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A COMMON FIXED POINT
FOR GENERALIZED (1, ) ,,~-WEAK CONTRACTIONS

CHIJIBHA HEPYXOMA TOYKA JJIA Y3ATAJIbBHEHUX
(¥, ¢) £,,-CIABKUX CTUCKYIOUYHUX BIJOBPAKEHb

We extend the common fixed point theorem established by Zhang and Song in 2009 to generalized (2, ) f,4-
weak contractions. Moreover, we give an example that illustrates the main result. Finally, some common fixed
point results are obtained for mappings satisfying a contraction condition of the integral type in complete
metric spaces.

TeopeMy Ipo cHinbHy HEpyXOMy TOUKy, o Oyna BcraHoBieHa WkanoMm i CyHoM y 2009 powi, momupeHo
Ha y3aranbHeHi (v, @)y g-caOki cTHCKyloui BifoOpaxkeHHs. HaBeneHO HpMKIa, IO iTIOCTpye OCHOBHHIL
pesynbrar. OTpHMaHO JiesKi pe3yabTaTH Npo CHiIbHY HEPYXOMY TOUKY JUISl BiJoOpa)keHb, 10 3aJ0BOJIBHSIIOTH
YMOBY CTHCKY iHTETPaJIbHOTO THILy Y IOBHHX METPUYHUX IIPOCTOPAX.

1. Introduction. Let (X, d) be a metric space. A mapping 7': X — X is said to be -
weak contraction, if there exists a map ¢: [0, 00) — [0, 00) with p(0) = 0 and p(t) > 0
for all ¢ > 0 such that

d(Tx, Ty) < d(z,y) — ¢(d(z,y))

forall z,y € X.

The above notion has been defined by Alber et al. [2] in 1997. They obtained some
fixed point results in Hilbert spaces. Then Rhoades [14] extended those results in Banach
spaces. In 2006, Beg and Abbas [5] studied some generalizations of Rhoades’s results
[14] for a pair of mappings such that one is weakly contractive with respect to the other.

In 2009, Zhang et al. [15] introduced the concept of generalized ¢-weak contraction
as follows:

Definition 1.1. Two mappings T,S: X — X are called generalized p-weak con-
tractions, if there exists a lower semicontinuous function ¢: [0,00) — [0,00) with
©(0) = 0 and ¢(t) > 0 for all t > 0 such that

forall x,y € X, where

N(z,y) = max {d(x, y),d(z, Tx),d(y, Sy), %[d(x, Sy) +d(y, Tz)] }

Zhang et al. proved the following theorem.

Theorem 1.1. Let (X,d) be a complete metric space, and T,S: X — X are
generalized p-weak contractions mappings where ¢ [0,00) — [0, 00) is a lower semi-
continuous function with ©(0) = 0 and ©(t) > 0 for all t > 0. Then there exists a
unique point v € X such that v ="Tu = Su.

So far, many authors extended Theorem 1.1 (see [1, 7, 12]). Moreover, Doric [7]

generalized it, by the definition of generalized (1), v)-weak contractions.
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Definition 1.2. Two mappings T, S: X — X are called generalized (1, p)-weak
contractive, if there exist two maps ¢, [0,00) — [0, 00) such that

Y(d(Tz, Sy)) < p(N(z,y)) — p(N(z,y)),

Jor all z,y € X, where N and ¢ are as in Definition 1.1 and : [0,00) — [0,00) is a
continuous monotone nondecreasing function with 1(0) = 0 and ¢ (t) > 0 for all t > 0.

Theorem 1.2 [7]. Let (X,d) be a complete metric space, and T,S: X — X be
generalized (1, p)-weak contractive self-mappings. Then there exists a unique point
u € X such that u = Tu = Su.

Moradi et al. [12] extended the Zhang and Song’s result by introducing the notion
of ¢ s-weak contractive mappings.

Definition 1.3. Two mappings T,S: X — X are called generalized o ¢-weak
contractive, if there exist two maps ¢: [0,00) — [0,00) and f: X — X where ¢ is a
lower semicontinuous function with ©(0) = 0 and p(t) > 0 for all t > 0 such that

d(TJZ, Sy) < P(x,y) - @(P(x,y)),

forall x,y € X, where

Pla.y) = max {atfo. fu). d( o To). (. $0) 5. T2) + (7. 50)] |
Moradi et al. [12] proved the following theorem:
Theorem 1.3. Let (X, d) be a complete metric space and E be a nonempty closed

subset of X. Let T, S: E — E be two generalized g-weak contractive.

Assume that f is a continuous function on E and

(I) TEC fE and SE C fE.

(I1) The pairs (T, f) and (S, [) are weakly compatible.
Ifforallxz € X

d(fTz, Tfx) <d(fx,Tx) and d(fSz,Sfz)<d(fz,Sz),

then f, T and S have a unique common fixed point.

2. Main results. In this paper, we establish common fixed point theorems for
mappings satisfying (v, ¢) r,4-weakly contractive condition in a complete metric space.
Our result is an extension of Theorem 1.1 and Theorem 1.2. In fact, our generalization
is different from other generalization in [1, 7, 12].

From now as in [1], we assume:

¢ = {gp}gp: [0,00) — [0,00) is a lower semicontinuous function,
@(t) >0 forallt >0 and ¢(0) = O},

and

U= {'l/)|1/}: [0,00) — [0,00) is a continuous and nondecreasing function

and w(t):0<:>t:0}.

We introduce the following definitions.
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Definition 2.1. Two mappings T,S: X — X are called generalized (1, @)y -
weak contractive, if there exists maps p,1: [0,00) — [0,00) and f,g: X — X such
that

Y(d(Tz, Sy)) < p(M(z,y)) — o(M(z,y)), 2.1
forall x,y € X, where

3 ldlay. 72) + a7z 59)] |

M) = e {d . g0) L. ), g, ),
Vv eVandped.

Abbas et al. extended Zhang and Song’s theorem by the above concept [1]. We call
this class of mappings, generalized (%, ¢) s -weak contractive mappings.

Definition 2.2. Let T and S be two self mappings of a metric space (X,d). T
and S are said to be weakly compatible, if for all x € X the equality Tx = Sx implies
TSx = STx.

With respect to the above definition, we prove a common fixed point theorem as
follows:

Theorem 2.1. Let (X,d) be a complete metric space and E be a nonempty closed
subset of X. Suppose f and g are continuous functions of X. Let T, S: E — E be two
generalized (1, ) g-weak contractive maps, such that

(A) TE CgE and SE C fFE,
(B) T and f as well as S and g are weakly compatible.
In addition, for all x € X

d(fTx,Tfzx) <d(fx,Tx) and d(gSz,Sgx)<d(gx,Sz), (2.2)
and for all v,y € X

d(fgz,gfy) < d(gz, fy). (2.3)

Then T, f, S and g have a unique common fixed point.
Proof. Let o € E be arbitrary. From (A), we can find two sequences {z,}22
and {y, 52, such that vy, = Tzg = gx1, y2 = Sz1 = fao, y3 = Txa = g3, ...
vy Yona1 = TTopn = gTont1, Yonto = STopt1 = fTonto, ..., respectively.
The rest of the proof is done in three steps as follows:
Step 1. Foralln=0,1,...

nh—>Holo d(Yns Yn+1) = 0.

Define d, = d(yn,Yn+1). Suppose d,, = 0 for some ng. Then y,, = Yn,+1. Conse-
quently, the sequence y,, is constant for n > ng. Indeed, let ng = 2k. Then yor, = Yor1+1
and we obtain from (2.1)

Y(d(Yark+1, Yor+2)) = V(d(Tx2k, STag1)) <

< (M (22k, Toks1)) — (M (x2p, Topt1)), 2.4

where

M (xak, xap41) = max {d(yzk, Yok+1)s Yok, Yok+1), A(Y2k+2, Yok+1),
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1
3 [d(y2k, yar+2) + d(Y2ik+1, Y2rt1)] } =

1
= max {0, 0, d(y2k+1, Y2k+2), §[d(y2k7 y2k+2)]} = d(Y2r+1, Y2k+2)-

Now from (2.1)

PY(d(Yar+1, Y2r+2)) = Y(d(ST2p41, Twor)) <

< Y(d(Yart1, Y2r+2)) — (d(Y2r+1, Y2rk+2)),

and so (p(d(yglﬁ_l, y2k+2)) =0, that is, yop+1 = Y2k+2-

Similarly, if ng = 2k + 1, one can easily obtain yo;+2 = y2r+3 and so the sequence
Yp, 1s constant (for n > ng) and y,,, is a common fixed point of T', S, f and g. If we set
Z = Yn,, then z is a unique common fixed point for 7', S, f and g.

Suppose d,, = d(Yn, Yn+1) > 0 for all n. We prove for eachn =1,2,3,...

A(Yn+1,Yn+2) < M(Tpy1, Tnra) = d(Yn, Ynt1)- (2.5)
Let n = 2k. Using condition (2.1), we obtain

(d(Yort1, Yor+2)) = Y(d(Tx2k, STap41)) <
< (M (22k, Toks1)) — (M (22p, Topt1)) <

< Y(M(xak, Tak+1))

and since the function 1) is nondecreasing, it follows

Ad(York+1, Yort2) < M (2o, Tag41)- (2.6)

Here,

M (2o, Tok+1) = max {d(fw2k7 9%2k+1), d(fror, Tor), d(9Tok+1, STokt1),

DN | =

[d(gx2k41, Txor) + d(frok, Sokt1)] } =

= max {d(y2k7 y2k+1)7 d(ka, y2k+1), d(y2k+17 yzk+2)7

N

[d(y2r+1, Y2r+1) + A(Y2r, Yor+2)] } <
< max {d(y2k> Yok+1)> A(Y2k425 Y2k+1)s

1
3 [d(y2r> yar+1) + d(Y2kt1, Y2rt2)] } =

= max {d(yzk, Yok+1), A(Y2rt1, y2k+2)}~
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If d(yar+1,Y2k+2) = d(y2k, Y2r+1) > 0, then
M (22142, T2r41) = d(Yor+2, Y2r+1),
and this implies
V(d(Yar+2: Y2k+1)) < V(d(Y2r+2, Y2r+1)) — ©(d(Y2k+2, Yor+1))

which is only possible when d(yag+2, yax+1) = 0. This is a contradiction.
Hence, d(Yak+1,Y2rk+2) < d(Yak+1, y2r) and

M (w2p42, Takt1) < d(Yart1, Y2r)-
Since, by definition of M (z,y),
M (2or2, Tort1) > d(Yar+1, Y2k),
(2.5) is proved for d(y2x+1, Y2r+2). Similarly, one can obtain
d(Yar+2, Y2k+3) < M(Tapt1, Tar2) = d(Yarr1, Yak+2)-

So, (2.5) holds for all n.

Thus (2.5) shows that the sequence d(y,,, y,+1) is a nonincreasing sequence of real
numbers and so there exists lim, oo d(Yn, Yn+1) = limy o0 M (240, Tpe1) = r > 0.

Suppose r > 0. Then from

P(d(Ynt1:Yn2)) <YM (20, Tny1)) = 9(M (2, Tntr)),

if n = oo, it follows that

P(r) < ¢P(r) —liminf (M (zn, Tni1)) < P(r) = o(r),

n—oo

i.e., o(r) < 0. But, ¢ € ®, so r = 0, which is a contradiction. We conclude that

nh_{%O d(Yn, Yn+1) = nh_{r;o M (zy, 2p41) = 0.

Step 1. {y,} is a Cauchy sequence.

2.7)

It is sufficient to show the subsequence {y2,} is a Cauchy sequence. If not, there
exists € > 0 for which one can find subsequences {2, (x)} and {y2n(x)} of {y2.} such

that
n(k) >m(k) >k and  d(Yam), Yon(k)) = €
and n(k) is the least index with this property, that is,
d(Y2m (k) Yon(k)—2) < €-
From (2.8) and triangle inequality

€ < d(Yam(k), Yan(k)) <

< d(Yam(k)s Yon(k)—2) + AdYon(k)—2: Yonk)—1) + AY2nk)—15 Yon(k)) <

< e+ d(Yon(k)—2: Y2n(k)—1) + A(Yon (k) =15 Y2n(k))-

If K — oo and using (2.7) we have

li =e.
kggod(y2m(k)7y2n(k)) €

2.8)

2.9)
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In addition, from the known relation |d(z, z) — d(z,y)| < d(y, z), we obtain

| d(Yom (k) Y2n(i)+1) — AY2mi)> Vo) < AWan(ky Yan(e)+1)s (2.10)

|d(Y2m (k) Yon(i)+2) = AW2m(iys Yon)+1)| < AWan(e)+25 Yan(h)+1)s (2.11)

| d(Yon(k)y+15 Y2me)+1) — AY2n ()11 Yome))| < AW2me)s Y2mk)+1); (2.12)

|d(Yon(k)y+2: Y2me)+1) — QY2 ()11 Yom)+1)| < AWon(i)+15 Yon(iy+2):  (2.13)

and using (2.7), (2.9), (2.10), (2.11), (2.12) and (2.13) we get

li =1l =
kggo d(yZm(k)v y2n(k)+1) kggo d(y2m(k)7 y2n(k:)+2)

=1 =1 =c. 2.14
i d(Yone) 41 Yom@y+1) = UM d(Yon(w)+2, Yomm)+1) = € (2.14)
From the definition of M (z,y) and the above limits,

klinclo M(ZL’QnL(k), x2n(k+1)) =¢&.

Because,
M (Z2m (k) Tan(k)+1) = max {d(fx2m(k)7gx2n(k)+1)v d(fTom(k)y, TTom(k))
d(9T20(k)+1> STon(k)+1);

1
3 [d(gZ2n (1)1, TT2m k) + A(fT2m k), ST2n(r)+1)] } =

= max {d(y2m(k)7 Yon(k)+1)> AY2m(k)s Y2m (k) +1)
d(Y2n(k)+1> Yon(k)+2);
1
3 [A(Y2n(k)+1> Y2mk)+1) + AY2m (k) Y2 +2)] ¢
and if £ — oo, we have
1
M(IQm(k})7 mgn(k)+1) — max {6, 0,0, 5[8 + 5]} =c.

Now, we apply condition (2.1), to obtain

Y(d(Y2m(r)+15 Yon)+2)) < V(M (T2 k), Tan(i)+1)) — LM (Tom(k)s Tan(k)+1))-

Again, if & — oo, we obtain 1)(¢) < 1(e) — ¢(e) which is a contradiction with € > 0.
Thus, {y2,} is a Cauchy sequence and hence {y, } is a Cauchy sequence.
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Step TII. There exists ¢ such that gt = ft = St =Tt =t.
Since (X,d) is complete and {y,} is Cauchy, there exists z € X such that
lim;, 00 Yn = 2. Since E is closed and {y,} C E, we have z € E. We know that

z= lim yg, = lim fxs, = lim Sxzg, 1 =
n— oo n— o0 n— o0

= lim yop4+1 = lim gzopy1 = lim Txyy,.
n—oo n— oo n— oo

Since f and g are continuous, we have fy, — fz and gy, — gz.
On the other hand, from (2.2) and (2.3)

d(Ty2n, 92) < d(Ty2n, fy2n+1) + d(fy2ni1, 9Y2n) + d(gy2n, 92) =
= d(T faan, [Tron) + d(f9Ton+i1, 9fon) + d(gy2n, 92) <
< d(Tw2n, fron) + d(9T2ntt, fo2n) + d(gy2n, 92) =
= d(y2n+1,Y2n) + d(Y2n+1,Y2n) + d(gy2n, 92).
Therefore, from (2.7) and continuity of g,

lim d(Tyan,gz) = 0.
n—oo

Also, from (2.3) we have

d(Ty2n, f2) < d(TY2n, fy2n+1) + d(fy2n+1, f2) =
= d(T'fxom, [Tx2n) + d(fyn+1, f2) <
< d(Twan, fron) + d(fy2nir, f2) =
= d(y2n+1,y2n) + d(fy2n+1, f2).

Therefore, from (2.7)
lim d(Tyan, fz) = 0.

From (2.1)
Y(d(TY2n, S2)) < (M (Y2n, 2)) — ¢(M (y2n, 2)),
where
M, 2) = mx {dFym, 921, T dlg 52),
£ [0, Tyon) + d( i, 52)] }
Also,
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lim d(Tyan,9z) = lim d(Tyan, fz) = 0.
n— 00 n—0o00

Consequently, fz = gz.
If n — oo, we have

lim M (yan, 2) = max{d(fz,gz),d(fz,fz),d(gz,Sz),

n—oo

1

5ld(0s. 1)+ d(125)] |
So, we have

le M (yan, z) = d(fz,5%).
Therefore,

P(d(fz,52)) < P(d(fz,52)) — p(d(fz,52))).

This implies ¢(d(fz,Sz)) = 0, and hence Sz = fz. We can analogously prove Tz =
= gz. Therefore, Tz = gz = fz = Sz =t.

Using weak compatibility of the pairs (7', f) and (5, g), we have Tt = ft and
gt = St. So,

Y(d(Tt,t)) = (d(Tt, Sz)) < V(M(t,z)) — (ML, 2)) =

:w(max{d(ft,gz),d(ft,Tt),d(gz7Sz),;[ (92, Tt) + d(ft,Sz)] })

[d(gz, Tt) + d(ft,S2)] })

N | =

— <maX {d(ft, 92),d(ft,Tt),d(gz, Sz),

1
= (max {d(Tt, ), d(TH,T1), d(t,1), 51d(t, Tt) + d(Tt,1) }) -

1
— (max {d(Tn £),d(Tt, Tt), d(t,t), S[d(t, Tt) + d(Tt,1)] }) =

= (d(TE,1)) — pd(Tt,1)).
That is, p(d(Tt,t)) = 0 and this implies Tt = t. Therefore, ft = Tt = t. Analogously,
=St=t Hence gt =St =t = ft =
Theorem 2.1 is proved.
Note that the proof of Steps I and II is approximately analogous to what which has
been done in the other papers such as [1, 7, 12, 13], specially.
Example 2.1. Let X = R be endowed with the Euclidean metric and E = [0, 1].

1
Suppose T, S: E — E is defined by Tx = 5= Sz, for all x € E. We define functions
frg: E— X by

IN
8
IN

fz) =

—_ N

N = 8
N = O
IN
8
IN
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<z <

)

| =

g(x) =

—_ N =

8

; <z<l1,

o= 9O

and function 1, p: [0,00) — [0, 00) by ¢(t) = % and ¥(t) = 2.
Thus for all x € X

d(fTx, Tfx) <d(fx,Txz), d(gSz,Sgx) <d(gz,Sx),
and

d(fgz,gfy) < d(gz, fy) forall zye X
Since 0 < M(x,y) <1 and d(Tz, Sy) = 0, we have

P(d(Tz, Sy)) < p(M(z,y)) — p(M(z,y)).

So mappings T and S satisfy relation (2.1). This example cannot be studied by the
Theorem 1.3 ( Theorem 2.1 of [12]). But, all conditions of Theorem 2.1 are hold, and

1
T, S, f and g have a unique common fixed point (m = 2) .

3. Applications. In this section, we obtain some common fixed point theorems for
mappings satisfying a contraction condition of integral type in a complete metric space.

In [6], Branciari obtained a fixed point result for a single mapping satisfying an
integral type inequality. Then Altun et al. [3] established a fixed point theorem for
weakly compatible maps satisfying a general contractive inequality of integral type.

As in [13], we denote by T the set of all functions ¢: [0, +00) — [0, +00) verifying
the following conditions:

() ¢ is a positive Lebesgue integrable mapping on each compact subset of [0, +00).

(Il) Forall e > 0, / o(t)dt > 0.

0
Corollary 3.1. Replace the generalized (1, ) q4-weak contractive condition of
Theorem 2.1 by the following condition:
There exists a ¢ € Y such that

P(d(Tz,Sy)) (M (z,y)) P(M(z,y))
/ G(t)dt < / B(1)dt — / o(1)dt. G.1)
0 0 0

If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common
fixed point. _
Proof. Consider the function I'(z) = / ¢(t)dt. Then (3.1) becomes
0

L(y(d(Tz, Sy))) < T(p(M(z,y))) — D(p(M(z,y)),

and taking ¢; = I'oy and ¢; = 'op and applying Theorem 2.1, we obtain the proof (it
is easy to verify that 1) € ¥ and ¢; € D).

Corollary 3.2. Replace the generalized (1, )y q4-weak contractive condition of
Theorem 2.1 by the following condition:

There exists a ¢ € T such that

ISSN 1027-3190. Vrp. mam. scypn., 2011, m. 63, Ne 11



A COMMON FIXED POINT FOR GENERALIZED (1), ¢) ¢, ,-WEAK CONTRACTIONS 1553

d(Tz,Sy) M(z,y) M (z,y)
¥ / oyt | < / o(tdt | — ¢ / odt|. (2
0 0 0

If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common
fixed point.

Proof. Again, as in Corollary 3.1, define the function I'(z) = / ¢(t)dt. Then
0
(3.2) changes to

YT (d(Tz, Sy))) < p(D(M(z,y))) — o(D(M(z,y)))-

Now, if we define ¢; = Yol and ¢; = @ol and applying Theorem 2.1, then the proof
is complete (it is easy to verify 11 € ¥ and ¢; € ®).

Now, we recall the definition of altering distance function as follows [10]:

Definition 3.1. The function ¢: [0,400) — [0, +00) is called an altering distance
function if the following properties are satisfied:

(a) ¢ is continuous and nondecreasing,

(b) p(t)=0<1t=0.

Remark 3.1. In Theorem 2.1, assume v and ¢ are altering distance functions, then
theorem is hold.

Corollary 3.3. Replace the generalized (1), )¢ 4-weak contractive condition of
Theorem 2.1 by the following condition:

There exists a ¢ € T such that

Yo (d(Tx,Sy)) o (M (x,y)) w2 (M(x,y))
" / o)t | < / s(t)dt | — o / o(tydt |,
0 0 0

(3.3)
for altering distance functions 11, Vs, @1 and @s. If other conditions of Theorem 2.1
satisfy, then T, S, f and g have a unique common fixed point.

Proof. Consider the function I'(z) = / ¢(t)dt. Then (3.3) will be
0

U1 (L (W2(d(Tz, Sy)))) < 1T (P2(M(z,9)))) — e1(D(p2(M(z,9)))),

and taking U = yyolor)y and & = pi0l’op, and applying Theorem 2.1, we obtain the
proof (it is easy to verify that U and & are altering distance functions).

As in [13], let N € N* be fixed. Let {¢; }1<;<n be a family of N functions which
belong to Y. For all ¢ > 0, we define

SO g ()
I5(t) = /gﬁg(s)dSZ/ o3(s)ds,

0
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We have the following result.

Corollary 3.4. Replace the generalized (v, @)y q-weak contractive condition of

Theorem 2.1 by the following condition:

I(n—1)(d(Tz,Sy))

(4 / on(s)ds | <

0
In—1)(M(z,y)) In—1)(M(z,y))
< / on(s)ds | —¢ / on(s)ds |, (3.4)
0 0

where ¢ € V and ¢ € ©. If other conditions of Theorem 2.1 satisfy, then T, S, f and g
have a unique common fixed point.

Proof. Consider U= ol N and P = ol . Then the above inequality becomes

Applying Theorem 2.1, we obtain the desired result (it is easy to verify that ¥ € ¥ and

)
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