and G = H A4. Furthermore, H is
not M-supplemented in G.

2. Preliminaries. For the sake of convenience, we first list here some known results
which will be useful in the sequel.

Lemma 2.1. Let G be a group. Then:

() If H is Q-permutable in G, H < M < G, then H is Q-permutable in M.

(2) Let N 9 G and N < H. Then H is Q-permutable in G if and only if H/N is
Q-permutable in G/N.

(3) Let 7 be a set of primes. Let K be a normal '-subgroup and H be a w-subgroup
of G. If H is Q-permutable in G, then HK /K is Q-permutable in G/ K.

(4) Let R be a solvable minimal normal subgroup of G and Ry be a maximal
subgroup of R. If Ry is Q-permutable in G, then R is a cyclic group of prime order.

(5) Let P be a p-subgroup of G where p is a prime divisor of |G|. If P is Q-
permutable in G, then there exists a subgroup B of G such that |G: TB| = p for any
maximal subgroup T of P containing Pgq.

Proof. (1) If H is Q-permutable in G, then there exists a subgroup B of G such
that G = HB and TB < G for any maximal subgroup 7" of H with Hge < T.
Since H < M < G, we have Hgg < Hgp. Thus we may set L = M N B. Clearly,
L=MnNB<MadM=MNHB=H(MnNB)=HL. Since TB < G for every
maximal subgroup T of H with Hgy < T, we easily see that TL = T(M N B) =
= M NTB is a proper subgroup of M.

(2) This follows easily from the definition of Q)-permutable subgroups.

(3) If H is Q-permutable in G, then there exists a subgroup B of G such that
G = HB and H1 B < G for any maximal subgroup H; of H containing Hg¢. Clearly,
(HK/K)(BK/K) = G/K. For any maximal subgroup 7/K of HK/K containing
(HK/K)g(c/k), since K is a normal 7’-subgroup and H is a 7-subgroup of G,
we have 7' = T K where T} is a maximal subgroup of H containing Hgg. There-
fore (I1K/K)(BK/K) = 'BK/K = (BK/K)(T1'K/K) < G/K. Otherwise, if
T\BK = G, then |G: Ty B| = |K: K NT1B| is a 7/-number, on the other hand,
|G: Ty B| = |HB: T1B| is a m-number, which is a contradiction.

Conversely, if HK/K is Q-permutable in G/K by the subgroup B/K, we easily
verify that H is QQ-permutable in G by B.

(4) If Ry is permutable in G, then R = R; since the minimal normal subgroup
of (G is also a minimal permutable subgroup of G [11]), a contradiction. On the other
hand, if (R1)ga < Ri, then there exists a subgroup B of G such that G = R, B and
TB = BT < G for any maximal subgroup T of Ry with (R1)gc <T.If RN B =R,
then B = G, a contradiction. If RN B = 1, then R is a cyclic subgroup of prime order.

(5) If P is @-permutable in G, then there exists a subgroup B of G such that
G = PB and TB = BT < G for any maximal subgroup 7" of P with Pog < T. Since
|P: T| = p, we get |G| = [PB| = p|T||B|/|[P N B| = (p/|(P N B): (T'NB)|) - |TB|.
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As p is a prime and TB < G, we conclude that PN B =T N B and |G: TB| = p.
Now the claim follows.

Lemma 2.2 ([4], Theorem 1.8.17). Let N be a nontrivial solvable normal subgroup
of a group G. If N N ®(G) = 1, then the Fitting subgroup F(N) of N is the direct
product of minimal normal subgroups of G which are contained in N.

Lemma 2.3 ([16], Theorem 4.6). If H is a subgroup of G with |G: H| = p, where
p is the smallest prime divisor of |G|, then H 1 G.

Lemma 2.4 ([3], main theorem). Suppose a finite group G has a Hall mw-subgroup
where T is a set of primes not containing 2. Then all Hall w-subgroups of G are conju-
gate.

Lemma 2.5. Let G be a finite group and P be a Sylow p-subgroup of G where p
is the smallest prime divisor of |G|. If every maximal subgroup of P has a p-nilpotent
supplement or is Q-permutable in G, then G/O,(G) is solvable p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of
smallest order. Furthermore we have,

(1) 0,(G) # 1.

If 1 < Op(G) < P, then G/O,(G) satisfies the hypotheses and the minimal choice
of G implies that G/O,(G) = (G/0,(G))/0p(G/O,(G)) is p-nilpotent, a contradic-
tion.

(2) 0,(G) = 1.

Let P; be a maximal subgroup of P. If | P| = p, then G is p-nilpotent by Burnside
p-nilpotent Theorem, a contradiction. So we may assume |P| > p?. By hypotheses, if
P, has a p-nilpotent supplement in G, then there exists a subgroup K of G such that
G = P,K and K is p-nilpotent. Therefore we have Kp/ < K where Kp/ is a Hall
p'-subgroup of K and of course of G. Hence G = PiNg(K /). If PN Ng(K,) = P,
then K, < G, a contradiction. If PN Ng (K, ) = L where L is a maximal subgroup of
P, then |G: Ng(K,)| = |P: PN Ng(K,)| =|P: L| = p and hence Ng(K ) < G
by Lemma 2.3, a contradiction. So we may assume P N Ng(Kp/) < Ly < Ly where
L, is a maximal subgroup of P and L. is a maximal subgroup of L;. If L; has a
p-nilpotent supplement in G, then there exists a p-nilpotent subgroup H such that G =
= L1 H. With the similar discussion we have G = LlNg(Hp/) where H,; is the Hall
p’-subgroup of H and of course of G. By Lemma 2.4, there exists an element x of P
such that Ng(K,/) = (Ng(H,;))*. Therefore G = L1Ng(H,/) = (LiNg(H,))* =
= L1Ng(K,). Furthermore, P = PN LiNg(K,/) = L1(P N Ng(K,)) = L1, a
contradiction. Hence L; is @Q-permutable in G, there exists a subgroup B of GG such
that G = L1 B and TB < G for any maximal subgroup T of L; with (L1)gg < T.
Moreover, (L1)ga < O,(G) = 1 and hence L, is M-supplemented in G in this case.
Therefore Lo B < G and |G: Lo B| = p by Lemma 2.1(5). Since p is the smallest prime
divisor of |G|, Lemma 2.3 implies that LoB < G. We have G = L1 B = PB = PL»B
and PN LyB = Ly(P N B) is the Sylow p-subgroup of LyB. Clearly, L2(P N B)
is the maximal subgroup of P. By hypotheses if Lo(P N B) is @-permutable in G,
then Ly(P N B) is M-supplemented in G and hence M-supplemented in Ly B by
[10] (Lemma 2.1(1)). So LyB is p-nilpotent by [10] (Lemma 2.11). Therefore G is
p-nilpotent, a contradiction.

So we may assume Lo(P N B) has a p-nilpotent supplement in G. With the similar
discussion as above, there exists a p-nilpotent subgroup S such that G = Lo(P N

ISSN 1027-3190. Vrp. mam. scypn., 2011, m. 63, Ne 11



Q-PERMUTABLE SUBGROUPS OF FINITE GROUPS 1537

N B)S = La(P N B)Ng(S,) where S, is a Hall p'-subgroup of S and also of G.
By Lemma 2.4, there exists an element g of P such that Ng(K,) = (Ng(S,))?.
Therefore G = L2(P n B)Ng(sp/> = (LQ(P N B)NG(SP/))Q = LQ(P n B)Ng(Kp/).
Furthermore, P = PN Lz (PNB)NG(K /) = L2(PNB)(PNNg(K,y)) = L2(PNB),
a contradiction.

Therefore G/O,(G) is p-nilpotent.

Lemma 2.6 ([7], Chapter X). Let G be a group and N a subgroup of G. The gen-
eralized Fitting subgroup F*(G) of G is the unique maximal normal quasinilpotent
subgroup of G. Then:

(1) if N is normal in G, then F*(N) < F*(G);

Q) F(G) # 1if G # 1; in fact, F*(G)/F(G) = Soc (F(G)Ca(F(G))/F(G);

(3) F*(F*(Q)) = F*(G) > F(G); if F*(QG) is solvable, then F*(G) = F(G);

(4) Co(F*(G)) < F(G);

(5) let P < G and P < O,(QG); then F*(G/®(P)) = F*(Q)/®(P);

(6) if K is a subgroup of G contained in Z(G), then F*(G/K) = F*(G)/K.

Lemma 2.7 ([10], Lemma 2.7). Let G be a finite group with normal subgroups H
and L and let p € ©(G). Then the following hold:

D If L < ®(G), then F(G/L) = F(GQ)/L.

D IfL<HNPG), then F(H/L) = F(H)/L.

3) If H is a p-group and L < ®(H), then F*(G/L) = F*(G)/L.

4HIfL < P(G) with |L| = p, then F*(G/L) = F*(G)/L.

5)If L < HN®(G) with |L| = p, then F*(H/L) = F*(H)/L.

Lemma 2.8 ([15], Theorem 3.1). Let F be a saturated formation containing U, G
a group with a solvable normal subgroup H such that G/H € F. If for every maximal
subgroup M of G, either F(H) < M or F(H) N M is a maximal subgroup of F(H),
then G € F. The converse also holds, in the case where F = U.

3. Main results.

Theorem 3.1. Let G be a group and H a normal subgroup of G with G/H € U.
If every maximal subgroup of every noncyclic Sylow subgroup of H has a supersolvable
supplement or is Q-permutable in G, then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample with minimal
order. Then we have following claims:

(1) G is solvable.

By hypotheses and Lemma 2.5, H/O,(H) is solvable r-nilpotent where r is the
smallest prime divisor of |H| and hence G is solvable. Let L be a minimal normal
subgroup of GG contained in H. Clearly, L is an elementary abelian p-group for some
prime divisor p of |G|.

(2) G/L € U and L is the unique minimal normal subgroup of G contained in H
such that H N ®(G) = 1. Furthermore, L = F(H) = Cy(L).

Firstly, we check that (G/L, H/L) satisfies the hypotheses for (G, H). We know
that H/L < G/L and (G/L)/(H/L) = G/H is supersolvable. Let Q = QL/L be
a Sylow g¢-subgroup of H/L. We may assume that ) is a Sylow g-subgroup of H.
If p = g, we may assume that L < P, where P is a Sylow p-subgroup of H. If
L < P = (@, then every maximal subgroup of P/L is of the form P;/L where P; is
a maximal subgroup of P. If P;/L has no supersolvable supplement in G/L, then P;
has no supersolvable supplement in G, by hypotheses, P; is @-permutable in G and
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hence P;/L is Q-permutable in G/L by Lemma 2.1(3). Now we assume that p # q.
Let Q; be a maximal subgroup of a Sylow g-subgroup of H. Without loss of generality,
we may assume that Q; = Q1L/L where Q1 is a maximal subgroup of a Sylow
g-subgroup of H. Clearly, if Q1L/L has no supersolvable supplement in G/L, then
Q1L/L is Q-permutable in G/L by Lemma 2.1(3). Hence G/ L satisfies the hypotheses
of the theorem. The minimal choice of G implies that G/L € U. Since U is a saturated
formation, we know that L is the unique minimal normal subgroup of G which is
contained in H and L £ ®(G). By Lemma 2.2 we have F/(H) = L. The solvability of
H implies that L < Cy (L) = Cy(F(H)) < F(H) and so Cy(L) = L = F(H).
(3) L is a Sylow subgroup of H.

Let ¢ be the largest prime divisor of | H| and @ be a Sylow g¢-subgroup of H.
Since G/ L is supersolvable, we have H/L is supersolvable. Consequently, LQ)/L char
H/L QG/L and hence LQ I G. If p = ¢, then L < Q < G. Therefore Q < F(H) =
= L and L is a Sylow ¢-subgroup of H as desired.

Now we assume p < q. Let P be a Sylow p-subgroup of H. Clearly, P is not cyclic.
Otherwise, G/L € U implies that G € U. Then L < P and PQ = PLQ is a subgroup
of H. Note that every maximal subgroup of noncyclic Sylow subgroup of PQ having no
supersolvable supplement in PQ is @Q-permutable in PQ by Lemma 2.1(1). Therefore
PQ satisfies the hypotheses for G. If PQ < G, the minimal choice of G implies that
PQ is supersolvable; in particular, Q@ < PQ. Hence LQ = LxQ and Q < Cy(L) < L,
a contradiction.

Now we may assume that G = PQ = H and L < P. Since G/L € U, LQ < G. By
the Frattini argument, G = LNg(Q). Note that L N N (Q) is normalized by N¢(Q)
and L. Since L is the unique minimal normal subgroup of G, we have LN Ng(Q) = 1.
Let P> be a Sylow p-subgroup of Ng(Q). Then LP; is a Sylow p-subgroup of G.
Choose a maximal subgroup P; of LP, such that P, < P;. Clearly, L £ P; and hence
(P1)g = 1. If Py is Q-permutable in G, then there exists a subgroup B of G such
that G = PyB and TB < G for any maximal subgroup 7' of P; containing (P;)g¢-
Furthermore, (P1)ge = 1. Otherwise, if (P1)ge # 1, then we have (Pi)gg = L
since 1 < (P1)ge < O,(G) = L and a minimal normal subgroup of G and also is
the minimal permutable subgroup of G by [11], contrary to L £ P;. We may choose a
maximal subgroup T' of P; with P, < T. Otherwise, P, = P;, then we have |L| = p
and hence G/L € U implies that G is supersolvable, a contradiction. By Lemma 2.1(5),
|G: TB| = p. Therefore L < TBor LNTB = 1.If LNTB =1, then |G: TB| = |L| =
= p, a contradiction. Therefore L < T'B and hence LP, < T'B, contrary to |G: TB| =
=p.

So P; has a supersolvable supplement in G, that is, there exists a supersolvable
subgroup K of GG such that G = P; K. In fact, K has a normal p-complement ¢); which
is also a Sylow g-subgroup of G. By Sylow’s theorem, there exists an element g € L
such that QY = Q. Since P, < LP,, we have that G = PK = (P,K)? = P, KY.
Since K9 = K has a normal Sylow g-subgroup and Q = QY < K9, it follows that
K9 < Ng(Q). Since LP, = LP, NG = LP, N PKY9 = P;(LP, N K9), we have
that LP, N K9 ;é P5. Otherwise, LP, < PP, = P, a contradiction. Therefore P; is
a proper subgroup of P3s =< P», LP> N K9 > . On the other hand, since both P, and
K9 are contained in Ng(Q), Ps is a p-subgroup of N (Q) which contains a Sylow
p-subgroup P, of Ng(Q) as a proper subgroup, which is a contradiction.
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@4 Gel.

Let L; be a maximal subgroup of L. If L1 has a supersolvable supplement in GG, then
there exists a supersolvable subgroup K of G such that G = L, K. Since L is a minimal
normal subgroup of G, we have LN K € {1,L}. f LN K = L, then G = [1 K = K,
a contradiction. If L N K = 1, then |L| = p, also a contradiction. Thus we have that
L is Q-permutable in G. In this case we know that L is a cyclic subgroup by Lemma
2.1(4), a contradiction.

The final contradiction completes our proof.

Corollary 3.1. Let G be a group. If every maximal subgroup of every noncyclic
Sylow subgroup of G having no supersolvable supplement in G is Q-permutable in G,
then G is supersolvable .

Theorem 3.2. Let F be a saturated formation containing U. Suppose that G is a
finite group with a normal subgroup H such that G/H € F. If every maximal subgroup
of every noncyclic Sylow subgroup of H having no supersolvable supplement in G is
Q-permutable in G, then G € F.

Proof. Assume that the claim is false and choose G to be a counterexample of
minimal order. Since the pair (H, H) satisfies the hypotheses for the pair (G, H) with
H/H € U, H is supersolvable by Theorem 3.1.

Now let p be the largest prime in 7(H ) and P € Syl,(H); so P = O,(H) < G. Let
L be a minimal normal subgroup of G contained in P. Using similar arguments as for the
proof of Claim (2) of Theorem 3.1 we easily establish that G/L € F and that L is the
unique minimal normal subgroup of G contained in H; moreover, L = F(H) = Cy(L)
is noncyclic and H N ®(G) = 1.

Clearly, Q,(Z(P)) < G and so L < Q4(Z(P)); hence P < Cyx(L) = L and thus
L = P € Syl,(H). The same arguments as the last step of the proof of Theorem 3.1
now yield a contradiction.

Theorem 3.3. Let F be a saturated formation containing U and G be a group
with a solvable normal subgroup H such that G/H € F. If every maximal subgroup of
every noncyclic Sylow subgroup of F(H) having no supersolvable supplement in G is
Q-permutable in G, then G € F.

Proof. Assume that the assertion is false and choose G to be a counterexample of
minimal order.

By Lemma 2.8, we may pick a maximal subgroup M of G not containing F'(H).

Actually, since F((H) £ M, there at least exists a prime p of 7(| H|) with O, (H) £
£ M. Then G = O,(H)M and O,(H) N M < G.If |O,(H)| = p, then |G: M| =p
and hence G € F by Lemma 2.8, a contradiction. Let M), be a Sylow p-subgroup of M.
Then we know that G, = O, (H)M),, is a Sylow p-subgroup of G. Now, let P; be a max-
imal subgroup of G}, containing M, and set P» = PiNO,(H). Then P, = P, M,,. More-
over, B "M, = Op(H)NM,, 50 |Op(H): Po| =|Op(H)My: PoM,| = |Gp: Pi| =
= p, that is, P, is a maximal subgroup of O, (H ). Hence P»(O,(H)N M) is a subgroup
of O,(H). By the maximality of P, in O,(H), we have P>(O,(H) N M) = P> or
O,(H).

) If P,(O,(H)NM) = O,(H), then G = O,(H)M = P, M. Notice that O, (H) N
NM=P,NM. So O,(H) = P>, a contradiction.

2) P,(Op(H) N M) = P, that is, O,(H) N M < P. Clearly, O,(H) N M <
< G, 50 Op(H)N' M < (P)¢. On the other hand, if P, has a supersolvable supple-
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ment in G, then there exists a supersolvable subgroup N of GG such that G = P, N.
Set K = (Py)gN, then G = P,N = PK and K/K N (Py)g = K/(P)g =
= (P2)GN/(P2>G = N/N n (PQ)G ceU C F.

Now, we consider the following cases.

a) K < G. Suppose that K7 is a maximal subgroup of G containing K. Then
O,(H)NK; < G, which implies that (O,(H)NK7)M is a subgroup of G. If (O,(H)N
NK1)M =G = O,(H)M, then O,(H) N K1 = O,(H) since (O,(H)N K1) N M =
= O,(H) N M. This implies that O,(H) < Kj, and hence G = O,(H)K; = K;,
which is contrary to the above hypotheses on K;. Thus (O,(H) N K;)M = M and
hence O,(H) N K7 < M. Furthermore, P, N K < O,(H)NK < O,(H)NM <
< (P)g < P,NK, thatis, O,(H)NK = O,(H)N M = P, N K. This is contrary to
G=PK=0,(H)K.

b) K = (P2)¢N = G. In this case, if (Py)g = 1, then N = G € F, a contradiction.
So we may assume that (P2)g # 1. Thus (P2)¢M = M or G. If (P)eM = G,
then G = (P)¢M = O,(H)M = P,M. Note that O,(H) N M = P, N M, so
O,(H) = Py, a contradiction. Therefore (P;)cM = M. It follows from (P;)g <
< Op(H)NM < (P2)g that Op,(H) N M = (P»)g. By hypotheses, G/(Py)c € U
implies that |G/(P2)¢: M/(P2)g| = |G: M| = p. This is contrary to the choice of M.

So we may assume that P, is (J-permutable in G. There exists a subgroup B of G
such that P,B = G and TB < @ for any maximal subgroup 7' containing (P»)gq-
Assume P, is permutable in G. The maximality of M in G implies P, M = M or G. If
P,M = G, then G = O,(H)M = P,M and hence O,(H) = P, since O,(H)N M =
= P,NM, a contradiction. Thus O, (H)NM = P>»NM = P, and hence |F(H): F(H)N
NM|=|G: M| =|0,(H): Op(H) N M| = p, a contradiction.

Finally we may assume (P;)gc < P». For any maximal subgroup T' of P, con-
taining (P»)gq, we have |G: TB| = p by Lemma 2.1(5). Clearly, T'B is a maximal
subgroup of G. Then O,(H) NTB < G, which implies that (O,(H) NTB)M is a
subgroup of G. If (O,(H)NTB)M = G = O,(H)M, then O,(H) NTB = O,(H)
since (Op(H) NTB)NM = O,(H) N M. This leads to O,(H) < TB, and hence
G = Op(H)TB = TB, which is contrary to the above hypotheses on T'B. Thus
Op(H)NTB < M. Furthermore, P, NTB < O,(H)NTB < O,(H)NM <
< (P)gag < P, NTB, from this, O,(H) NTB = O,(H) N M = P, NTB. This
is contrary to G = P,B = O,(H)B.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group with a solvable normal subgroup H such that
G/H € U. If every maximal subgroup of every noncyclic Sylow subgroup of F(H)
having no supersolvable supplement in G is QQ-permutable in G, then G € U.

Theorem 3.4. Let F be a saturated formation containing U and G be a group
with a normal subgroup H such that G/H € F. If every maximal subgroup of every
noncyclic Sylow subgroup of F*(H) having no supersolvable supplement in G is Q-
permutable in G, then G € F.

Proof. Suppose that the theorem is false and choose GG to be a counterexample of
minimal order; so in particular, H # 1. We consider the following two cases.

Case 1. F =U.

By Corollary 3.1 we easily verify that F*(H) is supersolvable and hence F'(H) =
= F*(H) # 1 by Lemma 2.6(3). Since H satisfies the hypotheses of the theorem,
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the minimal choice of GG implies that H is supersolvable if H < G. Then G € U by
Corollary 3.2, a contradiction. Thus we have

()H =G, F*(G)=F(G) # 1.

Let S be a proper normal subgroup of G containing F*(G). By Lemma 2.6(1),
F*(G) = F*(F*(G)) < F*(S) < F*(@), so F*(S) = F*(G). By hypotheses and
Lemma 2.1(1), every maximal subgroup of every noncyclic Sylow subgroup of F™*(.S)
having no supersolvable supplement in S is Q)-permutable in S. Hence S is supersolv-
able by the minimal choice of G' and we get

(2) Every proper normal subgroup of G containing F*(G) is supersolvable.

Suppose now that ®(0,(G)) # 1 for some p € 7n(F(G)). By Lemma 2.6(5) we
have F*(G/®(0,(G))) = F*(G)/®(0,(G)). Using Lemma 2.1(2) we observe that
the pair (G/®(0,(Q)), F*(G)/®(0,(G))) satisfies the hypotheses of the theorem. The
minimal choice of G then implies G/®(0,(G)) € U. Since U is a saturated formation,
we get G € U, a contradiction. Thus we have

(3) If p € ©(F(G)), then ®(0,(G)) = 1 and O,(G) is elementary abelian; in
particular, F*(G) = F(Q) is abelian and C(F(G)) = F(G).

If L is a minimal normal subgroup of G contained in F'(G) and |L| = p where
p € 7(F(G)), then set C = Cg(L). Clearly, F(G) < C < G. If C < G, then C is
solvable by (2). On the other hand, since G/C' is cyclic, then we have G is solvable, a
contradiction. So we may assume C' = G. Now we have L < Z(G). Then we consider
subgroup G/L. By Lemma 2.6(6), we have F*(G/L) = F*(G)/L = F(G)/L. In fact,
G/ L satisfies the condition of the theorem by Lemma 2.1. Therefore the minimal choice
of G implies that G/L € U and hence G is supersolvable, a contradiction. This proves

(4) There is no normal subgroup of prime order in G contained in F'(G).

If every Sylow subgroup of F'(G) is cyclic,then F(G) = Hy X ... x H, where H;,
i=1,...,r, is the cyclic Sylow subgroup of F(G) and hence G/C¢q(H;) is abelian for
any 7 € {1,...,r}. Moreover, we have G/ m:—1 Ce(H;) = G/Cq(F(Q)) is abelian
and hence G/F(G) is abelian since C(F(G)) = Ca(F*(G)) < F(G). Therefore G
is solvable, a contradiction. This proves that

(5) There exists noncyclic Sylow subgroup O,(G) of F'(G) for some prime p €
e 7(F(Q)).

Let P, be a maximal subgroup of O,(G). If P; has a supersolvable supplement
in GG, then there exists a supersolvable subgroup K of G such that G = PLK =
= O,(G)K. Clearly, G/O,(G) = K/K N O,(G) is supersolvable and hence G is
solvable, a contradiction. So we obtain that

(6) Every maximal subgroup of every noncyclic Sylow subgroup of F(G) has no
supersolvable supplement in G.

Set R = O0,(G)N®(G). If R = 1, then by Lemma 2.2, O,(G) is the direct product
of some minimal normal subgroup of G. So we may assume that O,(G) = Ry x...x Ry,
where R; is a minimal normal subgroup of G, i = 1,2,...,t. Consider the maximal
subgroup P; of P, where P; has the following form:

P1=R1X...XR1'_1XRZ‘*XRH_lX...XRt.

Where R;" is a maximal subgroup of R; for some i. By hypotheses and (6), P; is Q-
permutable in G. Let T' denote the normal subgroup Ry X... X R;_1 X R; 11 X...x R; of
G, then P; = R;*T. Let T denote the normal subgroup Ry X... X R;_1 X Rji 1X... X Ry
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of G, then P, = R;"T. Clearly, T < (P;)g¢ and P/T is the minimal normal subgroup
of G/T. Since (P;)ga/T is a permutable subgroup of G/T, by [11] a minimal normal
subgroup of G is also the minimal permutable subgroup of G, we have (P;)goc = T. By
hypotheses P; is QQ-permutable in G, there exists a subgroup B of G such that G = P| B
and SB = BS < G for any maximal subgroup S of P; containing (P;)gc = T. By
Lemma 2.1(5) we have |G: SB| = p. Since R; is the minimal normal subgroup of G,
we have R; N SB € {1, R;}. Clearly, if R; < SB, then we have SB = R;SB =G, a
contradiction. Hence we have R; £ SB, we know that |R;| = p, contrary to (4). This
contradiction leads to

(7 R=0,(G)N®(G) # 1.

Let @ be a Sylow g-subgroup of F'(G), and let L be a minimal normal subgroup of G
contained in R, where g # p. Then (@ is elementary abelian by (3). By the definition of a
generalized Fitting subgroup, F*(G/L) = F(G/L)E(G/L) and [F(G/L), E(G/L)] =
=1, where E(G/L) is the layer of G/L. Since L < ®(G), F(G/L) = F(G)/L. Now
set E/L = E(G/L). Since Q is normal in G and [F(G)/L,E/L] =1, [Q,E] < @nN
NL=1,1ie., [Q,FE] = 1. Therefore F'(G)E < Ce(Q). If Ca(Q) < G, then Cx(Q)
is supersolvable by (2). Thus E(G/L) = E/L is supersolvable. The semisimplicity of
E(G/L)/Z(E(G/L)) implies that E(G/L) = Z(E(G/L)). So E(G/L) < F(G/L)
and F*(G/L) = F(G)/L, with the same argument in (3), we have that G/ L satisfies
the hypotheses of the theorem. By the minimal choice of G, G/L is supersolvable
and so is G, a contradiction. If C5(Q) = G, then Q@ < Z(G). By Lemma 2.6(6),
F*(G/Q) = F*(G)/Q = F(G)/Q. Similarly, G/Q is supersolvable and so is G by
Corollary 3.2, a contradiction. This verifies

(8) F(G) = 0p(G).

If R = O,(G), then by hypotheses every maximal subgroup P; of O,(G) is Q-
permutable in G. That is, there exists a subgroup B of G such that G = P, B and
TB < @G for any maximal subgroup T" of P; containing (P;)g¢. Then G = P\B = B
since P < ®(G), a contradiction. Hence R # O,(G). Now ®(G/R) = 1. Then
by Lemma 2.2, O,(G)/R = (H1/R) x ... x (H,/R), where H;/R, i = 1,...,m,
are minimal normal in G/R. With the same argument as in (7), we know that H;/R,
i = 1,...,m, are all of order p because all maximal subgroups of O,(G)/R are Q-
permutable in G/R by Lemma 2.1(2). Again, since O,(G) is an elementary abelian
p-group, H; is of the form (x;)R, i = 1,..., m. This proves

9) O,(G) = (z1) X ... X (Tp) X R where (x;) # 1and (x;) RIG,i=1,...,m

Now let L be a minimal normal subgroup of G contained in R and set G := G/L.
Clearly, F(G) = F(G)/L = O,(G)/L, because L < ®(G). If F*(G) = F(G), then
we easily verify that G/L satisfies the hypotheses of the theorem, and thus G/L €
€ U by the minimal choice of G. Since L < ®(G) and U is saturated, we get G €
€ U, a contradiction. Therefore F*(G) = F(G)E(G) > F(G) and so there exists
a perfect normal subgroup F in G such that EL/L = E(G). Clearly, O,(G)E is a
nonsolvable normal subgroup of G hence, by (2) and (1), G = O,(G)E. In particular,
L(G)E(G) = F*(G) with [0,(G), E(G)] = [F(G),E(G)] = 1 and hence
,E] < L. Since L is minimal normal in G and since [O,(G), E] < G as well as
0,(GQ)) = 0,(G), we get [0,(G), E] = L. Therefore we have the following:

10) G = O,(G)E with L = [0,(G), E] < O,(G)NE , G = 0,(G)E = F*(G)
and O, (G) < Z(G).

Q)
I
Q

[0)
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Now assume that M is a minimal normal subgroup of G contained in O,(G) with
M # L. Then M = ML/L is a minimal normal subgroup of G contained in Z(G). As
MNL=1,weget |M|=|M|=p, contrary to (4). This proves

(11) L is the unique minimal normal subgroup of G contained in O, (G).

Now let T' be a complement of L in O,(G) and set P; := T'L; where L, is a
maximal subgroup of L. Then P; is a maximal subgroup of O,(G) and so, by hy-
potheses, is @-permutable in G with G = P/B = PB and SB = BS < G for
any maximal subgroup S containing (P;)gg. Obviously, (P1)g¢ is normalized by
0,(G)0OP(G) = O,(G)OP(E) = O,(G)E = G. Since (P;)gc does not contain L,
we conclude (P1)gg = 1 by (11).

By Lemma 2.1(5), |G: SB| = p. Clearly, SB is a maximal subgroup of G, and
LNSB e {1,L}. If LN SB =1, then |L| = p, this is contrary to (4). So we have
L < SB for any maximal subgroup S of P;. Furthermore, if L N P; = 1, then we also
have |L| = p, a contradiction. So we get L N P; # 1. We claim that LN P; < S for
any maximal subgroup S of P;. Otherwise, there exists a maximal subgroup S of P;
such that LN P; £ S. So we consider SB = (LN P;)SB = P, B = G, a contradiction.
Based on the discussion as above, we have 1 < LNP; < ®(P;) < &(0,(G)), contrary
to (3), thereby completing the proof for Case I .

Case2. F #U.

By case 1, H is supersolvable. Particularly, H is solvable and hence F*(H) =
= F(H). Therefore G € F by Corollary 3.2.

The final contradiction completes our proof.

Corollary 3.3. Let G be a group with a normal subgroup H such that G/H € U.
If every maximal subgroup of every noncyclic Sylow subgroup of F*(H) having no
supersolvable supplement in G is Q-permutable in G, then G € U.
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