UDC 512.5 B. Nisanci, A. Pancar (Ondokuz Mayıs Univ., Turkey)

ON GENERALIZATION OF \oplus -COFINITELY SUPPLEMENTED MODULES

ПРО УЗАГАЛЬНЕННЯ ⊕-КОФІНІТНО ПОПОВНЕНИХ МОДУЛІВ

We study the properties of \oplus -cofinitely radical supplemented modules or briefly cgs^{\oplus} -modules. It is shown that: a module with Summand Sum Property (SSP) is cgs^{\oplus} if and only if $M/w \operatorname{Loc}^{\oplus} M$ ($w \operatorname{Loc}^{\oplus} M$ is the sum of all *w*-local direct summands of a module M) does not contain any maximal submodule; every cofinite direct summand of a UC-extending cgs^{\oplus} -module is cgs^{\oplus} ; for any ring R, every free R-module is cgs^{\oplus} if and only if R is semiperfect.

Досліджено властивості \oplus -кофінітно радикальних поповнених модулів або скорочено cgs^{\oplus} -модулів. Показано, що модуль із властивістю суми доданків SSP є cgs^{\oplus} -модулем тоді і тільки тоді, коли $M/w \operatorname{Loc}^{\oplus} M$ ($w \operatorname{Loc}^{\oplus} M$ – сума всіх w-локальних прямих доданків модуля M) не містить жодного максимального субмодуля; кожний прямий доданок UC-розширюваного cgs^{\oplus} -модуля є cgs^{\oplus} -модулем; для будь-якого кільця R кожний вільний R-модуль є cgs^{\oplus} -модулем тоді і тільки тоді, коли R є напів-перфектним.

1. Introduction. In this note R will be an associative ring with identity and all modules are unital left R-modules. Let M be an R-module. The notation $N \subseteq M$ means that N is a submodule of M. Rad M will indicate Jacobson radical of M. A submodule N of an *R*-module M is called *small* in M (notation $N \ll M$), if $N + L \neq M$ for every proper submodule L of M. Let M be an R-module and let N and K be any submodules of M. K is called a supplement of N in M if M = N + K and $N \cap K \ll K$ (see [1]). Following [1], M is called *supplemented* if every submodule of M has a supplement in M. A submodule N of a module M is called *cofinite* in M if the factor module $\frac{M}{N}$ is finitely generated. A module M is called *cofinitely supplemented* if every cofinite submodule of M has a supplement in M (see [2]). Clearly supplemented modules are cofinitely supplemented. A module M is called \oplus -supplemented if every submodule of M has a supplement that is a direct summand of M (see [3]). As a proper generalization of \oplus -supplemented modules, the notation of \oplus -cofinitely supplemented modules was introduced by Calisici and Pancar [4]. A module M is called \oplus -cofinitely supplemented if every cofinite submodule of M has a supplement that is a direct summand of M. Also, finitely generated \oplus -cofinitely supplemented modules are \oplus -supplemented.

In [5] (Theorem 10.14), another generalization of supplement submodule was called as *radical supplement* or briefly Rad-*supplement* (according to [6], generalized supplement). For a module M and a submodule N of M, a submodule K of M is called a Rad-*supplement* of N in M if N + K = M and $N \cap K \subseteq$ Rad K. An R-module M is called *radical supplemented* or briefly Rad-*supplemented* if every submodule of M has a Rad-*supplement* in M (in [6], generalized supplemented or GS-module). Since the Jacobson radical of a module is sum of all small submodules, every supplement is a Rad-supplement. Therefore every supplemented module is Rad-supplemented. In [7], M is called *cofinitely radical supplemented* or briefly *cofinitely* Rad-*supplemented* if every cofinite submodule of M has a Rad-supplement in M. Clearly Rad-supplemented modules are cofinitely Rad-supplemented. Let M be an R-module. M is called \oplus -radical supplemented or briefly \oplus -Radsupplemented or generalized \oplus -supplemented if every submodule of M has a Radsupplement that is a direct summand of M. Clearly \oplus -Rad-supplemented modules are Rad-supplemented. A module M is called \oplus -cofinitely radical supplemented (according to [8], generalized \oplus -cofinitely supplemented) if every cofinite submodule of M has a Rad-supplement that is a direct summand of M. Instead of a \oplus -cofinitely radical supplemented module, we will use a cgs^{\oplus} -module.

In this paper we study the properties of cgs^{\oplus} -modules as both a proper generalization of \oplus -Rad-supplemented modules and a generalization of \oplus -cofinitely supplemented modules. We prove that a module M with SSP is cgs^{\oplus} if and only if $M/w \operatorname{Loc}^{\oplus} M$ does not contain any maximal submodule, where $w \operatorname{Loc}^{\oplus} M$ is the sum of all w-local direct summands of M. Also we show that any direct sum of cgs^{\oplus} -modules is also a cqs^{\oplus} -module. Using the mentioned fact we give a characterization of semiperfect rings.

2. Some properties of \oplus -cofinitely radical supplemented modules. It is clear that every \oplus -cofinitely supplemented module is cgs^{\oplus} , but it is not generally true that every cgs^{\oplus} -module is \oplus -cofinitely supplemented. Later we shall give an example of such modules (see Example 2.1). Now we give an analogue of these modules.

Proposition 2.1. Let M be a cgs^{\oplus} -module with small radical. Then M is \oplus -cofinitely supplemented.

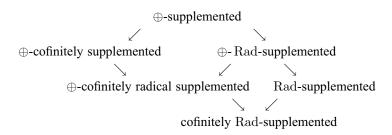
Proof. Let U be any cofinite submodule of M. By the hypothesis, there exist submodules V, V' of M such that $M = U + V, U \cap V \subseteq \text{Rad } V$ and $M = V \oplus V'$. Since $U \cap V \subseteq \text{Rad } V \subseteq \text{Rad } M \ll M$ and V is a direct summand of M, then $U \cap V \ll V$ by [1] (19.3.(5)). Hence M is \oplus -cofinitely supplemented.

Let M be an R-module. If every proper submodule of M is contained a maximal submodule of M, M is called *coatomic*. Note that every coatomic module has small radical.

Corollary 2.1. Let M be a coatomic R-module. Then M is a cgs^{\oplus} -module if and only if it is \oplus -cofinitely supplemented.

Every cgs^{\oplus} -module is cofinitely Rad-supplemented but the converse is not true. For example, a left (cofinitely) Rad-supplemented ring which is not supplemented (i.e., semiperfect) is cofinitely Rad-supplemented over itself, but not a cgs^{\oplus} -module.

Therefore we have the following implications on modules:



We begin by some general properties of cgs^{\oplus} -modules. To prove that any direct sum of cgs^{\oplus} -modules is cgs^{\oplus} , we use the following standart Lemma ([7], 3.4).

Lemma 2.1. Let M be an R-module and N, U be submodules of M such that N is cofinitely Rad-supplemented, U cofinite and N + U has a Rad -supplement A in M. Then $N \cap (U + A)$ has a Rad -supplement B in N and A + B is a Rad-supplement of U in M. **Proof.** Let A be a Rad-supplement of N + U in M. Then

$$\frac{N}{N \cap (U+A)} \cong \frac{N+U+A}{U+A} \cong \frac{M/U}{(U+A)/U}.$$

Since U is a cofinite submodule of $N, N \cap (U + A)$ is cofinite. By hypothesis, N is cofinitely Rad-supplemented, $N \cap (U + A)$ has a Rad-supplement B in N. Then M = (N + U) + A = U + A + B and by [1] (19.3), $U \cap (A + B) \subseteq A \cap (U + B) + B \cap (U + A) \subseteq A \cap (N + U) + B \cap (U + A) \subseteq \text{Rad} (A + B)$. Therefore A + B is a Rad-supplement of U in M.

Theorem 2.1. For any ring R, any direct sum of cgs^{\oplus} -modules is a cgs^{\oplus} -module. **Proof.** Let R be any ring and $\{M_i\}_{i \in I}$ be any family of cgs^{\oplus} -modules. Let $M = \bigoplus_{i \in I} M_i$ and N be a cofinite submodule of M. Then $M = \bigoplus_{j=1}^n M_{i_j} + N$ and it is clear that $\{0\}$ is Rad-supplement of $M = M_{i_1} + (\bigoplus_{j=2}^n M_{i_j} + N)$. Since M_{i_1} is a cgs^{\oplus} -module, $M_{i_1} \cap (\bigoplus_{j=2}^n M_{i_j} + N)$ has a Rad-supplement V_{i_1} in M_{i_1} such that V_{i_1} is a direct summand of M_{i_1} . By Lemma 2.1, V_{i_1} is a Rad-supplement of $\bigoplus_{j=2}^n M_{i_j} + N$ in M. Note that since M_{i_1} is a direct summand of M, V_{i_1} is also a direct summand of M. By repeated use of Lemma 2.1, since the set J is finite at the end we will obtain that N has a Rad-supplement $V_{i_1} + V_{i_2} + \ldots + V_{i_r}$ in M such that every V_{i_j} , $1 \le j \le n$, is a direct summand of M_{i_j} . Since every M_{i_j} is a direct summand of M, $\sum_{j=1}^n V_{i_j} = \bigoplus_{j=1}^n V_{i_j}$ is a direct summand of M. Hence M is a cgs^{\oplus} -module.

Recall from [7] that a module M is called *w*-local if it has a unique maximal submodule. It is clear that a module is *w*-local if and only if its radical is maximal.

Local modules are *w*-local. But it is not generally true that every *w*-local module is local. For example, p any prime, the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}_p$ is *w*-local but it is not local. It is trivial that *w*-local modules are a generalization of local modules. This fact plays a key role in our working.

Proposition 2.2. The following statements are equivalent for a w-local module M. (i) Rad $M \ll M$.

(ii) *M* is finitely generated.

Proof. Suppose that M is a w-local module. Then $\operatorname{Rad} M$ is a maximal submodule of M. Thus $\operatorname{Rad} M + Rm = M$ for every $m \in M \setminus \operatorname{Rad} M$. Since $\operatorname{Rad} M \ll M$, then Rm = M. Hence M is finitely generated. The converse is clear.

Proposition 2.3. Let M be a w-local R-module. Then M is a cgs^{\oplus} -module. **Proof.** It follows from [7] (Lemma 3.2).

Proposition 2.4. Let M be a cgs^{\oplus} -module. If M has a maximal submodule, then M contains a w-local direct summand.

Proof. Let L be a maximal submodule of M. Then L is cofinite and it follows that there exist K, K' submodules of M such that $L + K = M, L \cap K \subseteq \text{Rad} K$ and $M = K \oplus K'$. By Lemma 3.3 in [7], K is w-local. Hence K is a w-local direct summand of M.

Let M be an R-module. $w \operatorname{Loc}^{\oplus} M$ will denote the sum of all w-local direct summands of M.

Recall from [1] that an R-module M has Summand Sum Property (SSP) if the sum of two direct summands of M is again a direct summand of M.

We give a characterization of cgs^{\oplus} -modules. Firstly we need the following lemma which is a generalization of [2] (Lemma 2.9).

Lemma 2.2. Let M be an R-module and N be a cofinite submodule of M. Let $\{L_i\}_{i=1}^n$ be the family of w-local submodules such that K is a Rad-supplement of $N + L_1 + \ldots + L_n$ in M. Then $K + \sum_{i \in I} L_i$ is a Rad-supplement of N in M such that I is a subset of $\{1, 2, \ldots, n\}$.

Proof. Suppose that n = 1. Consider the submodule $H = (N + K) \cap L_1$ of L_1 . K is a Rad-supplement of $N + L_1$, so that $M = N + L_1 + K$ and $(N + L_1) \cap K \subseteq \text{Rad } K$. Then H is a cofinite submodule of L_1 . Since L_1 is w-local, then $\text{Rad } L_1$ is a unique maximal submodule of L_1 . Note that $H \subseteq \text{Rad } L_1$. By [9] (19.3), $N \cap (K + L_1) \subseteq \subseteq K \cap (N + L_1) + H \subseteq \text{Rad } K + \text{Rad } L_1 \subseteq \text{Rad}(K + L_1)$. Therefore $K + L_1$ is a Rad-supplement of N. This proves the result when n = 1. Suppose that $n \ge 2$. By induction on n, there exists a subset I' of $\{2, 3, \ldots, n\}$ such that $K + \sum_{i \in I'} L_i$ is a Rad-supplement of $N + L_1$ in M. Now the case n = 1 shows that $K + L_1 + \sum_{i \in I'} L_i$ is a Rad-supplement of N in M.

Theorem 2.2. Let R be any ring and M be an R-module with SSP. Then the following statements are equivalent.

(i) *M* is a cgs^{\oplus} -module.

(ii) Every maximal submodule of M has a Rad-supplement that is a direct summand of M.

- (iii) $M/w \operatorname{Loc}^{\oplus} M$ does not contain a maximal submodule.
 - **Proof.** (i) \Rightarrow (ii) Clear.

(ii) \Rightarrow (iii). Suppose that $M/w \operatorname{Loc}^{\oplus} M$ contains a maximal submodule $U/w \operatorname{Loc}^{\oplus} M$. Then U is a maximal submodule of M. By assumption, U has a Rad-supplement V that is a direct summand of M. Then V is w-local and it follows that $V \subseteq w \operatorname{Loc}^{\oplus} M$. Since M = U + V and $w \operatorname{Loc}^{\oplus} M \subseteq U$, we get M = U which is a contradiction.

(iii) \Rightarrow (i). Let N be any cofinite submodule of M. Then $N + w \operatorname{Loc}^{\oplus} M$ is a cofinite submodule of M. By (iii), $M = N + w \operatorname{Loc}^{\oplus} M$. Because M/N is finitely generated, there exist w-local submodules L_i , $1 \le i \le n$, for some positive integer n, such that each of them is a direct summand of M and $M = N + \sum_{i=1}^{n} L_i$ has a Rad-supplement $\{0\}$ in M. By Lemma 2.2, $\sum_{i \in I'} L_i$ is a Rad-supplement of N in M such that I' is a subset of $\{1, 2, \ldots, n\}$. Moreover $\sum_{i \in I'} L_i$ is a direct summand of M. Thus M is a cgs^{\oplus} -module.

Example 2.1. Let R be a commutative local ring which is not a valuation ring. Let x and y be elements of R, neither of them divides the other. By taking a suitable quotient ring, we may assume that $(x) \cap (y) = 0$ and xI = yI = 0, where I is the maximal ideal of R. Let F be a free module with generators a_1, a_2, a_3 . Let N be the submodule generated by $xa_1 - ya_2$ and M = F/N. R is local, so $_RR$ is a cgs^{\oplus} -module. By Theorem 2.1, F is a cgs^{\oplus} -module. Suppose that M is a cgs^{\oplus} -module. Since F is finitely generated, M is finitely generated and it follows that M has a small radical. By Proposition 2.1, M is \oplus -(cofinitely) supplemented. This is a contradiction by [10] (Example 2.3).

This example shows that the factor module of a cgs^{\oplus} -module is not in general cgs^{\oplus} .

Let R be a ring and M be an R-module. We consider the following condition.

 (D_3) If K and N are direct summands of M with M = K + N, then $K \cap N$ is also a direct summand of M (see [11]).

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 2

Proposition 2.5. Let M be a cgs^{\oplus} -module with (D_3) . Then every cofinite direct summand of M is a cgs^{\oplus} -module.

Proof. Let N be any cofinite direct summand of M. Then there exists a submodule N' of M such that $M = N \oplus N'$ and N' is finitely generated. Let U be any cofinite submodule of N. Note that $M/U \cong N/U \oplus N'$ is finitely generated so that U is also cofinite submodule of M. Since M is a cgs^{\oplus} -module, then there exists a direct summand V of M such that M = U + V and $U \cap V \subseteq \text{Rad } V$. Hence $N = U + (N \cap V)$. Since M has $(D_3), N \cap V$ is a direct summand of M. Furthermore $N \cap V$ is a direct summand of N because N is a direct summand of M. Then $U \cap (N \cap V) = U \cap V \subseteq \text{Rad } M$. Note that $U \cap (N \cap V) \subseteq \text{Rad } (N \cap V)$ by [1] (19.3). Hence N is a cgs^{\oplus} -module.

Corollary 2.2. Let M be a UC-extending module. If M is a cgs^{\oplus} -module, then every cofinite direct summand of M is a cgs^{\oplus} -module.

Recall from [1] that a submodule U of an R-module M is called *fully invariant* if f(U) is contained in U for every R-endomorphism f of M. Let M be an R-module and τ be a preradical for the category of R-modules. Then, Rad M and $\tau(M)$ are fully invariant submodule of M. An R-module M is called a (*weak*) duo module if every (direct summand) submodule of M is fully invariant. Note that weak duo modules has SSP (see [9]).

Corollary 2.3. Let R be a ring and M be a weak duo R-module. Then M is a cgs^{\oplus} -module if and only if every maximal submodule of M has a Rad-supplement that is a direct summand of M.

Proposition 2.6. Let M be a cgs^{\oplus} -module and U be a fully invariant submodule of M. Then M/U is a cgs^{\oplus} -module.

Proof. Let K/U be a cofinite submodule of M/U. Then K is a cofinite submodule of M. Since M is a cgs^{\oplus} -module, then (N + U)/U is a Rad-supplement of K/U in M/U by [6] (Proposition 2.6) and $M = N \oplus N'$ for N' is a submodule of M. By hypothesis, U is a fully invariant submodule of M. Note that $U = (U \cap N) \oplus (U \cap N')$ by [9] (Lemma 2.1). Then $M/U = (N + U)/U \oplus (N' + U)/U$. (N + U)/U is a Rad-supplement of K/U such that (N + U)/U is a direct summand of M/U. Hence M/U is a cgs^{\oplus} -module.

Corollary 2.4. Let M be a cgs^{\oplus} -module. Then $M/\operatorname{Rad} M$ and $M/\tau(M)$ is a cgs^{\oplus} -module.

Proposition 2.7. Let M be a cgs^{\oplus} -module and U be a fully invariant submodule of M. If U is a cofinite direct summand of M, then U is a cgs^{\oplus} -module.

Proof. Let U be a cofinite submodule of M. Since U is a cofinite direct summand of M, it follows that $U \oplus U' = M$ for $U' \subseteq M$. Let V be a cofinite submodule of U. Then U/V and U' is finitely generated. Therefore V is a cofinite submodule of M. By hypothesis, V + K = M, $V \cap K \subseteq \text{Rad } K$ and $M = K \oplus K'$ such that K, $K' \subseteq M$. Note that $U = (U \cap K) \oplus (U \cap K')$ by [9] (Lemma 2.1). Then $U = V \oplus (U \cap K)$ and $V \cap (U \cap K) \subseteq \text{Rad } M$. Since $U \cap K$ is a direct summand of M, then $V \cap (U \cap K) \subseteq \text{Rad}(U \cap K)$. $U \cap K$ is a Rad-supplement of V in U that is a direct summand of U. It follows that U is a cgs^{\oplus} -module.

Let $\{L_i\}_{i \in I}$ be the family of cgs^{\oplus} -submodules of M. $Cgs^{\oplus}M$ will denote the sum of L_is for all $i \in I$. That is $Cgs^{\oplus}M = \sum_{i \in I} L_i$. It is clear that $w \operatorname{Loc}^{\oplus} M \subseteq Cgs^{\oplus}M$.

Proposition 2.8. Let R be a ring, M be an R-module and every cgs^{\oplus} -submodule of M be a direct summand of M. Then every maximal submodule of M has a Rad-

supplement that is a direct summand of M if and only if $M/Cgs^{\oplus}M$ does not contain a maximal submodule.

Proof. (\Rightarrow) Suppose that $M/Cgs^{\oplus}M$ contains a maximal submodule $U/Cgs^{\oplus}M$. Then U is a maximal submodule of M. By assumption, there exist V, V' submodules of M such that U + V = M, $U \cap V \subseteq \operatorname{Rad} V$ and $M = V \oplus V'$. By [7] (Lemma 3.3) V is w-local. Then V is a cgs^{\oplus} -module by Proposition 2.3. It follows that $V \subseteq Cgs^{\oplus}M$. $M/Cgs^{\oplus}M = U/Cgs^{\oplus}M$, so that M = U which is a contradiction.

 (\Leftarrow) Let P be a maximal submodule of M. By assumption, P does not contain $Cgs^{\oplus}M$. Hence there exists a cgs^{\oplus} -module L of M such that it is not a submodule of P is a maximal submodule of M and $L \nsubseteq P$, then M = P + L. Note that $M/P \cong L/(P \cap L)$. It follows that $P \cap L$ is a maximal submodule of L. Then $P \cap L$ is a cofinite submodule of L. By assumption, there exist X, X' submodules of M such that $L = (P \cap L) + X, (P \cap L) \cap X \subseteq \text{Rad } X$ and $L = X \oplus X'$. It follows that M = P + X and $P \cap X \subseteq \text{Rad } X$. Moreover by hypothesis, X is a direct summand of M. Therefore P has a Rad-supplement that is a direct summand of M.

Theorem 2.3. Let M be an R-module such that $M = M_1 \oplus M_2$ is a direct sum of submodules M_1, M_2 . Then M_2 is a cgs^{\oplus} -module if and only if there exists a submodule K of M_2 such that K is a direct summand of M, M = K + N and $N \cap K \subseteq \text{Rad } K$ for every cofinite submodule N/M_1 of M/M_1 .

Proof. (\Rightarrow) Let N/M_1 be any cofinite submodule of M/M_1 . Then N is a cofinite submodule of M and it follows that $N \cap M_2$ is a cofinite submodule of M_2 . By hypothesis, there exist K, K' submodules of M_2 such that $M_2 = (N \cap M_2) + K$, $(N \cap M_2) \cap K \subseteq \text{Rad } K$ and $M_2 = K \oplus K'$. Note that M = N + K and $N \cap K \subseteq \text{Rad } K$. Since K is a direct summand of M_2 , then K is a direct summand of M.

 (\Leftarrow) Let U be any cofinite submodule of M_2 . Then M_2/U is finitely generated. It follows that $(U + M_1)/M_1$ is a cofinite submodule of M/M_1 . By hypothesis, there exists a submodule K of M_2 such that K is a direct summand of $M, M = K + U + M_1$ and $(U + M_1) \cap K \subseteq \text{Rad } K$. It follows that $M_2 = U + K$ and $U \cap K \subseteq \text{Rad } K$. Therefore M_2 is a cgs^{\oplus} -module.

A ring R is semiperfect if $R / \operatorname{Rad} R$ is semisimple and idempotents can be lifted modulo $\operatorname{Rad} R$. It is shown [4] (Theorem 2.9) that R is semiperfect if and only if $_RR$ is \oplus -supplemented if and only if every free R-module is \oplus -cofinitely supplemented. Now we generalize this fact.

Theorem 2.4. Let R be any ring. Then R is semiperfect if and only if every free R-module is a cgs^{\oplus} -module.

Proof. Let F be any free R-module. Since R is semiperfect, then $_RR$ is \oplus -cofinitely supplemented and it follows that $_RR$ is a cgs^{\oplus} -module. By Theorem 2.1, F is a cgs^{\oplus} -module. Conversely, suppose that every free R-module is cgs^{\oplus} . Then $_RR$ is a cgs^{\oplus} -module. By Proposition 2.1, $_RR$ is (cofinitely) \oplus -supplemented, i.e., R is semiperfect.

Finally, we give an example of module, which is cgs^{\oplus} but not \oplus -cofinitely supplemented.

Example 2.2 (see [12], Theorem 4.3 and Remark 4.4). Let M be a biuniform module and S = End(M). Suppose that P is the projective S-module with dim (P) = (1,0). Then P is a indecomposable w-local module. Since dim (P) = (1,0), P is not finitely generated. Hence P is a cgs^{\oplus} -module but not \oplus -cofinitely supplemented.

ON GENERALIZATION OF ⊕-COFINITELY SUPPLEMENTED MODULES

- 1. Wisbauer R. Foundations of module and ring theory. Philadelphia: Gordon and Breach, 1991.
- Alizade R., Bilhan G., Smith P. F. Modules whose maximal submodules have supplements // Communs Algebra. – 2001. – 29, № 6. – P. 2389–2405.
- Harmancı A., Keskin D., Smith P. F. On ⊕-supplemented modules // Acta math. hungar. 1999. 83, № 1-2. – P. 161–169.
- Calisici H., Pancar A. ⊕-Cofinitely supplemented modules // Chech. Math. J. 2004. 54, № 129. P. 1083 – 1088.
- 5. Clark J., Lomp C., Vajana N., Wisbauer R. Lifting modules. Basel etc.: Birkhäuser Verlag, 2006.
- Wang Y., Ding N. Generalized supplemented modules // Taiwan. J. Math. 2006. 10, № 6. P. 1589– 1601.
- Büyükaşık E., Lomp C. On a recent generalization of semiperfect rings // Bull. Austral. Math. Soc. 2008. – 78. – P. 317–325.
- Koşan M. T. Generalized cofinitely semiperfect modules // Int. Electron. J. Algebra. 2009. 5. P. 58–69.
- Özcan A. C., Harmancı A., Smith P. F. Duo modules // Glasgow Math. J. Trust. 2006. 48. P. 533–545.
- Idelhadj A., Tribak R. On some properties of ⊕-supplemented modules // Int. J. Math. and Math. Sci. 2003. – 69. – P. 4373 – 4387.
- 11. Mohamed S. H., Müller B. J. Continuous and discrete modules // London Math. Soc. Cambridge: Cambridge Univ. Press, 1990. 147.
- 12. *Puninski G.* Projective modules over the endomorphism ring of a biuniform module // J. Pure and Appl. Algebra. 2004. **188**. P. 227–246.

Received 05.05.09

189