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ON WEAKLY s-NORMAL SUBGROUPS OF FINITE GROUPS"

ITPO CJIABKO s-HOPMAJIBHI HIAT'PYIIN
CKIHYEHHHUX T'PYII

Assume that G is a finite group and H is a subgroup of G. We say that H is s-permutably imbedded in
G if, for every prime number p that divides |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of
some s-permutable subgroup of G; a subgroup H is s-semipermutable in G if HG) = G H for any Sylow
p-subgroup G, of G with (p,|H|) = 1; a subgroup H is weakly s-normal in G if there are a subnormal
subgroup 7" of G and a subgroup H of H such that G = HT and H N'T < H,, where H, is a subgroup
of H that is either s-permutably imbedded or s-semipermutable in G. We investigate the influence of weakly
s-normal subgroups on the structure of finite groups. Some recent results are generalized and unified.

Hexaif G — ckindenna rpyna, a H — nigrpyna G. bynemo rosoputy, mo H € s-IepecTaBHO BKIAJECHOIO B
G, sxwo 11s Gyb-SKOTO IPOCTOro YHCIa p, o AimuTs |H |, cunosebka p-miarpyna H € Takox CHIOBCHKOH
P-MiATpymolo aesKoi s-nepecrasnoi niarpynu G; H e s-namiBnepecraBuoro B G, skmo HGp = GpH nna
Oynb-sikoi crmoBcskoi p-miarpynu Gp rpymu G i3 (p, |H|) = 1; H € cnabko s-HopManpHO0 B G, SKIIO
icHyI0TH cyOHOpManbHa miarpyna 7' rpymu G i1 miarpyna Hy migrpymu H Ttaki, mo G = HT' 1 HNT < Hy,
ne H, —ninrpyna H, mo € abo s-repecTaBHO BKJIAJICHO0, a00 s-HamiBepectaBHoO0 B G. JI0CIiIKEHO BIUIUB
cnabKo s-HOPMAJIBHUX MIArpYN Ha OyJ0BY CKIHYUCHHHX IPYIl. Y3arajabHEHO Ta YHi()iKOBaHO JEsKi HEIIO/aBHi
pe3yIbTaTH.

1. Introduction. All groups considered in this paper will be finite. We use conventional
notions and notation, as in Huppert [1]. G always denotes a group, |G| is the order of
G, m(G) denotes the set of all primes dividing |G|, G}, is a Sylow p-subgroup of G for
some p € 7(Q).

Let F be a class of groups. We call F a formation provided that (i) if G € F and
H<G, then G/H € F,and (ii) if G/M and G/N are in F, then G/(MNN) is in F for
all normal subgroups M, N of G. A formation F is said to be saturated if G/®(G) € F
implies that G € F. In this paper, U« will denote the class of all supersolvable groups.
Clearly, U is a saturated formation (ref. [1, p. 713], Satz 8.6).

Two subgroups H and K of G are said to be permutable if HK = K H. A subgroup
H of G is said to be s-permutable (or s-quasinormal, w-quasinormal) [2] in G if H
permutes with every Sylow subgroup of G; H is said c-normal [3] in G if G has a
normal subgroup 7" such that G = HT and H NT' < Hg, where H is the normal core
of H in GG. More recently, Skiba in [4] introduces the following concept, which covers
both s-permutability and c-normality:

Definition 1.1. Let H be a subgroup of G. H is called weakly s-permutable in
G if there is a subnormal subgroup T of G such that G = HT and H N'T < Hyg,
where Hgq is the subgroup of H generated by all those subgroups of H which are
s-permutable in G.

From [5], we know that a subgroup H of G is said to be s-permutably embedded in G
if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup
of some s-permutable subgroup of G. In [6], we give a new concept which covers
properly both s-permutably embedding property and Skiba’s weakly s-permutability.
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Definition 1.2. Let H be a subgroup of G. We say that H is weakly s-permutably
embedded in G if there are a subnormal subgroup T of G and an s-permutably embed-
ded subgroup Hg. of G contained in H such that G = HT and HNT < Hg,.

In another direction, a subgroup H of G is said to be s-semipermutable [7] in G
if H permutes with every Sylow p-subgroup G, of G with (|H|,p) = 1. It is easy to
give concrete examples to show that s-semipermutablity and s-permutably embedding
property are not equivalent. Here, we introduce a new concept which covers properly
both s-semipermutability and weakly s-permutably embedding property.

Definition 1.3. Let H be a subgroup of G. We say that H is weakly s-normal in G
if there are a subnormal subgroup T of G and a subgroup H, of H such that G = HT
and HNT < H,, where H, is a subgroup of H which is either s-permutably embedded
or s-semipermutable in G.

Remark. Obviously, weakly s-permutably embedding property (or s-semipermut-
ability) implies weakly s-normality by the definitions. The converse does not hold in
general.

Examples. 1. Suppose that G = As, the alternative group of degree 5. Then A4 is
weakly s-normal in G, but not weakly s-permutably embedded in G.

2. Suppose that G = Sy, the symmetric group of degree 4. Take H = ((34)). Then
H is weakly s-normal in G, but not s-semipermutable in G.

In the literature, authors usually put the assumptions on either the minimal subgroups
(and cyclic subgroups of order 4 when p = 2) or the maximal subgroups of some kinds
of subgroups of G' when investigating the structure of G, such as in [7-13, 16-21]
etc. In the nice paper [4], Skiba provided a unified viewpoint for a series of similar
problems.

For the sake of convenience of statement, we introduce the following notation.

Let P be a p-subgroup of G for some p € 7(G). We say that P satisfies () ((*)’,
(D), (01), (©2), ($3), (O4), respectively) in G if

(¥): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P
with order |H| = |D| and with order |H| = 2|D| (if P is a non-abelian 2-group and
|P: D| > 2) are weakly s-permutable in G.

()" P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P
with order |H| = |D| are weakly s-permutable in G. When P is a non-abelian 2-group
and |P: D| > 2, in addition, the subgroup H of P is weakly s-permutable in G if
|H| = 2|D| and exp (H) > 2.

(A): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with
order |H| = | D] are weakly s-permutably embedded in G. Whenp = 2 and |P: D| > 2,
in addition, the subgroup H of P is weakly s-permutably embedded in G if |H| = 2|D|
and exp (H) > 2.

($1): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P
with order |H| = |D| are weakly s-normal in G. When P is a non-abelian 2-group and
|P: D| > 2, in addition, H is weakly s-normal in G if |H| = 2|D| and exp (H) > 2.

({$2): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with
order |H| = | D] are either s-permutably embedded or s-semipermutable in G. When P
is a non-abelian 2-group and |P: D| > 2, in addition, the subgroup H of P is either
s-permutably embedded or s-semipermutable in G if |H| = 2|D| and exp (H) > 2.

($3): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P
with order |H| = |D| are s-semipermutable in G. When P is a non-abelian 2-group and
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|P: D| > 2, in addition, the subgroup H of P is s-semipermutable in G if |H| = 2| D]
and exp (H) > 2.

($4): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with
order |H| = | D] are either s-semipermutable or c-normal in G. When P is a non-abelian
2-group and |P: D| > 2, in addition, the subgroup H of P is either s-semipermutable
or c-normal in G if |H| = 2|D| and exp (H) > 2.

The following is the main result of [4].

Theorem 1.1 ([4], Theorem 1.3). Let F be a saturated formation containing U and
G a group with E as a normal subgroup of G such that G/E € F. Suppose that every
non-cyclic Sylow subgroup P of F*(E) satisfies (x) in G. Then G € F.

Scrutinizing the proof of [4] (Theorem 1.3), we can find that the following theorem
holds:

Theorem 1.2. Let F be a saturated formation containing U and G a group with a
normal subgroup E such that G/E € F. Suppose that every non-cyclic Sylow subgroup
P of F*(E) satisfies ()" in G. Then G € F.

In [6], Theorem 1.2 was extended as follows.

Theorem 1.3. Let F be a saturated formation containing U and G a group with
E as a normal subgroup of G such that G/E € F. If every non-cyclic Sylow subgroup
of F*(E) satisfies N\ in G, then G € F.

In [22], there holds the following result.

Theorem 1.4. Let F be a saturated formation containing U and G a group with a
normal subgroup E such that G/E € F. If every non-cyclic Sylow subgroup of F*(E)
satisfies {3 in G, then G € F.

In [23], Theorem 1.4 was extended as follows.

Theorem 1.5. Let F be a saturated formation containing U and G a group with a
normal subgroup E such that G/E € F. If every non-cyclic Sylow subgroup of F*(E)
satisfies gy in G, then G € F.

In this paper, the main purpose is to generalize results mentioned above as Theo-
rem 3.4. Theorem 3.2 related to p-nilpotency of groups is a main step in the proof of
Theorem 3.4.

2. Preliminaries.

Lemma 2.1. Suppose that H is an s-semipermutable subgroup of G. Then

() If H < K < G, then H is s-semipermutable in K.

(b) Let N be a normal subgroup of G. If H is a p-group for some prime p € 7(G),
then HN/N is s-semipermutable in G /N.

(©) If H < O,(Q), then H is s-permutable in G.

Proof. By [7].

Lemma 2.2 ([5], Lemma 1). Suppose that U is s-permutably embedded in a group
G, and that H < G and N < G.

(@) If U < H, then U is s-permutably embedded in H.

(b) UN is s-permutably embedded in G and UN/N is s-permutably embedded in
G/N.

Lemma 2.3 ([21], Lemma 2.3). Suppose that H is s-permutable in G, P a Sylow
p-subgroup of H, where p is a prime. If Hg = 1, then P is s-permutable in G.

Lemma 2.4 ([21], Lemma 2.4). Suppose P is a p-subgroup of G contained in Op(G).
If P is s-permutably embedded in G, then P is s-permutable in G.

Now we give some basic properties of weakly s-normality.
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Lemma 2.5. Let U be a weakly s-normal subgroup of G and N a normal sub-
group of G. Then

(@) IfU < H < G, then U is weakly s-normal in H.

(b) Suppose that U is a p-group for some prime p. If N < U, then U/N is weakly
s-normal in G/N.

(¢) Suppose that U is a p-group for some prime p and N is a p'-subgroup. Then
UN/N is weakly s-normal in G/N.

(d) Suppose that U is a p-group for some prime p and U is neither s-semipermutable
nor s-permutably embedded in G. Then G has a normal subgroup M such that |G: M| =
=pand G = MU.

(@) If U < O,(G) for some prime p, then U is weakly s-permutable in G.

Proof. By the hypotheses, there are a subnormal subgroup 7" of G and a subgroup
U, of U such that G = UT and U N T < U,, where U, is a subgroup of U which is
either s-permutably embedded or s-semipermutable in G.

() H=U(HNT). Obviously HNT is subnormal in H and UN(HNT) =UNT <
< U,. By Lemmas 2.1 and 2.2, we know that U, is either s-permutably embedded or
s-semipermutable in H. Hence U is weakly s-normal in H.

(b) G/N = (U/N)(TN/N). Obviously TN/N is subnormal in G/N and (U/N)N
N(TN/N) = (UNTN)/N = (UNT)N/N < U.,N/N. By Lemmas 2.1 and 2.2,
we know that U,N/N is either s-permutably embedded or s-semipermutable in G/N.
Hence U/N is weakly s-normal in G/N.

(c) It is easy to see that N < T and G/N = (UN/N)(T/N). We have T/N is
subnormal in G/N and (UN/N)N(T/N) = (UNT)N/N < U,N/N. By Lemmas 2.1
and 2.2, we know that U,N/N is either s-permutably embedded or s-semipermutable
in G/N. Hence U/N is weakly s-normal in G/N.

DIUT =G, thenU =UNT < U, <U. Thus U = U, is either s-semipermutable
or s-permutably embedded in G, contrary to the hypotheses. Consequently, 7" is a proper
subgroup of G. Hence G has a proper normal subgroup K such that 7' < K. Since G/ K
is a p-group, G has a normal maximal subgroup M such that |G: M| =pand G = MU.

(e) By Lemmas 2.1(c) and 2.4 and the definitions.

Lemma 2.6 ([14], A, 1.2). Let U, V and W be subgroups of a group G. Then the
following statements are equivalent.

@UNAVW =UnV)(UnW).

G UVNUW =UVNW).

Lemma 2.7 ([1], VI, 4.10). Assume that A and B are two subgroups of a group G
and G # AB. If ABY = BY9A holds for any g € G, then either A or B is contained in
a proper normal subgroup of G.

Lemma 2.8 ([1], III, 5.2 and 1V, 5.4). Suppose that p is a prime and G is a minimal
non-p-nilpotent group, i.e., G is not a p-nilpotent group but whose proper subgroups are
all p-nilpotent. Then

(a) G has a normal Sylow p-subgroup P and G = PQ, where Q is a non-normal
cyclic q-subgroup of G for some prime q # p.

(b) P/®(P) is a minimal normal subgroup of G/®(P).

(c) The exponent of P is p or 4.

The generalized Fitting subgroup F*(G) of G is the unique maximal normal quasi-
nilpotent subgroup of G. Its definition and important properties can be found in [15] (X,
13). We would like to give the following basic facts we will use in our proof.
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Lemma 2.9 ([15], X, 13). Let G be a group and M a subgroup of G.

(a) If M is normal in G, then F*(M) < F*(G).

(b) F*(G) # 1if G # 15 in fact, F*(G)/F(G) = soc (F(G)Ca(F(G))/F(G)).

(c) F*(F*(G)) = F*(G) > F(Q); if F*(QG) is solvable, then F*(G) = F(G).

3. Main results.

Theorem 3.1. Let G be a group and P = G, a Sylow p-subgroup of G, where p
is the smallest prime dividing |G|. If all maximal subgroups of P are weakly s-normal
in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and G is a counter-example with minimal
order. We will derive a contradiction in several steps.

Step 1. @ has a unique minimal normal subgroup N such that G/N is p-nilpotent
and ®(G) =1

Let N be a minimal normal subgroup of G. Consider G/N, we will show that G/N
satisfies the hypotheses of the theorem. Let M /N be a maximal subgroup of PN/N. It
is easy to see M = P; N for some maximal subgroup P; of P. It follows that PN N =
= PN N is a Sylow subgroup of N. By the hypotheses, there are a subnormal subgroup
K of G and a subgroup (Py). of P; such that G = Py K7 and PN K7 < (P;)., where
(P1)+ is a subgroup of P; which is either s-permutably embedded or s-semipermutable
in G. Then G/N = M/N-KN/N = PLN/N - K;N/N. It is easy to see that K1 N/N
is subnormal in G/N. Since (|[N: PLNN|,|N: KN N|) =1, (PANN)(KiNN) =
=N = NNG = NN(P1 K7). By Lemma 2.6, (PLN)N(K1N) = (P1NK7)N. It follows
from Lemmas 2.1 and 2.2 that (P, N/N)N(K1N/N) = (PLNK;)N/N < (Py).N/N,
(P1)«N/N is either s-permutably embedded or s-semipermutable in G/N. Hence M /N
is weakly s-normal in G /N. Therefore G /N satisfies the hypotheses of the theorem. The
choice of G yields that G/N is p-nilpotent. The uniqueness of N and ®(G) = 1 are
obvious.

Step 2. Oy (G) = 1.

If Op(G) # 1, then N < On(G) by Step 1. By Lemma 2.5(c), G/N satisfies
the hypotheses, hence G/N is p-nilpotent. Now the p-nilpotency of G/N implies the
p-nilpotency of G, a contradiction.

Step 3. O,(G) =1 and G = PN. Therefore G is not solvable and N is a direct
product of isomorphic non-abelian simple groups.

If O,(G) # 1, Step 1 yields N < O,(G) and ®(0,(G)) < ®(G) = 1. Therefore G
has a maximal subgroup M such that G = M'N and M N N = 1. Since O,(G) N M
is normalized by N and M, O,(G) N M is normal in G. The uniqueness of NV yields
N = O,(G). Clearly P = N(P N M). Since PN M < P, there exists a maximal
subgroup P; of P such that PN M < P;. Then P = N P;. By the hypotheses, there
are a subnormal subgroup 7' of G and a subgroup (P;). of P; such that G = P,T
and P, N'T < (Py)., where (P;), is a subgroup of P; which is either s-permutably
embedded or s-semipermutable in G. Since N < OP(G) < T by Step 1, we have
PLNN=(P).NN.

If (Py). is s-semipermutable in G, then, for any Sylow g-subgroup G of G, ¢ # p,
there holds

[PANN,Gy] < NN (P1)«Gg=Nn(P)s=NnNPF.
Obviously, P, NN is normalized by P. Therefore Py NN is normal in G. The minimality
of N implies that P, N N = 1. Hence N is of order p. Thus G is p-nilpotent, a
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contradiction. Hence P; is s-permutably embedded in G. Then we get a contradiction
with the same argument in the Step 3 of the proof of [6] (Theorem 3.1).

If PN < G, then PN is p-nilpotent. Hence NV is p-nilpotent. Therefore N = N, <
< 0,(G) =1 by Step 2, a contradiction. Hence G = PN.

By Step 2, we can see that G is not solvable and NN is a direct product of isomorphic
non-abelian simple groups. Thus Step 3 holds.

Step 4. The final contradiction.

If NN P < ®(P), then N is p-nilpotent by Tate’s theorem [1, p. 431] (Satz 4.7),
contrary to Step 3. Consequently, there is a maximal subgroup P; of P such that P =
= (N N P)P,. Since P; is weakly s-normal in G, by the hypotheses, there are a
subnormal subgroup T of G and a subgroup (P;). of P; such that G = P,T and
PiNT < (Py)., where (Py), is a subgroup of P; which is either s-permutably embedded
or s-semipermutable in G.

Suppose that (P;). is s-semipermutable in G. Since G = PN, any Sylow g¢-
subgroup N, of N is a Sylow g-subgroup of G, where ¢ # p. We have (P).N, < G,
and thus (P;).N, N N is a proper subgroup of N since N is nonsolvable. Then
NN (P)«Ny = ((P1)« " N)N; < N. Applying Lemma 2.7, we know that N has
a proper normal subgroup M such that either (P1). NN < M or N, < M. Since M
is proper in N, by [1] (I, Satz 9.12(b)), M contains no Sylow subgroups of IN. Thus
(P1)« NN < M. Noticing that P, " N = (P),. NN < P; N M, we have

IN/M|, = =|PNN: PNM|<|PNN: P NN|<|P: Pi|=p.
Hence N/M is p-nilpotent by [1] (IV, Satz 2.8), but this is a contradiction.

Hence P; is s-permutably embedded in G. Now we get the final contradiction with
the same argument in the Step 4 of the proof of [6] (Theorem 3.1).

This completes the proof of Theorem 3.1.

Theorem 3.2. Let G be a group and P a Sylow p-subgroup of G, where p is the
smallest prime dividing |G|. If P satisfies {1 in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and G is a counter-example with minimal
order. We will derive a contradiction in several steps.

Step 1. Oy (G) = 1.

Assume that O,/ (G) # 1. Lemma 2.5(c) guarantees that G/O, (G) satisfies the
hypotheses of the theorem. Thus G/O,, (G) is p-nilpotent by the choice of G. Then G
is p-nilpotent, a contradiction.

Step 2. |P: D| > p.

By Theorem 3.1.

Step 3. G has no subgroup of index p.

Suppose that G has a subgroup M such that |G: M| = p. Then M < G. By Step 2
together with induction, M is p-nilpotent, consequently, G is p-nilpotent, a contradiction.

Step 4. |D| > p.

Assume that |D| = p. Since G is not p-nilpotent, G has a minimal non-p-nilpotent
subgroup Gi. By Lemma 2.8(a), G1 = [P1]Q, where P € Syl,(G1) and Q €
€ Syl,(G1), p # q. Denote ® = ®(Py). Let X/® be a subgroup of P;/® of order
p,x € X\ ®and L = (x). Then L is of order p or 4 by Lemma 2.8(c). By the hypothe-
ses, L is weakly s-normal in G, thus in G; by Lemma 2.5(a). Since L < P; = O,(G1),
by Lemma 2.5(e), L is weakly s-permutable in G;. Since G is a minimal non-p-
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nilpotent subgroup, G has no subgroup of index p. Thus, by [4] (Lemma 2.10(5)), L is
s-permutable in G;. Then X/® = L®/®P is s-permutable in G1/P. [4] (Lemma 2.11)
implies that | P; /®| = p since P, /® is minimal normal in G /®. It follows immediately
that P; is cyclic. Hence (1 is p-nilpotent by [1] (Lemma 2.11), contrary to the choice
of Gl .

Step 5. P satisfies {5 in G.

Assume that H < P such that |H| = |D| and H is neither s-permutably embedded
nor s-semipermutable in G. By Lemma 2.5(d), there is a normal subgroup M of G such
that |G: M| = p, contrary to Step 3.

Step 6. If N is minimal normal in G contained in P, then |N| < |D|.

Suppose that [N| > |D|. Since N < O,(G), N is elementary abelian. By Lemma
2.5(e) and [4] (Lemma 2.11), N has a maximal subgroup which is normal in GG, contrary
to the minimality of N.

Step 7. If N is minimal normal in G contained in P, then G/N is p-nilpotent.

If |N| < |D|, G/N satisfies the hypotheses of the theorem by Lemmas 2.1(b) and
2.2. Thus G/N is p-nilpotent by the minimal choice of G. So we may suppose that
[N| = |D| by Step 6. We will show that every cyclic subgroup of P/N of order p
or order 4 (when P/N is a non-abelian 2-group) is either s-permutably embedded or
s-semipermutable in G/N. Let K < P with | K/N| = p. By Step 4, N is non-cyclic, so
are all subgroups containing N. Hence there is a maximal subgroup L # N of K such
that K = NL. Of course, |N| = |D| = |L|. Since L is either s-permutably embedded
or s-semipermutable in G by the hypotheses and Step 5, K/N = LN/N is either s-
permutably embedded or s-semipermutable in G/N by Lemmas 2.1(b) and 2.2. If p = 2
and P/N is non-abelian, take a cyclic subgroup X/N of P/N of order 4. Let K/N be
maximal in X/N. Then K is maximal in X and |K/N| = 2. Since X is non-cyclic
and X/N is cyclic, there is a maximal subgroup L of X such that N is not contained
in L. Thus X = LN and |L| = |K| = 2|D|. Since X/N = LN/N = L/(LNN) is
cyclic of order 4, by the hypotheses and Step 5, L is either s-permutably embedded or
s-semipermutable in G. By Lemmas 2.1 and 2.2, X/N = LN/N is either s-permutably
embedded or s-semipermutable in G/N. Hence P/N satisfies {2 in G/N. By the
minimal choice of G, G/N is p-nilpotent.

Step 8. O,(G) =1.

Suppose that O,,(G) # 1. Take a minimal normal subgroup N of G contained in
O,(G). By Step 7, G/N is p-nilpotent. This means that G has a subgroup of index p,
contrary to Step 3.

Step 9. Each minimal normal subgroup of G is not p-nilpotent, G = LP for any
minimal normal subgroup L of G.

For any minimal normal subgroup L of G, if L is p-nilpotent, by the fact that
L, char LG, we have L,y < O, (G) = 1. Thus L is a p-group. Then L < O,(G) =1
by Step 8, a contradiction. If LP is proper in GG, by induction, LP is p-nilpotent, and
so L is p-nilpotent, a contradiction. Thus G = LP for any minimal normal subgroup L
of G.

Step 10. G is a non-abelian simple group.

Take a minimal normal subgroup L of G. If L < G, by Step 9, G = LP. Then G
has a subgroup of index p, contrary to Step 3. Thus G = L is simple.

Step 11. The final contradiction.
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Suppose that H is a subgroup of P with |H| = |D| and Q is a Sylow g-subgroup
of G with g # p. If H is s-semipermutable in GG, then HQY9 = Q9 H for any g € G by
the hypotheses and Step 5. Since G is simple by Step 10, G = H(Q by Lemma 2.7, a
contradiction. Hence H is s-permutably embedded in G. So H is a Sylow subgroup of
some subnormal subgroup of GG. But the subnormal subgroups of G are exactly G' and
1, whereas H is a Sylow p-subgroup of neither of them, the final contradiction.

This completes the proof.

Corollary 3.1. Suppose that G is a group. If every non-cyclic Sylow subgroup of
G satisfies {1 in G, then G has a Sylow tower of supersolvable type.

Theorem 3.3. Let F be a saturated formation containing U and G a group with a
normal subgroup E such that G/E € F. Suppose that every non-cyclic Sylow subgroup
of E satisfies {1 in G. Then G € F.

Proof. Set p € w(E). Suppose that P is a Sylow p-subgroup of E. Since P satisfies
{1 in G by hypotheses, P satisfies {»>; in E/ by Lemma 2.5(a). Applying Corollary 3.1,
we have F has a Sylow tower of supersolvable type. Let ¢ be the largest prime divisor
of |E| and Q € Syl (E). Then Q < G. Since (G/Q, E/Q) satisfies the hypotheses of
the theorem, by induction, G/Q € F. For any subgroup H of Q with |H| = | D], since
Q < O4(G), H is weakly s-permutable in G by Lemma 2.5(e). Hence () satisfies ()’
in G. Since F*(Q) = @ by Lemma 2.9, we get G € F by applying Theorem 1.2.

Theorem 3.4. Let F be a saturated formation containing U and G a group with a
normal subgroup E such that G/E € F. Suppose that every non-cyclic Sylow subgroup
of F*(E) satisfies {1 in G. Then G € F.

Proof. Assume that this theorem is false and let (G, E) be a counterexample with
|G||E| minimal. By Lemma 2.5(a) the hypothesis is still true for (F*(E), F*(FE)), and
so F*(E) is supersolvable by Theorem 3.3. Hence F'*(E) = F(E), by Lemma 2.9(c).
Thus every non-cyclic Sylow subgroup of F*(FE) satisfies (x) in G. Hence G € F, by
Theorem 1.2.

This completes the proof of the theorem.

4. Some applications. From the definition of weakly s-normal subgroup, we can
see that [4] (Corollaries 5.1 -5.24) and [6] (Corollaries 4.1 —4.14) are corollaries of our
Theorems 3.3 and 3.4. Furthermore, we have the following corollaries.

Corollary 4.1. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and
all maximal subgroups of any Sylow subgroup of E are either s-permutably embedded
or s-semipermutable or c-normal in G.

Corollary 4.2. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and
all maximal subgroups of any Sylow subgroup of F*(E) are either s-semipermutable or
c-normal in G.

Corollary 4.3. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and
all maximal subgroups of any Sylow subgroup of E are either s-permutably embedded
or c-normal in G.

Corollary 4.4. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and
all maximal subgroups of any Sylow subgroup of E are either s-permutably embedded
or s-semipermutable in G.

ISSN 1027-3190. Vrp. mam. scypn., 2011, m. 63, Ne 11



ON WEAKLY s-NORMAL SUBGROUPS OF FINITE GROUPS 1563

Corollary 4.5 ([19], Theorem 1). Let F be a saturated formation containing U and
let G be a group. Then G € F if and only if there exists a normal subgroup E such that
G/E € F and all maximal subgroups of any Sylow subgroup of E are s-semipermutable
in G.

Corollary 4.6. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and the
cyclic subgroups of prime order or order 4 of F*(E) are either s-permutably embedded
or s-semipermutable or c-normal in G.

Corollary 4.1. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and all
maximal subgroups of any Sylow subgroup of F*(E) are either s-permutably embedded
or s-semipermutable in G.

Corollary 4.8. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and the
cyclic subgroups of prime order or order 4 of F*(E) are either s-permutably embedded
or c-normal in G.

Corollary 4.9. Let F be a saturated formation containing U and let G be a group.
Then G € F if and only if there exists a normal subgroup E such that G/E € F and
the cyclic subgroups of prime order or order 4 of F*(E) are either s-semipermutable
or c-normal in G.

Corollary 4.10 ([19], Theorem 1). Let F be a saturated formation containing U
and let G be a group. Then G € F if and only if there exists a solvable normal
subgroup E such that G/E € F and all maximal subgroups of any Sylow subgroup of
F(E) are s-semipermutable in G.

Corollary 4.11 ([19], Theorem 3). Let F be a saturated formation containing U
and let G be a group. Then G € F if and only if there exists a solvable normal
subgroup E such that G/E € F and the cyclic subgroups of prime order or order 4 of
F(E) are s-semipermutable in G.

Corollary 4.12. Let F be a saturated formation containing U and let G be a
group. Then G € F if and only if there exists a solvable normal subgroup E such that
G/E € F and the cyclic subgroups of F(E) of prime order are either s-permutably
embedded or s-semipermutable in G and the Sylow 2-subgroups of F(E) are abelian.

Corollary 4.13 ([19], Theorem 6). Let F be a saturated formation containing U
and let G be a group. Then G € F if and only if there exists a solvable normal
subgroup E such that G/E € F and the cyclic subgroups of F(E) of prime order are
s-semipermutable in G and the Sylow 2-subgroups of F'(E) are abelian.

Theorem 3.2 is also interesting. Using a similar way, we can generalize it as
follows.

Theorem 4.1. Let G be a group, H a normal subgroup of G such that G/H is
p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of |G| with
(IG|,p — 1) = 1. If P satisfies {1 in G, then G is p-nilpotent.

Corollary 4.14. Let G be a group, H a normal subgroup of G such that G/H is
p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of |G| with
(|IGl,p — 1) = 1. If every maximal subgroup of P is either s-permutably embedded or
s-semipermutable or c-normal in G, then G is p-nilpotent.

Corollary 4.15. Let G be a group, H a normal subgroup of G such that G/H is
p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of |G| with
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(IG|,p — 1) = 1. If every maximal subgroup of P is either s-permutably embedded or
s-semipermutable in G, then G is p-nilpotent.

Corollary 4.16. Let G be a group, H a normal subgroup of G such that G/H is
p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of |G| with
(IG|,p — 1) = 1. If P satisfies (x)' in G, then G is p-nilpotent.

Corollary 4.17 ([17], Theorem 3.3). Let G be a group, H a normal subgroup of G
such that G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is the minimal
prime dividing the order of G. If every maximal subgroup of P is s-semipermutable in
G, then G is p-nilpotent.
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