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A COMMON FIXED POINT
FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS

СПIЛЬНА НЕРУХОМА ТОЧКА ДЛЯ УЗАГАЛЬНЕНИХ
(ψ,ϕ)f,g-СЛАБКИХ СТИСКУЮЧИХ ВIДОБРАЖЕНЬ

We extend the common fixed point theorem established by Zhang and Song in 2009 to generalized (ψ,ϕ)f,g-
weak contractions. Moreover, we give an example that illustrates the main result. Finally, some common fixed
point results are obtained for mappings satisfying a contraction condition of the integral type in complete
metric spaces.

Теорему про спiльну нерухому точку, що була встановлена Чжаном i Суном у 2009 роцi, поширено
на узагальненi (ψ,ϕ)f,g-слабкi стискуючi вiдображення. Наведено приклад, що iлюструє основний
результат. Отримано деякi результати про спiльну нерухому точку для вiдображень, що задовольняють
умову стиску iнтегрального типу у повних метричних просторах.

1. Introduction. Let (X, d) be a metric space. A mapping T : X → X is said to be ϕ-
weak contraction, if there exists a map ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 and ϕ(t) > 0

for all t > 0 such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y))

for all x, y ∈ X.
The above notion has been defined by Alber et al. [2] in 1997. They obtained some

fixed point results in Hilbert spaces. Then Rhoades [14] extended those results in Banach
spaces. In 2006, Beg and Abbas [5] studied some generalizations of Rhoades’s results
[14] for a pair of mappings such that one is weakly contractive with respect to the other.

In 2009, Zhang et al. [15] introduced the concept of generalized ϕ-weak contraction
as follows:

Definition 1.1. Two mappings T, S : X → X are called generalized ϕ-weak con-
tractions, if there exists a lower semicontinuous function ϕ : [0,∞) → [0,∞) with
ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that

d(Tx, Sy) ≤ N(x, y)− ϕ(N(x, y)),

for all x, y ∈ X, where

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

1

2

[
d(x, Sy) + d(y, Tx)

]}
.

Zhang et al. proved the following theorem.
Theorem 1.1. Let (X, d) be a complete metric space, and T, S : X → X are

generalized ϕ-weak contractions mappings where ϕ : [0,∞)→ [0,∞) is a lower semi-
continuous function with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0. Then there exists a
unique point u ∈ X such that u = Tu = Su.

So far, many authors extended Theorem 1.1 (see [1, 7, 12]). Moreover, Doric [7]
generalized it, by the definition of generalized (ψ,ϕ)-weak contractions.
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Definition 1.2. Two mappings T, S : X → X are called generalized (ψ,ϕ)-weak
contractive, if there exist two maps ϕ,ψ : [0,∞)→ [0,∞) such that

ψ(d(Tx, Sy)) ≤ ψ(N(x, y))− ϕ(N(x, y)),

for all x, y ∈ X, where N and ϕ are as in Definition 1.1 and ψ : [0,∞) → [0,∞) is a
continuous monotone nondecreasing function with ψ(0) = 0 and ψ(t) > 0 for all t > 0.

Theorem 1.2 [7]. Let (X, d) be a complete metric space, and T, S : X → X be
generalized (ψ,ϕ)-weak contractive self-mappings. Then there exists a unique point
u ∈ X such that u = Tu = Su.

Moradi et al. [12] extended the Zhang and Song’s result by introducing the notion
of ϕf -weak contractive mappings.

Definition 1.3. Two mappings T, S : X → X are called generalized ϕf -weak
contractive, if there exist two maps ϕ : [0,∞) → [0,∞) and f : X → X where ϕ is a
lower semicontinuous function with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that

d(Tx, Sy) ≤ P (x, y)− ϕ(P (x, y)),

for all x, y ∈ X, where

P (x, y) = max

{
d(fx, fy), d(fx, Tx), d(fy, Sy),

1

2

[
d(fy, Tx) + d(fx, Sy)

]}
.

Moradi et al. [12] proved the following theorem:
Theorem 1.3. Let (X, d) be a complete metric space and E be a nonempty closed

subset of X. Let T, S : E → E be two generalized ϕf -weak contractive.
Assume that f is a continuous function on E and

(I) TE ⊆ fE and SE ⊆ fE.
(II) The pairs (T, f) and (S, f) are weakly compatible.

If for all x ∈ X

d(fTx, Tfx) ≤ d(fx, Tx) and d(fSx, Sfx) ≤ d(fx, Sx),

then f, T and S have a unique common fixed point.
2. Main results. In this paper, we establish common fixed point theorems for

mappings satisfying (ψ,ϕ)f,g-weakly contractive condition in a complete metric space.
Our result is an extension of Theorem 1.1 and Theorem 1.2. In fact, our generalization
is different from other generalization in [1, 7, 12].

From now as in [1], we assume:

Φ =
{
ϕ
∣∣ϕ : [0,∞)→ [0,∞) is a lower semicontinuous function,

ϕ(t) > 0 for all t > 0 and ϕ(0) = 0
}
,

and

Ψ =
{
ψ
∣∣ψ : [0,∞)→ [0,∞) is a continuous and nondecreasing function

and ψ(t) = 0⇐⇒ t = 0
}
.

We introduce the following definitions.
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Definition 2.1. Two mappings T, S : X → X are called generalized (ψ,ϕ)f,g-
weak contractive, if there exists maps ϕ,ψ : [0,∞) → [0,∞) and f, g : X → X such
that

ψ(d(Tx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y)), (2.1)

for all x, y ∈ X, where

M(x, y) = max

{
d(fx, gy), d(fx, Tx), d(gy, Sy),

1

2

[
d(gy, Tx) + d(fx, Sy)

]}
,

ψ ∈ Ψ and ϕ ∈ Φ.

Abbas et al. extended Zhang and Song’s theorem by the above concept [1]. We call
this class of mappings, generalized (ψ,ϕ)f,g-weak contractive mappings.

Definition 2.2. Let T and S be two self mappings of a metric space (X, d). T

and S are said to be weakly compatible, if for all x ∈ X the equality Tx = Sx implies
TSx = STx.

With respect to the above definition, we prove a common fixed point theorem as
follows:

Theorem 2.1. Let (X, d) be a complete metric space and E be a nonempty closed
subset of X. Suppose f and g are continuous functions of X. Let T, S : E → E be two
generalized (ψ,ϕ)f,g-weak contractive maps, such that

(A) TE ⊆ gE and SE ⊆ fE,
(B) T and f as well as S and g are weakly compatible.

In addition, for all x ∈ X

d(fTx, Tfx) ≤ d(fx, Tx) and d(gSx, Sgx) ≤ d(gx, Sx), (2.2)

and for all x, y ∈ X

d(fgx, gfy) ≤ d(gx, fy). (2.3)

Then T, f, S and g have a unique common fixed point.
Proof. Let x0 ∈ E be arbitrary. From (A), we can find two sequences {xn}∞n=0

and {yn}∞n=0 such that y1 = Tx0 = gx1, y2 = Sx1 = fx2, y3 = Tx2 = gx3, . . .

. . . , y2n+1 = Tx2n = gx2n+1, y2n+2 = Sx2n+1 = fx2n+2, . . . , respectively.
The rest of the proof is done in three steps as follows:
Step I. For all n = 0, 1, . . .

lim
n→∞

d(yn, yn+1) = 0.

Define dn = d(yn, yn+1). Suppose dn0
= 0 for some n0. Then yn0

= yn0+1. Conse-
quently, the sequence yn is constant for n ≥ n0. Indeed, let n0 = 2k. Then y2k = y2k+1

and we obtain from (2.1)

ψ(d(y2k+1, y2k+2)) = ψ(d(Tx2k, Sx2k+1)) ≤

≤ ψ(M(x2k, x2k+1))− ϕ(M(x2k, x2k+1)), (2.4)

where

M(x2k, x2k+1) = max

{
d(y2k, y2k+1), d(y2k, y2k+1), d(y2k+2, y2k+1),
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1

2

[
d(y2k, y2k+2) + d(y2k+1, y2k+1)

]}
=

= max

{
0, 0, d(y2k+1, y2k+2),

1

2
[d(y2k, y2k+2)]

}
= d(y2k+1, y2k+2).

Now from (2.1)

ψ(d(y2k+1, y2k+2)) = ψ(d(Sx2k+1, Tx2k)) ≤

≤ ψ(d(y2k+1, y2k+2))− ϕ(d(y2k+1, y2k+2)),

and so ϕ(d(y2k+1, y2k+2)) = 0, that is, y2k+1 = y2k+2.

Similarly, if n0 = 2k+ 1, one can easily obtain y2k+2 = y2k+3 and so the sequence
yn is constant (for n ≥ n0) and yn0

is a common fixed point of T, S, f and g. If we set
z = yn0 , then z is a unique common fixed point for T, S, f and g.

Suppose dn = d(yn, yn+1) > 0 for all n. We prove for each n = 1, 2, 3, . . .

d(yn+1, yn+2) ≤M(xn+1, xn+2) = d(yn, yn+1). (2.5)

Let n = 2k. Using condition (2.1), we obtain

ψ(d(y2k+1, y2k+2)) = ψ(d(Tx2k, Sx2k+1)) ≤

≤ ψ(M(x2k, x2k+1))− ϕ(M(x2k, x2k+1)) ≤

≤ ψ(M(x2k, x2k+1))

and since the function ψ is nondecreasing, it follows

d(y2k+1, y2k+2) ≤M(x2k, x2k+1). (2.6)

Here,

M(x2k, x2k+1) = max

{
d(fx2k, gx2k+1), d(fx2k, Tx2k), d(gx2k+1, Sx2k+1),

1

2

[
d(gx2k+1, Tx2k) + d(fx2k, Sx2k+1)

]}
=

= max

{
d(y2k, y2k+1), d(y2k, y2k+1), d(y2k+1, y2k+2),

1

2

[
d(y2k+1, y2k+1) + d(y2k, y2k+2)

]}
≤

≤ max

{
d(y2k, y2k+1), d(y2k+2, y2k+1),

1

2

[
d(y2k, y2k+1) + d(y2k+1, y2k+2)

]}
=

= max
{
d(y2k, y2k+1), d(y2k+1, y2k+2)

}
.
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If d(y2k+1, y2k+2) ≥ d(y2k, y2k+1) > 0, then

M(x2k+2, x2k+1) = d(y2k+2, y2k+1),

and this implies

ψ(d(y2k+2, y2k+1)) ≤ ψ(d(y2k+2, y2k+1))− ϕ(d(y2k+2, y2k+1))

which is only possible when d(y2k+2, y2k+1) = 0. This is a contradiction.
Hence, d(y2k+1, y2k+2) ≤ d(y2k+1, y2k) and

M(x2k+2, x2k+1) ≤ d(y2k+1, y2k).

Since, by definition of M(x, y),

M(x2k+2, x2k+1) ≥ d(y2k+1, y2k),

(2.5) is proved for d(y2k+1, y2k+2). Similarly, one can obtain

d(y2k+2, y2k+3) ≤M(x2k+1, x2k+2) = d(y2k+1, y2k+2).

So, (2.5) holds for all n.
Thus (2.5) shows that the sequence d(yn, yn+1) is a nonincreasing sequence of real

numbers and so there exists limn→∞ d(yn, yn+1) = limn→∞M(xn, xn+1) = r ≥ 0.

Suppose r > 0. Then from

ψ(d(yn+1, yn+2)) ≤ ψ(M(xn, xn+1))− ϕ(M(xn, xn+1)),

if n→∞, it follows that

ψ(r) ≤ ψ(r)− lim inf
n→∞

ϕ(M(xn, xn+1)) ≤ ψ(r)− ϕ(r),

i.e., ϕ(r) ≤ 0. But, ϕ ∈ Φ, so r = 0, which is a contradiction. We conclude that

lim
n→∞

d(yn, yn+1) = lim
n→∞

M(xn, xn+1) = 0. (2.7)

Step II. {yn} is a Cauchy sequence.
It is sufficient to show the subsequence {y2n} is a Cauchy sequence. If not, there

exists ε > 0 for which one can find subsequences {y2m(k)} and {y2n(k)} of {y2n} such
that

n(k) > m(k) > k and d(y2m(k), y2n(k)) ≥ ε

and n(k) is the least index with this property, that is,

d(y2m(k), y2n(k)−2) < ε. (2.8)

From (2.8) and triangle inequality

ε ≤ d(y2m(k), y2n(k)) ≤

≤ d(y2m(k), y2n(k)−2) + d(y2n(k)−2, y2n(k)−1) + d(y2n(k)−1, y2n(k)) ≤

≤ ε+ d(y2n(k)−2, y2n(k)−1) + d(y2n(k)−1, y2n(k)).

If k →∞ and using (2.7) we have

lim
k→∞

d(y2m(k), y2n(k)) = ε. (2.9)

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11



A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS 1549

In addition, from the known relation |d(x, z)− d(x, y)| ≤ d(y, z), we obtain∣∣d(y2m(k), y2n(k)+1)− d(y2m(k), y2n(k))
∣∣ ≤ d(y2n(k), y2n(k)+1), (2.10)∣∣d(y2m(k), y2n(k)+2)− d(y2m(k), y2n(k)+1)
∣∣ ≤ d(y2n(k)+2, y2n(k)+1), (2.11)∣∣d(y2n(k)+1, y2m(k)+1)− d(y2n(k)+1, y2m(k))
∣∣ ≤ d(y2m(k), y2m(k)+1), (2.12)∣∣d(y2n(k)+2, y2m(k)+1)− d(y2n(k)+1, y2m(k)+1)
∣∣ ≤ d(y2n(k)+1, y2n(k)+2), (2.13)

and using (2.7), (2.9), (2.10), (2.11), (2.12) and (2.13) we get

lim
k→∞

d(y2m(k), y2n(k)+1) = lim
k→∞

d(y2m(k), y2n(k)+2) =

= lim
k→∞

d(y2n(k)+1, y2m(k)+1) = lim
k→∞

d(y2n(k)+2, y2m(k)+1) = ε. (2.14)

From the definition of M(x, y) and the above limits,

lim
k→∞

M(x2m(k), x2n(k+1)) = ε.

Because,

M(x2m(k), x2n(k)+1) = max

{
d(fx2m(k), gx2n(k)+1), d(fx2m(k), Tx2m(k)),

d(gx2n(k)+1, Sx2n(k)+1),

1

2

[
d(gx2n(k)+1, Tx2m(k)) + d(fx2m(k), Sx2n(k)+1)

]}
=

= max

{
d(y2m(k), y2n(k)+1), d(y2m(k), y2m(k)+1),

d(y2n(k)+1, y2n(k)+2),

1

2

[
d(y2n(k)+1, y2m(k)+1) + d(y2m(k), y2n(k)+2)

]}
,

and if k →∞, we have

M(x2m(k), x2n(k)+1)→ max

{
ε, 0, 0,

1

2
[ε+ ε]

}
= ε.

Now, we apply condition (2.1), to obtain

ψ(d(y2m(k)+1, y2n(k)+2)) ≤ ψ(M(x2m(k), x2n(k)+1))− ϕ(M(x2m(k), x2n(k)+1)).

Again, if k →∞, we obtain ψ(ε) ≤ ψ(ε) − ϕ(ε) which is a contradiction with ε > 0.

Thus, {y2n} is a Cauchy sequence and hence {yn} is a Cauchy sequence.
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Step III. There exists t such that gt = ft = St = Tt = t.

Since (X, d) is complete and {yn} is Cauchy, there exists z ∈ X such that
limn→∞ yn = z. Since E is closed and {yn} ⊆ E, we have z ∈ E. We know that

z = lim
n→∞

y2n = lim
n→∞

fx2n = lim
n→∞

Sx2n−1 =

= lim
n→∞

y2n+1 = lim
n→∞

gx2n+1 = lim
n→∞

Tx2n.

Since f and g are continuous, we have fyn → fz and gyn → gz.

On the other hand, from (2.2) and (2.3)

d(Ty2n, gz) ≤ d(Ty2n, fy2n+1) + d(fy2n+1, gy2n) + d(gy2n, gz) =

= d(Tfx2n, fTx2n) + d(fgx2n+1, gfx2n) + d(gy2n, gz) ≤

≤ d(Tx2n, fx2n) + d(gx2n+1, fx2n) + d(gy2n, gz) =

= d(y2n+1, y2n) + d(y2n+1, y2n) + d(gy2n, gz).

Therefore, from (2.7) and continuity of g,

lim
n→∞

d(Ty2n, gz) = 0.

Also, from (2.3) we have

d(Ty2n, fz) ≤ d(Ty2n, fy2n+1) + d(fy2n+1, fz) =

= d(Tfx2n, fTx2n) + d(fy2n+1, fz) ≤

≤ d(Tx2n, fx2n) + d(fy2n+1, fz) =

= d(y2n+1, y2n) + d(fy2n+1, fz).

Therefore, from (2.7)

lim
n→∞

d(Ty2n, fz) = 0.

From (2.1)

ψ(d(Ty2n, Sz)) ≤ ψ(M(y2n, z))− ϕ(M(y2n, z)),

where

M(y2n, z) = max

{
d(fy2n, gz), d(fy2n, T y2n), d(gz, Sz),

1

2

[
d(gz, Ty2n) + d(fy2n, Sz)

]}
.

Also,
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lim
n→∞

d(Ty2n, gz) = lim
n→∞

d(Ty2n, fz) = 0.

Consequently, fz = gz.

If n→∞, we have

lim
n→∞

M(y2n, z) = max

{
d(fz, gz), d(fz, fz), d(gz, Sz),

1

2

[
d(gz, fz) + d(fz, Sz)

]}
.

So, we have

lim
n→∞

M(y2n, z) = d(fz, Sz).

Therefore,

ψ(d(fz, Sz)) ≤ ψ(d(fz, Sz))− ϕ(d(fz, Sz))).

This implies ϕ(d(fz, Sz)) = 0, and hence Sz = fz. We can analogously prove Tz =

= gz. Therefore, Tz = gz = fz = Sz = t.

Using weak compatibility of the pairs (T, f) and (S, g), we have Tt = ft and
gt = St. So,

ψ(d(Tt, t)) = ψ(d(Tt, Sz)) ≤ ψ(M(t, z))− ϕ(M(t, z)) =

= ψ

(
max

{
d(ft, gz), d(ft, T t), d(gz, Sz),

1

2
[d(gz, T t) + d(ft, Sz)]

})
−

−ϕ
(

max

{
d(ft, gz), d(ft, T t), d(gz, Sz),

1

2
[d(gz, T t) + d(ft, Sz)]

})
=

= ψ

(
max

{
d(Tt, t), d(Tt, T t), d(t, t),

1

2
[d(t, T t) + d(Tt, t)]

})
−

−ϕ
(

max

{
d(Tt, t), d(Tt, T t), d(t, t),

1

2
[d(t, T t) + d(Tt, t)]

})
=

= ψ(d(Tt, t))− ϕ(d(Tt, t)).

That is, ϕ(d(Tt, t)) = 0 and this implies Tt = t. Therefore, ft = Tt = t. Analogously,
gt = St = t. Hence gt = St = t = ft = Tt.

Theorem 2.1 is proved.
Note that the proof of Steps I and II is approximately analogous to what which has

been done in the other papers such as [1, 7, 12, 13], specially.
Example 2.1. Let X = R be endowed with the Euclidean metric and E = [0, 1].

Suppose T, S : E → E is defined by Tx =
1

2
= Sx, for all x ∈ E. We define functions

f, g : E → X by

f(x) =


x, 0 ≤ x ≤ 1

2
,

1

2
,

1

2
≤ x ≤ 1,
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g(x) =


1

2
, 0 ≤ x ≤ 1

2
,

x,
1

2
≤ x ≤ 1,

and function ψ,ϕ : [0,∞)→ [0,∞) by ϕ(t) = t3 and ψ(t) = t2.

Thus for all x ∈ X

d(fTx, Tfx) ≤ d(fx, Tx), d(gSx, Sgx) ≤ d(gx, Sx),

and

d(fgx, gfy) ≤ d(gx, fy) for all x, y ∈ X.

Since 0 ≤M(x, y) ≤ 1 and d(Tx, Sy) = 0, we have

ψ(d(Tx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y)).

So mappings T and S satisfy relation (2.1). This example cannot be studied by the
Theorem 1.3 ( Theorem 2.1 of [12]). But, all conditions of Theorem 2.1 are hold, and

T, S, f and g have a unique common fixed point

(
x =

1

2

)
.

3. Applications. In this section, we obtain some common fixed point theorems for
mappings satisfying a contraction condition of integral type in a complete metric space.

In [6], Branciari obtained a fixed point result for a single mapping satisfying an
integral type inequality. Then Altun et al. [3] established a fixed point theorem for
weakly compatible maps satisfying a general contractive inequality of integral type.

As in [13], we denote by Υ the set of all functions φ : [0,+∞)→ [0,+∞) verifying
the following conditions:

(I) φ is a positive Lebesgue integrable mapping on each compact subset of [0,+∞).

(II) For all ε > 0,

∫ ε

0

φ(t)dt > 0.

Corollary 3.1. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of
Theorem 2.1 by the following condition:

There exists a φ ∈ Υ such that

ψ(d(Tx,Sy))∫
0

φ(t)dt ≤
ψ(M(x,y))∫

0

φ(t)dt−
ϕ(M(x,y))∫

0

φ(t)dt. (3.1)

If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common
fixed point.

Proof. Consider the function Γ(x) =

∫ x

0

φ(t)dt. Then (3.1) becomes

Γ(ψ(d(Tx, Sy))) ≤ Γ(ψ(M(x, y)))− Γ(ϕ(M(x, y)),

and taking ψ1 = Γoψ and ϕ1 = Γoϕ and applying Theorem 2.1, we obtain the proof (it
is easy to verify that ψ1 ∈ Ψ and ϕ1 ∈ Φ).

Corollary 3.2. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of
Theorem 2.1 by the following condition:

There exists a φ ∈ Υ such that
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ψ

 d(Tx,Sy)∫
0

φ(t)dt

 ≤ ψ
M(x,y)∫

0

φ(t)dt

− ϕ
M(x,y)∫

0

φ(t)dt

. (3.2)

If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common
fixed point.

Proof. Again, as in Corollary 3.1, define the function Γ(x) =

∫ x

0

φ(t)dt. Then

(3.2) changes to

ψ(Γ(d(Tx, Sy))) ≤ ψ(Γ(M(x, y)))− ϕ(Γ(M(x, y))).

Now, if we define ψ1 = ψoΓ and ϕ1 = ϕoΓ and applying Theorem 2.1, then the proof
is complete (it is easy to verify ψ1 ∈ Ψ and ϕ1 ∈ Φ).

Now, we recall the definition of altering distance function as follows [10]:
Definition 3.1. The function ϕ : [0,+∞)→ [0,+∞) is called an altering distance

function if the following properties are satisfied:
(a) ϕ is continuous and nondecreasing,
(b) ϕ(t) = 0⇐⇒ t = 0.

Remark 3.1. In Theorem 2.1, assume ψ and ϕ are altering distance functions, then
theorem is hold.

Corollary 3.3. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of
Theorem 2.1 by the following condition:

There exists a φ ∈ Υ such that

ψ1

 ψ2(d(Tx,Sy))∫
0

φ(t)dt

 ≤ ψ1

 ψ2(M(x,y))∫
0

φ(t)dt

− ϕ1

 ϕ2(M(x,y))∫
0

φ(t)dt

,
(3.3)

for altering distance functions ψ1, ψ2, ϕ1 and ϕ2. If other conditions of Theorem 2.1
satisfy, then T, S, f and g have a unique common fixed point.

Proof. Consider the function Γ(x) =

∫ x

0

φ(t)dt. Then (3.3) will be

ψ1(Γ(ψ2(d(Tx, Sy)))) ≤ ψ1(Γ(ψ2(M(x, y))))− ϕ1(Γ(ϕ2(M(x, y)))),

and taking Ψ̂ = ψ1oΓoψ2 and Φ̂ = ϕ1oΓoϕ2 and applying Theorem 2.1, we obtain the
proof (it is easy to verify that Ψ̂ and Φ̂ are altering distance functions).

As in [13], let N ∈ N∗ be fixed. Let {φi}1≤i≤N be a family of N functions which
belong to Υ. For all t ≥ 0, we define

I1(t) =

t∫
0

φ1(s)ds,

I2(t) =

I1t∫
0

φ2(s)ds =

∫ ∫ t
0
φ1(s)ds

0

φ2(s)ds,

I3(t) =

I2t∫
0

φ3(s)ds =

∫ ∫ ∫ t
0 φ1(s)ds

0 φ2(s)ds

0

φ3(s)ds,
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IN (t) =

I(N−1)t∫
0

φN (s)ds.

We have the following result.
Corollary 3.4. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of

Theorem 2.1 by the following condition:

ψ

 I(N−1)(d(Tx,Sy))∫
0

φN (s)ds

 ≤

≤ ψ

 I(N−1)(M(x,y))∫
0

φN (s)ds

− ϕ
 I(N−1)(M(x,y))∫

0

φN (s)ds

, (3.4)

where ψ ∈ Ψ and ϕ ∈ Φ. If other conditions of Theorem 2.1 satisfy, then T, S, f and g
have a unique common fixed point.

Proof. Consider Ψ̂ = ψoIN and Φ̂ = ϕoIN . Then the above inequality becomes

Ψ̂(d(Tx, Sy)) ≤ Ψ̂(M(x, y))− Φ̂(M(x, y))).

Applying Theorem 2.1, we obtain the desired result (it is easy to verify that Ψ̂ ∈ Ψ and
Φ̂ ∈ Φ).
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