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EXISTENCE AND EXPONENTIAL STABILITY
OF PERIODIC SOLUTION FOR FUZZY BAM NEURAL
NETWORKS WITH PERIODIC COEFFICIENT *

ICHYBAHHA TA EKCITOHEHIIAJIBHA CTIﬁKICT13
HNEPIOAUYHOI'O PO3B’A3KY JJIA HEYITKUX HEMPOHHUX
MEPEX KOCKO 3 I[IEPIOANYHUMU KOEDIINICHTAMHU

A class of fuzzy bidirectional associated memory (BAM) networks with periodic coefficients is studied. Some
sufficient conditions are established for the existence and global exponential stability of a periodic solution of
such fuzzy BAM neural networks by using a continuation theorem based on the coincidence degree and the
Lyapunov-function method. The sufficient conditions are easy to verify in pattern recognition and automatic
control. Finally, an example is given to show the feasibility and efficiency of our results.

BuBueHO Ki1ac HEHITKUX HEHPOHHUX Mepek Kocko 3 nepioquyHuM KoedilieHToM. 3a I0MOMOT00 TEOPEMH TIPO
IIPOZIOBXKEHHS, 10 0a3yeThesl Ha CTyIeHi 30iry Ta Metoni ¢yHKIiH JIsmyHOBa, BCTAHOBICHO JOCTaTHI YMOBU
JULSL iCHYBaHHS Ta NIOOAJIBHOI eKCIIOHEHIIAIBHOT CTIHKOCTI MEePiOUYHOr0 pPO3B’ 3Ky TAKUX HEYITKHX HEHPOH-
HuX Mepex Kocko. Lli mocTaTHi yMOBH JIETKO MEpPEBIpSIOTHCS MPH PO3Mi3HaBaHHI 00pa3iB Ta aBTOMAaTHYHOMY
KepyBaHHi. HaBeieHO mpuKIaj, 1o JEMOHCTPYE 3aCTOCOBHICTD Ta €(pEeKTHBHICTH OTPHMAHUX PE3YJIbTaTiB.

1. Introduction. Recently, a class of two-layer hetero-associative networks called bidi-
rectional associated memory (BAM) neural networks [1, 2] with or without transmission
delays have been proposed by Kosko and used in many fields such as pattern recognition
and automatic control. Many authors studied the stability of BAM neural networks with
delays or without delays (see, for example, [1, 2, 3-12, 17]).

It is well known that fuzzy cellular neural networks (FCNNSs) first introduced by
T. Yang and L. B. Yang [13, 14] is another type cellular neural networks model, which
combined fuzzy operations (fuzzy AND and fuzzy OR) with cellular neural networks.
Recently researchers have found that FCNNs are useful in image processing, and some
results have been reported on stability and periodicity of FCNNs [15, 16, 18, 19]. How-
ever, the papers above only consider the FCNNs with constant coefficients. At present,
the investigation of BAM neural networks with periodic coefficients and delays has at-
tracted more and more attention of the researcher [17, 22], to the best of our knowledge,
few author consider the stability of fuzzy BAM neural networks with periodic coeffi-
cients. In this paper, we would like to investigate the fuzzy BAM neural networks with
periodic coefficients by the following system:
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i () £ (y5(0) + N Ty (8 (1) + L)+
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h(t) = —a;(t)x;(t) +

Il
-
<.

Il
=

J

+ \/ Bii () f3(y;(t)) + \/ Hij(t)u;(t),

(1.1)

y;(t) = —bj(t>yj(t> + /\ pji(t)gi(ﬂci(t)) + /\ Kj‘(t)ui(t) + Jj(?f)‘f’

i=1 i=1

n n
+ \/ q;i(t)gi(zi(t)) + \/ Nji(t)ui(t),

i=1 i=1
where a;(t) > 0, b;j(t) > 0,7 = 1,2,...,n, j = 1,2,...,m. z;(t) and y;(t) are
the activations of the ith neuron in X-layer and the jth neuron in Y-layer at the time
t, respectively. /\ and \/ denote fuzzy AND and fuzzy OR operations, respectively.
fisi=12,...,m, g;, i = 1,2,...,n, are signal transmission functions. a;;(t) and
Bi;(t) are respectively the elements of fuzzy feedback MIN and fuzzy feedback MAX
in X-layer at the time ¢. T;;(t) and H;;(t) are respectively the elements of fuzzy feed-
forward MIN and fuzzy feed-forward MAX in X -layer at the time ¢. p;;(¢) and ¢;;(¢) are
respectively the elements of fuzzy feedback MIN and fuzzy feedback MAX in Y -layer
at the time ¢t. Kj;(t) and Nj;(t) are respectively the elements of fuzzy feed-forward
MIN and fuzzy feed-forward MAX in Y'-layer at the time ¢. w;(t) and u;(t) denote the
external inputs at the time ¢. J;(t) and J;(t) denote bias of the ith neurons in X-layer
and bias of the jth neurons in Y-layer at the time ¢, respectively.

Throughout this paper, we always assume that a;(t), b;(t), a;;(t), Bi;(t), Ti;(t),
Hij (t), pji(ﬁ), qji(t), Kji (t), Nji (t), Uj (t), Uj (t), Ii (t), Jj (t) are continuous w-periodic
functions.

For the sake of convenience, we introduce the following notations: Let 7(t) be a
w-periodic solution defined on R

- mi +_
rT=min [r(t)l, T = max |r(t)],

1 w w
7= E/r(t)dt, 72 = /|r(t)|2dt
0 0

Throughout this paper, we give the following assumptions:
(A1) f;(-) and g;(-) are Lipschitz continuous on R with Lipschitcz constants L; ,
j=12,...,m, LY, i=1,2,...,n,and f;(0) = ¢;(0) = 0. That is, for all z,y € R

1/2

1fi(@) = fi) < Lilz =yl gi(z) — gi(y)| < LIz — y).

(Ag) There exist constant M; > 0, R; > 0 such that |f;(y)| < M;,|g;(2)] < R;
forj=1,2,...,n,x,y € R.
For any solution

Z(t) = (x(t)Tvy(t)T)T = (ml(t)v s 71'n(t)7y1(t)7 s aym(t))T
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and periodic solution

() = (@ ()", y )T = (@1 (@), .25 (1), y1 (1), ym ()T
of system (1.1), define ||(¢7, T)T — (x*T,y*T)T|| as

(6", )" = (&, y* )| = max [4:(t) |+Z max |p;(t) =y (¢)].

— t€0w 7 t€(0.w]

Definition 1.1. The periodic solution (z*7 (t), y*T ()T of system (1.1) is said to
be globally exponentially stable, if there exist constants v > 0 and M > 1 such that

|z (t) —zf (8)] < M||(¢T,<pT)T — (J;*T,y*T)THe_W VtE>0, 1=1,2,...,n,

ly; (6) = y; ()] < M|[(67, ") = (@, y™ ) e VE>0, j=1.2,....m,

for any solution of system (1.1).
Lemma 1.1 [13]. Suppose x and y are two states of system (1.1), then we have

n n
/\ azg gj /\ azg Z 0423 ||gj —9j (y)l
Jj=1 Jj=1

and

\/BU )g; (x \/ﬁw 95)| < D 1Big (1)llg (2) = 95(w)]-

The rest of this paper is organized as follows. In Section 2, we will prove the
existence of the periodic solution by using the continuation theorem of coincidence
degree theory. In Section 3, we establish the result that the periodic solutions are the
globally exponentially stable by using Lyapunov function method. In Section 4, an
example will be given to illustrate the feasibility and effectiveness of our results. General
conclusion is drawn in Section 5.

2. Existence of periodic solution. In this section, based on Mawhin’s continuation
theorem, we shall study the existence of at least one periodic solution of (1.1). To do so,
we shall make some preparations.

Let X = {(z7(t),y" ()T € C(R, R"™™)|z(t + w) = z(t), (t +w) = y(t) for

some w > 0} and (27 (1), y" (£)"| = > max |z:(t)| + Zj | e ly; (8)], it

can be proved that X is a Banach space.
Consider the following abstract equation in the Banach space X:

Lx = ANz 2.1

where L: Dom L (X — X is a Fredholm mapping of index zero and A € [0,1] is a
parameter. There exist two linear and continuous projectors P and )

P: X(\DomL —KerL, Q:X — X/ImL

such that Im P = Ker L, Ker Q = Im L. Due to dimIm ) = dimKer L, there exists an
algebraical and topological isomorphism .J: Im ) — Ker L.
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Lemma 2.1 (see [21]). Let X be a Banach space and L be a Fredholm mapping
of index zero. Assume that N: Q — X is a L — compact on Q with Q open and bound
in X. Furthermore, suppose that

(a) for each X € (0,1), x € 9Q(Dom L, Lz # ANx;

(b) for each x € N (Ker L, QNz # 0;

(c) deg {QNzx,QKerL,0} # 0,
then the equation Lx = Nz has at least one solution in Q, where Q is the closure to £,
0N) is the boundary of (2.

Theorem 2.1. Assume that (A1) and (Az) hold, then system (1.1) has at least one
w-periodic solution.

Proof. In order to use continuation theorem of coincidence degree theory to establish
the existence of periodic solution. Let

(N2)i(t) = —ai(t)z(t) + /\ ij(t) fi(y;(t) + /\ Tij (t)u; (t) + Li(t)+
+\/ B0 i)+ \ Hy(Hu; (), i=1,2,....n,
j=1 j=1

(N2 (8) = =bi D)y (1) + /\ pji(Ogi(i () + N Kji(t)ui(t) + J; 1)+

i=1 i=1

+V @igi(ea) + \/ Nuwpwi(0), G=1.2.....m,

i=1 i=1

(Lz)(t) =2'(t), Pz=

for z(t) = (27(¢), yT(t))T € XNDomL, U € X. It is easy to prove that L is a

Fredholm mapping of index zero, that P: X (\Dom L — KerL and Q: X — X/ImL

are two projector, and N is L compact on ) for any given open bounded set.
Corresponding to the operator equation Lz = ANz, A € (0,1), we have

m

zi(t) = A | —ai(t)zi(t) + /\ i (t) f5(y; (1)) + /\ T (t)us (1) + Li(t) +

j=1 j=1

m

+ \/ Bij () £5(y;(t)) + \/ Hij(tu;(t) ]

2.2)

n

i) = X | =b;(0)y; () + N\ pjis(Ogi(ai(t) + N\ Kji(ua(t) + J;(t) +

+\/ @) gi (i) + \/ Nja()ui(t)

i=1 i=1
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Suppose that z(t) = (z1(t),..., 2, (t), y1(t),...,ym(t))T € X is a solution of system
(2.2) for a certain A € (0, 1). Integrating (2.2) over [0, w], we obtain

/ ai(t)e: (t)dt = / A a5 3 (0) + N T () + Li(t) +
0 o |J=1 j=1
+ VB 5w 0) + \ His (0 ()| dt. (23)

Let £ € [0,w] such that x;(&) = inficpo,w) 2i(t), i = 1,2,...,n. Then by (2.3), we have

waixi(f)g/ A o810y 0 /\ /\ By (0| + |1(8)] +
/ Y [

Jj=1

Jj=1

\/613 f] y] \/ﬂzg fg \/ dt <

g/ S lass Ol (D] + 3 18Ol (s 6] +
0

j=1 j=1

m m

+ |\ T (Ouy ()| + 10| + |\ Hij (8 (8)] | dt <

J=1 Jj=1

<w | (e + BHM; + (T + Hyul + IF |
j=1

Hence

Za +BM; + (T + Hhul +IF 5 =U;, i=1,2,....n

24
Similarly, let 77 € [0, w] such that y;(n) = inf,cp ., j = 1,2,...,m, we obtain
1] .
yi(n) < & {Z(pﬁ + ¢ Ry + (K + Njuf + Jf} =V, j=12,...,m
7 Li=1
2.5)
Set tg = 0, tg41 = w, from (2.2), (2.4) and (2.5), we have
g+1
/ ldt < / t)|dt <
o k=1;,"
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w
m

< [laolai(ola + [ 3oy 0] + 80D s 0o+

o J=1

w /2 /4 1/2
£y ( / |aij<t>|2dt) ( / Ifj(yj(t))l2dt) +
0 0
o w /2 ;4 1/2
3 ( / |ﬁij<t>|2dt) ( / |fj<yj<t>>2dt) (T + B utw + [Fw <
=1 \p 0

m

< \/(;CLTHJJZHQ + Z \/LT}(Oé;; + ﬁ;;)M] + (T; + H;;)u;rw + I{"w. (2.6)

Multiplying both sides of system (2.2) by z;(¢) and integrating over [0, w], we obtain
that

w

= [ z;(t)2(t)dt = =\ [ a;(t)2?(t)dt+
J J

0

j=1 j=1
xx;(t)dt + )\/ (/\ u;(t) +\/ HZ](t)uj(t)) ; (t)dt + )\/IZ( )i (t)dt
Jj=1 Jj=1
' ’ 2.7)
From (2.7) and applying Lemma 1.1, it follows that
/Ixz )|t </ ( I\ s 01y (8))] + \//Bij(t)fj(yj(t))) |s(t)]dt+
j=1

N\ T (Du(8) + \/ Hij(£)u;(t) \fvz'(t)ldt+/Ifz'(t)l\fm(t)ldf <
j=1 0

J=1

v
0
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< /Z(|au\ + 185 D15 (y5 ()i (£) di+

+/ N\ Tl (O] + \/ [Hij (8)] [y (0)] Ixi(t)IdtJr/Ifi(t)\lwi(t)\dt <
0 0

j=1 j=1
w 1/2
< Za + B5)M; + Tihul + Hful + I | Vw /|xi(t)|2dt . (2.8)
j=1

It follows from (2.8) that

m

1
]|z < - > (o + BHM; + Thul + Hiul + I | Vo =G, (2.9)

- ij g
7 j=1

Substituting (2.9) into (2.6), we obtain that

w m
/ (D]t < VEaF G+ S Vil + BM; + (T + B utw + Ifw. (210)
0

j=1

From (2.4) and (2.10), there exists positive constant B;, ¢ = 1,2,...,n, such that for
t € [0,w],

Similarly, we have

‘yj(t)|§Bn+j7 j:1,2,...,m

n+m

Clearly, B;, i = 1,2,...,n + m, is independent of \. Denote B* = 2'71 B; + 9,
where § > 0 is taken sufficiently large such that -

m

o +ot + 4+ 7.

1I§1’1ilé1nalB >1I£ia§Xn z; |alj|+\ﬂ” DM+ Tul + Hiul + L] ],
]:

3

min b;B* > max (Z Djil + 1@, Ri +K;guj+N+u++|Jj|>.

1<5<m 1<5< 1 Jro
i=
Now we take
Q=Az=(z1(t),..., 2o t),11(t),. .., ym(t))T € R"™|z|| =

= H(xh'">xnay17'-'>ym)T” < B*}

Thus the condition (a) of Lemma 2.1 is satisfied.
When z = (21, ..., Tn, Y1, Ym) L €OV R"™, 2= (X1, ..., Ty Y1y, Ym) L
is a constant vector in R™*™ with |z1| 4+ ...+ |zn| + |y1| + ... + |ym| = B*. Then
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01

On

QNZ:QN(xla'--;xnayla"'aym)T: o
n+1

@ner

where

On+j = —bjy; + /\ Ppjigi(w:) + \/ G;:9i(wi)+

i=1 i=1

“ n

n 1 o
A Kityu(tydr + / V/ Noi(tyus(t)dt + 7.
=1 0 i=1
Therefore,

n

i=1 j=1 j=1

JQNell = 3 e~ At~ VBt - - [ ATt
0

j=1 i=1 i=1

n n m

,é/\/Nﬁ(t)m(t)dt—jj Zzailxilfz /\ @i fi(y;) /\a”fj
0

1=1 i=1 i=1 |j=1

=2\ V Biitiw) =\ By £50)| = YT — ZH$ uf =D T+
3 j j =1 =1

=1 |j=1 j=1
m m n n m n n
+ b1|y]‘ - Z /\ ﬁjzgl(‘ri) - /\ 7]7,91(0) - Z \/ 7jzgl(x’b) - \/
j=1 j=1li=1 i=1 j=1li=1 i=1
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m

_ZKﬁj ZNﬁf > 750>
P =1

j=1

> @il = > | (@] + By )M + Tiuf + Hiul + 1] | +
: |\ =

+ bilyil = > (Z(lpjmlqﬁ)R z+Kﬁui+Nﬁui+Jj> >
=1

Jj=1 Jj=1

m
>1r<mn al\xz\— max Z (ess] + [Ba;1) M +1;eru]++H;5u;r+|IZ—| +

j=1

n
+1£r;m b;ly,l - max < ([Bil + 1) R +K;;uj+N]tuj+|Jj|> >0
- i=1

Consequently, QNz = QN (1, ..., %p, Y1, -, Ym) " # (0,0,...,0)T, for (xq,...,2,,
Y1, ym)T € 0Q N Ker L. This satisfies condition (b) of Lemma 2.1.
Define ®: Dom L x [0,1] — X by

(I)(l‘la"'axn7y1a"'aymalu)T:

= _u(xla"'axn7y1a"'aym)T+(1_/’[’)QN(mla"-axn7y17"'aym)T-
When (z1,..., %0, Y1, Ym)L € OQNKerL, (z1,...,%Tn,Y1,---Ym)L € 02
n m
. s . .
(\Ker L is a constant vector satisfying Zi:l || + ijl ly;| = B*. It easily fol-
lows that

(I)(mlw'-axnvyla-'-vym7M>T 7é (0705"-70)T-

Hence

deg (QN(z1,...,Tn,Y1,-.- 7ym)T,Q(WKerL, (0,0,... ,O)T)

=deg (=21, ., —Tn, Y1, -, —tm) ", Q[ Ker L, (0,0,...,0)") #0.

This satisfies condition (c¢) of Lemma 2.1. Thus by Lemma 2.1 it follows that Lz = Nx
has at least one solution in X, namely, system (1.1) has at least one w-periodic solution.

Theorem 2.1 is proved.

3. Global exponential stability of the periodic solution. In this section, we will
construct some suitable Lyapunov function to study the global exponential stability of
the periodic solution of system (1.1).

Theorem 3.1. [f assumptions (A1), (Az) hold, and furthermore assume that

(A3) The following inequalities hold:

m
S0 +aHn >0, i=12,...n,
j=1
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n

by = (o +BHLI >0, j=12...m
i=1
Then the periodic solution of system (1.1) is globally exponentially stable.
Proof. According to Theorem 2.1, we know that system (1.1) has an w-periodic
solution z*(t) = (x5 (t), ..., x5 (%), y5(t), ..., y5 (t)T. Suppose that z(t) = (w1 (t),...
o Tn(),y1(#), ..., ym(t))T is an arbitrary solution of system (1.1), then it follows
from system (1.1) that

+/\a1J ) fi(y;(t /\a” ) f5(y; )+

j=1 j=1

+\/ﬂzg f_] yj \/61] f] y]()) 1=1,2,...,n,

Jj=1 Jj=1

S0 = 550) = =500 — 55 0) + A\ pi0gi (i) = A\ pisOgi(a7(0)+

+\/qm gi(i(t \/qﬂ gi(x i=1,2...,m.
=1

By (A;) and Lemma 2.1, we have

a+ . .
7170 — @i ()] < —ai(®)lai(t) — 2F (6)]+

+ /\a” () f5(y;(t /\alj () f5(y; ()| +

j=1 j=1

m

+ \/ ﬁz] f] y] \/ ﬁz] f] y]( DI

j=1 J=1
< —aj |z(t) Z o+ BE)L |y, (t) — 3 (1)), 3.1)
d+

2 WO =y (0] < =b;(®)ly; (8) — 7 ()| +

+

+| A pii®gii®) = A\ pii()gi ;1))

- \/ g5i(t)gi(zi(t)) — \/ q5i(t)gi(x
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n

< b5 [y (8) — yi (0] + >0 + ) L i) — 2 (1), (3.2)

i=1

where d* /dt denotes the upper right derivative.
Define a Lyapunov function V' (-) by

LOEDOEFACIED M0

for ¢t > 0, by virtue of (3.1) and (3.2), we have

d+V(t) n d+ m

dt :Zglz |+Zdt|y] ()|_

=1

m
Z —a; |z;(t) Z@ +ﬁ+ Lf|yj

+> (—bj_lyj(t) —y; (O + D _(f + ¢ L i (t) >

Z (b Z i +5$)Lf> ly;(t) =y (£)].

Since (As) hold, there exists a real number > 0 such that

m n

a; =D Wi aLl =, by =Y (af+ BHL] 2.
j=1 i=1
It follows that
dtvi(t
%() < —AV(t) for t>0. (3.3)

Using exponential stability theorem [23], (3.3) implies that
V(t) <e V(0) Vt>0.
That is

Sl =i O+ 3l (1) = w5 1) <

n

<e ZI%(O)—xf(0)|+Z|yj(0)—y§(0)| ;

i=1
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therefore the periodic solution of system (1.1) is globally exponentially stable.
Theorem 3.1 is proved.
4. Example. In this section, we consider the following fuzzy BAM neural networks
with periodic coefficient

2i(t) = —ai(t)ai(t) + J\ i fiy; () + /\ Tij(t)u; (t) + Li(8)+

Jj=1

+V BuOfi) + \ HyOui(e), i=1.2

"~ 4.1)
2 2
y;(t) = =b;(t)y; () + /\ pji(t)gi(wi(t)) + /\ Kji(tu(t) + J;(t)+
i=1 i=1
2 2
+ \/ q;i9i(xs(t)) + \/ Nji(Hui(t), j=1,2,
i=1 i=1

where a1 (t) = 12 — cos 2t, as(t) = 13 — 2cos2t, by(t) = 13 + sin2t, ba(t) = 13 —
— 2sin 2t, Oéu(t) = Oégl(t) = 1+ sin 2t, Oélg(t) = 0422(15) = 2 + sin 2t, ,811(25) =

= P91(t) = 1 —sin2t, f12(t) = Paa(t) = 2 —sin2t, p11(t) = p21(t) = 1 + cos2t,
p12(t) = p22(t) = 2+cos2t, q11(t) = g21(t) = 1 —cos 2t, q12(t) = qa2(t) = 2—cos 2t,
Ej(t) = Hi]‘(t) = sin2t, Kji(t) = Nji(t) = COSQt, ’U,Z(t) = U4 ( ) = QSiDQt, i,j =

=1,2, Ii(t) = J;(t) =2cos 2t, i,j = 1,2. Take fi(z) = gi(z) = §(|:c+1| — |z —1]),

i=1,2, we have LY = L;-c =1, ¢,5 = 1,2. By simple computation, we have
a; =11, a3 =11, by =12, b; =11,

+ o+ + o+ + _
afy =ay =2, oy =aypn =3, f1=7033=2

Br2=Bh=3, pii=ph =2 plh=p3=3,

G =1 =2 s =d3=3
Obviously, the following inequalities hold

2 2
T Wh L >0, i=1,2 by =Y (af+B5L >0, j=1.2
Jj=1

i=1

Hence, it follows that the assumptions (A;) - (Aj3) are satisfied. Therefore, according
to Theorems 2.1 and 3.1, system (4.1) has one m-periodic solution which is globally
exponentially stable.

5. Conclusion. In this paper, we use the continuation theorem of coincidence degree
theory and Lyapunov function to study the existence and global exponential stability of
periodic solution for fuzzy BAM neural networks with periodic coefficient. The suffi-
cient conditions of existence and global stability of periodic solution are easily verifiable.
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