Д. А. Ковтонюк (Ин-т прикл. математики и механики НАН Украины, Донецк)

К ТЕОРИИ ГИПЕР *Q*-ГОМЕОМОРФИЗМОВ

We show that if a homeomorphism f of a domain $D \subset \mathbb{R}^n$, $n \geqslant 2$, is a hyper Q-homeomorphism with $Q \in L^1_{\mathrm{loc}}$, then $f \in ACL$. As a consequence, this homeomorphism has almost everywhere partial derivatives and an approximate differential.

Показано, що якщо гомеоморфізм f області $D \subset \mathbb{R}^n$, $n \geqslant 2$, ϵ гіпер Q-гомеоморфізмом з $Q \in L^1_{\mathrm{loc}}$, то $f \in ACL$. Як наслідок, такий гомеоморфізм ма ϵ майже скрізь частинні похідні й апроксимативний диференціал.

1. Введение. В последнее время появилось много исследований, посвященных отображениям с конечным искажением (см., например, [1, 2]). Настоящая статья восполняет имевшийся пробел в развитии метода модулей семейств поверхностей, который мало использовался даже в рамках квазиконформной теории вследствие его сложности (см., например, [3, 4]). Недавно [5] было показано, что так называемые отображения с конечным искажением площади в \mathbb{R}^n , $n \geqslant 2$, удовлетворяют аналогу известного модульного неравенства Полецкого для гиперповерхностей, т. е. поверхностей размерности n-1 [6]. Поэтому возникла необходимость изучать классы гипер Q(x)-гомеоморфизмов, выделяемых этим модульным неравенством. Для сравнения, имея в виду важную роль модульной техники в современных классах отображений, профессор Олли Мартио предложил к исследованию следующий класс отображений (см., например, [7, 8]).

Пусть D — область в $\mathbb{R}^n,\ n\geqslant 2,\$ и $Q\colon D\to [1,\infty]$ — измеримая по Лебегу функция. Говорят, что гомеоморфизм $f\colon D\to \mathbb{R}^n$ является Q-гомеоморфизмом, если

$$M(f\Gamma) \leqslant \int\limits_D Q(x)\varrho^n(x) \, dm(x)$$

для любого семейства Γ путей γ в D и для каждой допустимой функции $\varrho \in \operatorname{adm} \Gamma$. Здесь m обозначает меру Лебега в \mathbb{R}^n . Теория Q-гомеоморфизмов естественным образом связана с теорией модулей с весом (см., например, [9]).

Напомним, что борелева функция $\varrho \colon \mathbb{R}^n \to [0,\infty]$ называется допустимой для Γ (пишем $\varrho \in \operatorname{adm} \Gamma$), если

$$\int\limits_{\gamma} \varrho \ ds \geqslant 1$$

для всех путей $\gamma \in \Gamma$. Модуль семейства Γ есть величина

$$M(\Gamma) = \inf_{\varrho \in \operatorname{adm} \Gamma} \int_{D} \varrho^{n}(x) \, dm(x) \,.$$

В работе [10] введен в рассмотрение следующий класс отображений. Гомеоморфизм $f \colon D \to \mathbb{R}^n$ называется гипер Q-гомеоморфизмом, если

$$M(f\Sigma) \leqslant \int\limits_D Q(x)\varrho^n(x)\,dm(x)$$

для любого семейства Σ (n-1)-мерных поверхностей S в D и любой допустимой функции ρ . Борелева функция $\rho \colon \mathbb{R}^n \to [0,\infty]$ является допустимой для Σ , если

140 Д. А. КОВТОНЮК

$$\int\limits_{S} \varrho^{n-1} \ d\mathcal{A} \geqslant 1$$

для всех $S \in \Sigma$, где $d\mathcal{A}$ соответствует мере площади на поверхности S.

В работе [11] доказана абсолютная непрерывность на линиях Q-гомеоморфизмов с локально интегрируемой функцией Q. В данной статье доказывается абсолютная непрерывность на линиях гипер Q-гомеоморфизмов при условии локальной суммируемости функции Q.

2. Предварительные замечания. Обозначим через H^k , $k=1,\ldots,n-1$, k-мерную хаусдорфову меру в \mathbb{R}^n , $n\geqslant 2$. Точнее, если E — множество из \mathbb{R}^n , то

$$H^k(E) = \sup_{\varepsilon > 0} H^k_{\varepsilon}(E),$$

$$H_{\varepsilon}^{k}(E) = \Omega_{k} \inf \sum_{i=1}^{\infty} \left(\frac{\delta_{i}}{2}\right)^{k}$$
,

где инфимум берется по всем счетным наборам чисел $\delta_i \in (0, \varepsilon)$ таким, что некоторые множества $E_i \subset \mathbb{R}^n$ с диаметрами $d(E_i) = \delta_i$ покрывают множество E. Здесь Ω_k — объем единичного шара в \mathbb{R}^k .

Пусть ω — открытое множество в $\overline{\mathbb{R}^k}$, $k=1,\ldots,n-1$. Непрерывное отображение $S:\omega\to\mathbb{R}^n$ называется k-мерной поверхностью S в \mathbb{R}^n , число прообразов

$$N(S, y) = N(S, y, \omega) = \text{card } S^{-1}(y) = \text{card } \{x \in \omega : S(x) = y\}$$

— функцией кратности поверхности S в точке $y \in \mathbb{R}^n$. Известно, что функция кратности полунепрерывна снизу, т. е.

$$N(S,y) \geqslant \liminf_{m \to \infty} N(S,y_m)$$

для любой последовательности $y_m \in \mathbb{R}^n$ такой, что $y_m \to y \in \mathbb{R}^n$ при $m \to \infty$ (см. [12, с. 160]). Таким образом, функция N(S,y) является борелевской и поэтому измерима относительно любой меры Хаусдорфа H^k [13, с. 52].

k-Мерная хаусдорфова площадь в \mathbb{R}^n , или просто площадь, ассоциированная с поверхностью $S:\omega\to\mathbb{R}^n$, определяется формулой

$$\mathcal{A}(B) = \mathcal{A}_S(B) = \mathcal{A}_S^k(B) := \int_B N(S, y) \, dH^k y$$

для произвольного борелевского множества $B\subseteq\mathbb{R}^n$ и, более общо, для произвольного множества, измеримого относительно H^k в \mathbb{R}^n . Поверхность S называется квадрируемой, если $\mathcal{A}_S(\mathbb{R}^n)<\infty$.

Если $\varrho:\mathbb{R}^n \to [0,\infty]$ — борелевская функция, то ее интеграл по S определяется равенством

$$\int_{S} \varrho \, d\mathcal{A} := \int_{\mathbb{R}^{n}} \varrho(y) \, N(S, y) \, dH^{k} y \, .$$

Борелевская функция $\varrho:\mathbb{R}^n \to [0,\infty]$ называется допустимой для семейства Σ k-мерных поверхностей S в \mathbb{R}^n (пишем $\varrho\in\operatorname{adm}\Sigma$), если

$$\int\limits_{S} \varrho^{k} \, d\mathcal{A} \geqslant 1$$

для всех поверхностей $S\in \Sigma$. Конформным модулем семейства Σ называется величина

$$M(\Sigma) = \inf_{\varrho \in \operatorname{adm} \Sigma} \int_{\mathbb{D}^n} \varrho^n(x) \, dm(x) \,.$$

3. Обобщенные производные и ACL-отображения. Рассмотрим два различных подхода к введению одного класса отображений в \mathbb{R}^n . Первый подход связан с понятием обобщенных производных в смысле С. Л. Соболева. Говорят, что вещественная функция v в области $D \subset \mathbb{R}^n$ имеет компактный носитель, если $v(x) \equiv 0$ вне некоторого компакта $C \subset D$. Обозначим через $C^l(D)$, где l — натуральное число, класс функций $v \colon D \to \mathbb{R}, \ l$ раз непрерывно дифференцируемых в D, а через $C^l(D)$ подкласс функций в $C^l(D)$ с компактным носителем.

Известно, что если $u \in C^l(\mathbb{R}^n)$, то

$$\int\limits_{D} \left(u \frac{\partial^{l} v}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}} + (-1)^{l+1} v \frac{\partial^{l} u}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}} \right) dx = 0,$$

где $\alpha_1+\ldots+\alpha_n=l,$ для любой вещественной функции $v\in C_0^l(D).$ Если же о существовании частных производных функции u, локально интегрируемой в D, ничего не известно и существует функция $\varphi_{\alpha_1\ldots\alpha_n},$ удовлетворяющая равенству

$$\int\limits_{D} \left(u \frac{\partial^{l} v}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}} + (-1)^{l+1} v \varphi_{\alpha_{1} \dots \alpha_{n}} \right) dx = 0$$

для любой функции $v\in C^l_0(D)$, то функция $\varphi_{\alpha_1\dots\,\alpha_n}$ называется обобщенной производной в смысле Соболева порядка l функции u в области D, которая также обозначается как $\dfrac{\partial^l u}{\partial x_1^{\alpha_1}\dots\partial x_n^{\alpha_n}}$. Пусть $f\colon D\to\mathbb{R}^n$ — произвольное отображение. Говорят, что f принадлежит

Пусть $f: D \to \mathbb{R}^n$ — произвольное отображение. Говорят, что f принадлежит классу $W^{1,p}, \ p \geqslant 1$, если координатные функции f_1, \ldots, f_n вектор-функции f имеют обобщенные производные в смысле Соболева, интегрируемые со степенью p в области D.

Рассмотрим теперь второй подход к введению отображений класса $W^{1,p}$, чаще используемый в зарубежной литературе. Пусть $I=\{x\in\mathbb{R}^n\colon a_i< x_i< b_i, i=1,\dots,n\}$ — открытый n-мерный интервал. Говорят, что отображение $f\colon I\to\mathbb{R}^n$ принадлежит классу ACL (или абсолютно непрерывно на линиях), если f абсолютно непрерывно на почти всех линейных сегментах в I, параллельных координатным осям. Более точно, пусть $P_i(x)=x-x_ie_i$ — ортогональная проекция. Тогда для множества E_i всех точек $x\in P_i(I)$ таких, что отображение $t\to f(x+te_i)$ не абсолютно непрерывно на интервале $(a_i,b_i), m_{n-1}(E_i)=0$ для всех $i=1,\dots,n$.

Если D — область в \mathbb{R}^n , то говорят, что отображение $f\colon D\to\mathbb{R}^n$ принадлежит классу ACL, когда сужение $f|_I$ принадлежит классу ACL для каждого интервала $I, \overline{I}\subset D$. Если D и D' — области в $\overline{\mathbb{R}^n}$, то гомеоморфизм $f\colon D\to D'$ принадлежит классу ACL, когда сужение $f|_{D\setminus\{\infty,f^{-1}(\infty)\}}$ принадлежит классу ACL.

142 Д. А. КОВТОНЮК

Известно, что если отображение $f \colon D \to \mathbb{R}^n$ непрерывно в D и $f \in ACL$, то частные производные отображения f существуют почти всюду в D и являются борелевскими функциями.

Говорят, что отображение $f\colon D\to \mathbb{R}^n$ класса ACL принадлежит классу ACL^p , $p\geqslant 1$, если частные производные f интегрируемы в D со степенью p. Известно (см., например, [14]), что классы ACL^p и $W^{1,p}$ отображений $f\colon D\to \mathbb{R}^n$ совпадают.

Теорема. Пусть D и D'- области в $\mathbb{R}^n, n\geqslant 2,$ и $f\colon D\to D'-$ гипер Q-гомеоморфизм с $Q\in L^1_{\mathrm{loc}}(D).$ Тогда $f\in ACL.$

Доказамельство. Пусть $I = \{x \in \mathbb{R}^n : a_i < x_i < b_i, \ i = 1, \dots, n\} - n$ -мерный интервал в \mathbb{R}^n такой, что $\overline{I} \subset D$. Тогда $I = I_0 \times J$, где $J = (a_n, b_n), \ I_0 = P_n(I), P_n(x) = x - x_n e_n$ — ортогональная проекция. Положим $x' = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}$, тогда $x = (x', x_n) \in \mathbb{R}^n$. Необходимо доказать, что для почти всех $x' \in I_0$ отображение $t \to f(x' + t e_n)$ абсолютно непрерывно по $t \in (a_n, b_n)$.

Действительно, пусть r_l и $\rho_l,\ l=1,2,\ldots,-$ любая перенумерация всех пар рациональных чисел таких, что $a_n < r_l < \rho_l < b_n,$ и

$$\varphi_l(x') := \int_{r_1}^{\rho_1} Q(x', x_n) dx_n.$$

По теореме Фубини (см., например, утверждение III.8.1 в [13]) функция $\varphi_l(x')$ почти всюду конечна и интегрируема по $x' \in I_0$. Следовательно, по теореме Лебега о дифференцировании неопределенного интеграла (см., например, утверждение IV.6.3 в [13]) получаем, что почти всюду

$$\lim_{h \to 0} \frac{\Phi_l(x';h)}{h^{n-1}} = \varphi_l(x'), \qquad (1)$$

где

$$\Phi_l(x';h) = \int_{x_1 - h/2}^{x_1 + h/2} \dots \int_{x_{n-1} - h/2}^{x_{n-1} + h/2} \varphi_l(y') \, dm(y').$$

Заметим также, что по теореме о дифференцируемости неотрицательной субаддитивной функции множеств (см., например, утверждение III.2.4 в [12]) существует конечный предел

$$L(x') := \lim_{h \to 0} \frac{|f I(x';h)|}{h^{n-1}} \tag{2}$$

для почти всех $x' \in I_0$, где

$$I(x';h) = \left\{ (z', z_n) \in I : x_i - \frac{h}{2} < z_i < x_i + \frac{h}{2}, \ i = 1, \dots, n - 1, \ a_n < z_n < b_n \right\}.$$

Здесь объем $|f(B \times J)|$ соответствует каждому борелевскому множеству B в I_0 .

Докажем, что отображение f абсолютно непрерывно на каждом интервале $x' \times X$, $x' \in I_0$, где существуют конечные пределы (1) и (2). Для этого покажем, что для всех таких x' сумма

$$\sum_{k=1}^{s} |f(x' + \beta_k e_n) - f(x' + \alpha_k e_n)|$$

стремится к нулю вместе с суммой $\sum_{k=1}^{s} |\beta_k - \alpha_k|$, где (α_k, β_k) , $k=1,2,\ldots,s,-$ произвольная система непересекающихся интервалов в J. Вследствие непрерывности отображения f на каждом из указанных интервалов $x' \times J$ достаточно доказать этот факт только для рациональных α_k и β_k .

этот факт только для рациональных α_k и β_k . Выберем h>0 такое, что $a_i< x_i-\frac{h}{2}< x_i+\frac{h}{2}< b_i,\ i=1,\dots,n-1,$ и положим для всех $k=1,2,\dots,s$

$$I_k = I_k(x'; h) = \left\{ (z', z_n) \in I : x_i - \frac{h}{2} < z_i < x_i + \frac{h}{2}, \ \alpha_k < z_n < \beta_k \right\}.$$

Обозначим через Γ_k семейство всех кривых, соединяющих грани $z_n=\alpha_k$ и $z_n=\beta_k$ в $\overline{I_k}$. Используя обобщенное неравенство Ренгеля [15, с. 70], получаем

$$M(f\Gamma_k) \leqslant \frac{m_k}{d_k^n},\tag{3}$$

где $d_k=d_k(h)$ — евклидово расстояние между образами граней $z_n=\alpha_k$ и $z_n=\beta_k$, а $m_k=|fI_k|$. Заметим, что при $h\to 0$ эти грани стягиваются в точки $f(x'+\alpha_k e_n)$ и $f(x'+\beta_k e_n)$ соответственно.

Кроме того, обозначим через Σ_k семейство всех (n-1)-мерных поверхностей, отделяющих те же грани в $\overline{I_k}$. Тогда функция

$$\varrho_k(x) = \begin{cases} \frac{1}{h}, & x \in I_k, \\ 0, & x \in \mathbb{R}^n \setminus I_k, \end{cases}$$

является допустимой для Σ_k . Следовательно, из определения гипер Q-гомеоморфизма получаем

$$M(f\Sigma_k) \leqslant \frac{1}{h^n} \int_{I_k} Q(x) \, dm(x) = \frac{1}{h} \frac{\Phi_k(x'; h)}{h^{n-1}} \,.$$
 (4)

По формуле Циммера (см. [16]) имеем

$$M(f\Gamma_k) = \frac{1}{M^{n-1}(f\Sigma_k)},$$

и, таким образом, комбинируя (3) и (4), находим

$$\left(\frac{d_k^n}{m_k}\right)^{1/(n-1)} \leqslant \frac{1}{h} \frac{\Phi_k(x';h)}{h^{n-1}}.$$
(5)

Далее, из дискретного неравенства Гельдера (см., например, формулу (17.3) в [17]) с p=n/(n-1) и $q=n,\,x_k=d_k/m_k^{1/n}$ и $y_k=m_k^{1/n}$ следует, что

$$\sum_{k=1}^{s} d_k \leqslant \left[\sum_{k=1}^{s} \left(\frac{d_k^n}{m_k} \right)^{1/(n-1)} \right]^{(n-1)/n} \left(\sum_{k=1}^{s} m_k \right)^{1/n},$$

т. е.

$$\left(\sum_{k=1}^{s} d_k\right)^n \leqslant m \left[\sum_{k=1}^{s} \left(\frac{d_k^n}{m_k}\right)^{1/(n-1)}\right]^{n-1},$$

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 1

Д. А. КОВТОНЮК

где m=m(h)=|fI(x';h)|. Теперь, учитывая (5), получаем

$$\left(\sum_{k=1}^{s} d_{k}\right)^{n} \leqslant \frac{m}{h^{n-1}} \left(\sum_{k=1}^{s} \frac{\Phi_{k}(x';h)}{h^{n-1}}\right)^{n-1}.$$

Устремляя h к нулю, имеем

$$\left\{ \sum_{k=1}^{s} |f(x' + \beta_k e_n) - f(x' + \alpha_k e_n)| \right\}^n \leqslant L(x') \left(\sum_{k=1}^{s} \varphi_k(x') \right)^{n-1} \leqslant \left\{ L(x') \left(\sum_{k=1}^{s} \int_{\alpha_k}^{\beta_k} Q(x', x_n) dx_n \right)^{n-1} \right\},$$

и абсолютная непрерывность отображения f на интервале $\{x'\} \times J$ следует из абсолютной непрерывности неопределенного интеграла Лебега от Q на том же интервале.

Следствие. При условиях теоремы f имеет почти всюду частные производные и аппроксимативный дифференциал.

- Iwaniec T., Martin G. Geometrical function theory and nonlinear analysis. Clarendon Press, Oxford Univ. Press, 2001.
- Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. New York: Springer, 2009.
- Шабат Б. В. К теории квазиконформных отображений в пространстве // Докл. АН СССР. 1960. – 132, № 5. – С. 1045 – 1048.
- 4. Шабат Б. В. Метод модулей в пространстве // Там же. 130, № 6. С. 1210 1213.
- Kovtonyuk D., Ryazanov V. On the theory of mappings with finite area distortion // J. Anal. Math. 2008. – 104. – P. 291 – 306.
- 6. *Полецкий Е. А.* Метод модулей для негомеоморфных квазиконформных отображений // Мат. сб. 1970. **83 (125)**, № 2. С. 261 272.
- Мартио О., Рязанов В., Сребро У., Якубов Э. К теории Q-гомеоморфизмов // Докл. РАН. 2001. – 381, № 1. – С. 20 – 22.
- 8. Bishop C., Gutlyanskii V., Martio O., Vuorinen M. On conformal dilatation in space // Int. J. Math. and Math. Sci. 2003. 22. P. 1397 1420.
- 9. *Тамразов П. М.* Модули и экстремальные метрики в неориентированных и скрученных римановых многообразиях // Укр. мат. журн. 1998. **50**, № 10. С. 1388 1398.
- Kovtonyuk D., Ryazanov V. To the theory of mappings with finite area distortion // Repts Dep. Math. Univ. Helsinki. – 2004. – 403. – P. 1–11.
- Salimov R. R. ACL and differentiability of Q-homeomorphisms // Ann. Acad. Sci. Fenn. Ser. A1. Math. - 2008. - 33. - P. 295 - 301.
- 12. Rado T., Reichelderfer P. V. Continuous transformations in analysis. Berlin etc.: Springer, 1955.
- 13. Saks S. Theory of the integral. New York: Dover Publ. Inc., 1964.
- 14. Maz'ya V. Sobolev classes. Berlin; New York: Springer, 1985.
- 15. Caraman P. n-Dimensional quasiconformal mappings. Tunbridge Wells, Kent: Abacus Press, 1974.
- Ziemer W. P. Extremal length and conformal capacity // Trans. Amer. Math. Soc. 1967. 126, № 3. –
 P. 460 473.
- 17. Беккенбах Э., Беллман Р. Неравенства. М.: Наука, 1965.

Получено 27.11.07, после доработки — 22.06.09