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SHARP KOLMOGOROV-TYPE INEQUALITIES
FOR NORMS OF FRACTIONAL DERIVATIVES
OF MULTIVARIATE FUNCTIONS

TOYHI HEPIBHOCTI TUITY KOJIMOI'OPOBA JIs1 HOPM
JTPOBOBUX MOXITHUX ®YHKIIN BATATHOX 3MIHHUX

Let C(R™) be spaces of bounded and continuous functions «: R™ — R, endowed with the norms ||z||c =
= |lzllo@m) = sup{|=z(t)|: t € R™}. Letej, j = 1,...,m, be the standard basis in R". Given moduli
of continuity wj, j = 1,...,m, denote

; [ALe;2()llo
HYi =z € C(R™): ||z||lw; = |||, jw;, = sSup —22——— < 00 .
{ ! A z0 willts))

In this paper, new sharp Kolmogorov-type inequalities for norms of mixed fractional derivatives || D&z || ¢
m

of functions z € HJ»*i are obtained. Some applications of these inequalities are presented.
j=1

Hexait C(R™) — npocropu HemepepBHHX oOMexeHux ¢GyHkuii xz: R™ — R 3 sopmamu ||z|c =
= |lzllc@m) = sup{|z(t)|: t € R™}, e;, j = 1,...,m, — 3puuaiina 6asa B R™. [Jlna 3amanux mo-
IyIiB HENEPEPBHOCTI wj, j = 1,...,m, HO3HAYUMO

. At.e.x(-
i {:): € CR™): Jallw,; = llzll oy = tsﬁﬂ)% < oo}.

YV poboTi oTpruMaHO HOBI TOYHI HepiBHOCTI THIy KosMoroposa mist HOpM MiIIaHUX YaCTUHHHX HOXiTHUX
|D&x||c byskuiit x € ﬁ H9%;j . HaBeneni neski 3aCTOCYBaHHS IIUX HEPiBHOCTEHH.

j=1

1. Introduction. Statements of the problems. Main results. Sharp Kolmogorov-type
inequalities for univariate and multivariate functions, estimating the norms of intermedi-
ate derivatives through the norms of the function itself and its derivatives of higher
order, are of great importance for many branches of mathematics and its applications.
After A.N. Kolmogorov obtained his inequality (see [1—3]) many inequalities of this
type for norms of integer derivatives of univariate functions were obtained (see, for
example, [4-8]).

In the case of functions of two or more variables very few results of this type are
known (see [9]-[15]).

Many questions in Analysis require to consider derivatives and antiderivatives of
fractional order (see, for instance, [16]). One of the natural and useful definitions of the
fractional derivative for a univariate function z(u), u € R, is the following definition of
Marchaud fractional derivative [17] (see also [16, p. 95-97]):

DL = g [T ac o
0

o

For brevity, we denote A, = ————.
Y T T(1-a)
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Let C'(R) be the space of all bounded and continuous functions z: R — R endowed

with the norm
|z|c :=sup {|z(t)]: t€R}.

Let w(t) be a modulus of continuity, i.e., continuous, nondecreasing, subadditive
function defined on [0, +00) and such that w(0) = 0. By H¥ = H“(R) denote the
space of functions 2 € C(R), for which

|z (t1) — 2(t2)]

€T = ||l = Ssu —_——— < X0
H ||w || HH“’ tl,t2p€R w(|t1 — tQD
t1#to

Ifw(t) =t7, B € (0, 1], then we write H? instead of H“.
Let @ € (0,1) and w(t) be such that

1
/ w(t) dt < o0,
0

t1+a

or, equivalently,
min{1,w(t)}

Tta dt < 0.

Ry
It was proved in [18] that for any A > 0 the following additive Kolmogorov-type

inequality:

h
w(t)

o 2||zllc
D2l < A [llel [ 00 de+ 5 1)
0
holds.
Moreover, this inequality becomes an equality for the function
w(h)

wllul) = 252, Jul < b,

O v
w
5 lu| > h.

Note that after minimization over h of the right-hand side of inequality (1), it can be
rewritten in the following form:

C>Omin 2||x||c, ||x||ow(t
N R @
0

In the case w(t) = %, 3 € (0,1], a < 3 < 1, inequality (2) becomes

1 2t=a/B . N
ol P 3)

D¢ < .

Other known results on sharp Kolmogorov-type inequalities for fractional derivatives
can be found in [18-21].

Let R™ be the space of points ¢t = (t1,...,%,) and {e;}7", be the standard basis
in R™.
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By C(R™) denote the space of all bounded and continuous functions : R™ — R
with the norm

lzllc = llzllc@m) = sup {|=(t)|: t € R™}.
For a given vector ¢t = (t1,...,t,) € R™, by Ay, x(u) denote the first difference of
the function z(u) along the variable u; with the step t;, j = 1,...,m,
Ao x(u) i= x(u) — x(u +tje;),
and define as
Atx(u) = AtlelAt262 N Atmemx(u)

the mixed difference of the function x(u) with the step ¢.
Let w;(t;), t; > 0,7 =1,...,m, be given moduli of continuity. We will consider
the following spaces:

oy 1AL 2()|le
H»i = ¢x e CR™): |||, = ||lz]| giw; = sup —2F——— < o0 .
{ w] 0 wil)

If w;(t;) = t]ﬁ»ﬂ B; € (0,1], then we write H7% instead of H9*s, j =1,...,m.

For a given function z(u), u € R™, and a vector of smoothness o = (g, ..., ),
a; € (0,1), 5 =1,...,m, and a vector of sign distribution € = (e1,...,em), £, = £,
j=1,...,m, the mixed Marchaud derivative of order « is defined in the following way

(see [17, p. 347]):

(D)) = Ao [ At [[ ;% ar

R
where x € C(R™), A, = szl Anjy Aa; = F(Tjaj)’ et := (e1t1, ..., Emlbm)-
V. F. Babenko and S. A. Pichugov [15] proved that for any function = € (| H?%,
j=1
the sharp inequality holds
m—1 21— ;n:l% - 5

1Dg

m
i=18, /ﬁ
mapllelle = Il @
j:

2
l‘”c < m
Hj:l r(1—a;)1- ZFI 5

provided that 3; € (0,1] and «; € (0,1), j = 1,...,m, satisfy the condition

The inequality (4) is the multivariate analog of (3). In this paper we obtain an
inequality, which is a generalization of (4) and represents a multivariate analog of (2).

In what follows, for o; € (0,1), j = 1,...,m, and for given moduli of continuity
w1(t1), ..., wm(tm), we will need the following condition:
/min{l,wl(tl),...,wm(tm)}Htj_aj_l dt < oo. (5
R’ J=1
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Theorem 1. Let moduli of continuity wi(t1),...,wm(tm) and numbers o; €
€ (0,1), j = 1,...,m, be such that condition (5) is satisfied. Then for any function

m .
x € (| H?% and any vector € of sign distribution, the following sharp inequality holds:
j=1

1pz=] <

<om=lg, /min{2||x||c,||x||w1w1(t1),...,||x|\wmwm(tm)} [1t; "t

" =1
R J

For given moduli of continuity w,...,w,,, by UH?¥i, j = 1,... m, denote the
unit ball in the space H7“,

Consider the function

Qfs, (YUH | :==  suwp [Dex|s, 6>0. (7)
j=1 mem;nZIUHJWJ"
lzllc<s

The function (7) is called the modulus of continuity of the operator D on the set
N UHI i,
=1

J
Theorem 1 implies the following statement.

Corollary 1. Under conditions of Theorem 1 for any § > 0,

Qs (YUH™ | =2m 14, /min{?d,wl(tl),...,wm(tm)} I1t "t ®
J=1 R j=1
In particular, if 3; € (0,1] and o; € (0,1), j =1,...,m, are such that Zm ) % <1,
=1 B
then

m %5
2m71 21_21-:1;37

m Y5
5T

Q|9 mUHj’ﬁJ' = —m e
Ql [[_ ra-ap1-3"" ;—j

The problem of finding of the modulus of continuity for a given operator on a given
set is closely related to the problem about approximation of an unbounded operator by
bounded ones.

We now consider the general statement of this problem.

Let X and Y be the Banach spaces, let £(X,Y") be the space of linear bounded
operators S: X — Y, and let A: X — Y be an operator (not necessarily linear) with
the domain D4 C X. Let also Q C D 4 be some class of elements.

For N > 0, the quantity

En(A,Q)= inf sup|Az— Sz|y 9
Q

SeL(X,Y)
Isi<nN

is called the best approximation of the operator A on the set () by linear operators
S: X — Y such that ||S|| = ||S]lx—y < N.

The problem is to compute the quantity (9) and to find the extremal operator, i.c.,
the operator delivering the infimum on the right-hand side of (9).
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This problem appeared in Stechkin’s investigations in 1965. The statement of this
problem, the first important results and the solution of this problem for low order
differentiation operators were presented in [22]. For a survey of further research on this
problem see [4, 5].

The function

Q2(6,Q) := sup ||Az|ly, §>0,
1% s
is called the modulus of continuity of the operator A on the set Q.

Note, that this definition generalizes the above presented definition of the modulus
of continuity of the operator DZ on the set ﬁ UHIi.,

=1

It is easily seen that the problem of comjputation of the function (4, Q) for a given
operator is the abstract version of the problem about the Kolmogorov inequality.

S. B. Stechkin [22] proved that

En(4,Q) 221;18{9(5762) — Né}. (10)

Namely, the inequality (10) shows the relation between the Stechkin problem and
Kolmogorov-type inequalities.
The following theorem gives the solution of the Stechkin problem for the operator

D¢ on the class (| UH7%i.

j=1
Theorem 2. Let the strictly increasing moduli of continuity wi(t1), ... ,wm(tm)
and the numbers o; € (0,1), j = 1,...,m, be such that the condition (5) is satisfied.

Given N >0, let N = (h{Y,... hl)) € RT be such that

m

m

wi (B = ... =wn(h) and %H(W)—%:N (11)
1\/tq m\tm 0[1...Oémj:1 j .
Let
G™) = {u=(ur, o wn) €R™: Jur] 2 b | = B L
Then

En | Dg, m UHi | =2m 14, / min {wl(t1)7...,wm(tm)}Ht;aj_l dt.
j=1 R;’_L\G(h}v) j=1

In addition, the operator

m

Bpvr(u) = Ag / Acga(u) [t at

G(hN) Jj=1
is the extremal operator.

Note that the lower estimate for EN(DEQ, N UH j’“’i> will be obtained with the
j=1

help of Corollary 1. In order to obtain the upper bound for E N(Dg, NU HJV“J') we
j=1

m
will estimate from above the quantity HD?I - BthH o on the class (| UH?¥i.
Jj=1
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Note also that in the case w(t;) = tfj, B; € (0,1], j = 1,...,m, applying
Theorem 2, we immediately obtain the following statement.

Corollary 2. Suppose that B; € (0,1] and oj € (0,1), j = 1,...,m, satisfy the
inequality Z —= < 1. Then for any N > 0,

1 m g
m—> " 1% ™ot E -2 1——1
J=18; =13, i—=1 . m %5

2 J J /Bj J=18;

En|D2, ﬁ UHWi | = | ————— —— 2N
- 1 ra-a) -3 ;—j

The inequalities for intermediate derivatives are also closely related to the Kolmogorov
problem about necessary and sufficient conditions of the existence of a function, for
which given numbers are the upper bounds of absolute values of its derivatives of
corresponding order (see [2, 3]). For some known results in this direction see, for
example, [23-26] and [6].

We consider the Kolmogorov-type problem in the following setting. It is required to

find the necessary and sufficient conditions on the numbers My, My, M, , ..., M,, for
m .
existence of the function z € (| H?*J such that
j=1
[zl = Mo, [[DZzllc = Mo, [lzfw, = Moy 2], = M, -
Theorem 3. Let moduli of continuity wi(t1),...,wm(tm) and numbers o; €

€ (0,1),5=1,...,m,besuch that (5) holds, and let numbers My, My, M, , ..., M,

m
be given. There exists a function x € (| H?*i such that

j=1
Hx”C’:M()v HD?'IHC:MQ’ Hx”wl :Mw17"'7||$|wm = M.,,,
if and only if the inequality
M, <2m 14, /min{2M0,Mw1w1(t1),...,Mwmwm(tm)} [1t;~ " ar (12
R j=1
holds.
Corollary 3. Suppose that B; € (0,1] and oj € (0,1), j = 1,...,m, satisfy the
condition Z ﬂ— < 1, and let numbers My, My, Mg, ,..., Mg, be given. There
i=1 pj
exists a function x € () H?P such that
j=1
lzlle = Mo, [|DZxllc = Mo, [@llgen = Mg, |2l gmsm = Mg,
if and only if the inequality
- -y, 5 m
2m 1 2 I=1B; 1- Z] 1 g /B
Ma< m ajMO ! HMajjﬁj

[ ra-ai-> 2 s
holds.
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2. Proofs. Proof of Theorem 1. We prove the theorem in the case ¢ = (+,...,+)
only, since for any other € one can use analogous arguments. Taking into account the
definition of the fractional derivative we have

m
Vu € R™: |D%(u)| < Aq / INETOT ) (13)
R J=1
To estimate the norm ||A;z||c we will use the following inequalities:
[Aszllo < 2™[lz]c

and
lawle < 2" Ay alle < 27 allo,w (), 5=1,...,m.

Combining these estimates we obtain

Jawlie <27 min {2l|zlc, f2lwwi (), lellnwm (ltm]) -
Applying the last estimate to the right-hand side of (13) we have
Vu € R™: |D&x(u)| <

<2y [ min {2le, ol wa(t). oy wn ) L6 a9
j=1

m
R+

m .
Let us show that for every function « € (| H”7“4, its fractional derivative Dx(u)

Jj=1
depends on w continuously.
Let
w(z,0) := sup [lz(-) — (- +t)lle,
[t|<6
where |t| = \/t? +...+ 12, t = (t1,...,tm).

Applying the inequality (14) to the difference z(u) — z(u + §), 6 € R™, we obtain
|D2x(u) — Dea(u+ )| <
m—1 . e —a;—1
<2ml4, /mm{?w(m, 01,2021 (1), -+ 22l m (t) T £
R j=1

Note, that the function

min {2 (@, 1), 2oy w1(t1), - 202l m () T £
j=1

uniformly converges to zero (as ¢ — 0) on any set of points (¢1,...,t,,) € Hm . [0}, 00),
j:

0; >0,j=1,...,m, and the integral

/ min {20(a, |31), 2/2]lo, 1 (1), ... 2]

R

m
enom () P &5t
=1

uniformly converges on any bounded set of values of the parameter 9.
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Therefore
|DZx(u) — DZz(u+d)[ — 0, [0] =0,

which proves the continuity of D (u) for all uw € R™.
Thus, we obtain from (14):

D2z <
m
_ . —ai—1
<gm IAQ/mm{2||ac|\c,Hx||wlwl(t1),...,Hw||wmwm(tm)}Htj a1 gy
R i=1

and inequality (6) is proved. Construct now the function f(¢), which turns (6) into
equality. To this end, we will use the methods from [15]. Define f(u) for u € R,
and then extend it to the whole space R™ evenly with respect to each variable. For

w=(uy,...,uy) € R and 6 > 0, set w)(u;) = min{w;(u;), 20}.

Consider the vector w’(u) = (wf(w1),...,wS (um)) and denote v = v(u) :=
= (vi(w),...,vm(w) = (w5(u))*, where (w®(u))* is the rearrangement of the
numbers w{ (uy),...,wS (uy,) in nonincreasing order. Now, define the function f(u)

by setting for u € R,

fu) = vi(u) —va(u) + ...+ (=)™ Lo, (u) — 6.
Since 0 < Z;n:l(—l)jflyj(u) < 20, we have ||f|lc < 4. Let us verify, that f €
€ ﬁ H7%i and estimate | f.,, j = 1,...,m. For this purpose, consider the di-

j=1
fference

fluthej) = flu) =
=v1(u+ he;) —va(u+ he;) + ...+ (=1)" Lo, (u+ hej)—
—(v1(u) —va(u) + ...+ (=)™ Lo, (u), h>0.

The vector u + he; differs from the vector u in the j-th coordinate only, which is greater
then the j-th coordinate of the vector u. Therefore, v(u + he;) differs from v(u) in the
following way. Let the number w? (u;) be the v-th coordinate of vector v(u). Then there
exists u < v such that w;-s(uj + he;) is the p-th coordinate of v(u + he;). Moreover,
coordinates of v(u + he;) coincide with coordinates of the vector v(u), as soon as they
have indices less than g or greater than v.

Thus,

fu+hej) — f(u) =
= (=P 7w (uy + ) + (1) () + .+ (1) o, (u)—
— (=1 () — = (1) ey (w) — (<)Y wd () =
= (=" "Wl (uj + h) + 2(=1) v, (u) + ...

coF 2=,y (u) - (—1)”*1w?(uj).
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Since
w?(uj +h)>uvu(u) > .. > v, (u) > w;.s(uj),

it is easy to verify that
w;-s(uj) — W?(Uj +h) <
< (=) wd(uy + h) 4+ 2(=1) v (u) + ...
2=y g (u) — (1) 1w§(u]) <
< wf (uj + h) — W) (uy). (15)
Taking into account that
W (uj + h) = wf (1) < wj(u; + h) — w;(uy) < w;(h),

we obtain f € H?* and | f|l,, <1,j=1,...,m.
We now compute |(D2f)(0)| when € = (+,...,4). In order to do this, we firstly
show that for all t € R,

LA, F(0,...,0) = —2m—1min{25, wl(tl),...,wm(tm)} -

= —2""lmin {w‘f(tl), ... ,wfn(tm)}.

The proof is by induction on m. For m = 2 (induction basis), this fact can be verified
directly.

Since the operators A;; and A;; commute, we can take Ay, ..., A inany conveni-
ent order, while computing A, .. Atm f(0,...,0). For definiteness, suppose that w{ (#;)
is the greatest number among w{(t1), ... ,wfn( m)- We will compute the difference in
t; in last turn. Represent the difference A¢, ... A f(0,...,0) in the following way:

At1~«~Atmf(Ow~~;O):

11
= Z Z Z J1+m+jmf(j1t1aj2t2,-..,jmtm) _
1 1
=3 ()R (0, G, - i) =

1 1
- Z ce Z <_1)j2+m+jmf<t17j2t27 s aj'mtm)

Jj2=0 Jm=0
By the induction assumption,

1 1

Z t Z (_1)j2+m+jmf(07j2t2; s 7]mtm) =

Jj2=0 Jm=0
= —2™"2 min {wg(tg),...,wfn(tm)}. (16)
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Using the fact that w{(¢;) is the greatest number among w{(t1),...,w? (), and the
definition of f, we obtain

f(tl,jgtg, e ,jmtm) = wf(tl) — f(O,j2t27 N ,jmtm).

Thus,

1 1
=)D (0P (Wi () = (0, datas - Gmtm)) =
Jj2=0  jm=0
= —2"" 2 min {wg(tg), e ,w,‘;(tm)}
(here we have used the induction hypothesis (16) again). Finaly, we have
Ay oo A f(0,...,0) =
= =272 min {wi(tz), ... W, () } = 27 2min {w(t2), ... ol () } =

= —2""1min {wg(tg), .. ,wfn(tm)} =

= —2""1min {wf(t1)7wg(t2), ... ,wfn(tm)}.
For e = (+,...,+), we estimate | D& f||c from below:

ID2f]lo = (D2 £)(0,....0)| =

:2””‘1Aa/Ht—af—lAtf(o,...,O)dtz

m j=1
R+

=2m"14, / min{Q(S,wl(tl), . ,wm(tm)} ﬁ t=% "t dt >
j=1

R

22" o [ min {20 flles 17 lwa(t). o o)} [T 6 dt a7)

Jj=1
R

Combining (6) (for the function f) with (17), we see that

m

HD?f”C _ 2m71Aa min {25’ wl(tl)a - 7wm(tm)} H tfajfl dt =
R =t
:2’"‘1Aa/min{2||f||c,IIfHMw1(t1)7-.~,IIf\Iwmwm(tm>}Htj_aj_ldt’ (18)
RT =

i.e., relation (6) turns into equality.
The proof is complete.
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Proof of Corollary 1. 1t follows from equality (6) that for any § > 0,

Q 5,ﬂUva“’j g2’"*1Aa/min{25,w1(t1),...,wm(tm)} tj‘“f‘ldt.
Jj=1 R7 Jj=1

For the function f, constructed in proof of Theorem 1,

m

Ifllc <6, fe)H™.

Jj=1

Using (18) we obtain

Qlo, U | > D fllc =

j=1

=92m"14, /min {26, wi(t1),. .. 7wm(tm)} ﬁ t;aj*l dt.

m Jj=1
T

The corollary is proved.

Proof of Theorem 2. As in the proof of Theorem 1 suppose that e = (+,...,+).
Remind that for a given N > 0, the vector b = (h{Y,..., hY)) € RT is defined by the
following conditions:

2"mA, T a
sB) = =), S [T =,
and
G(hN) = {u = (u1,... um) €ER™: uy >0V, uy, > h%}
Define the operator By~ as follows
Bpvz(u) = Ag / Aga(u) [[ 15" at.
G(RN) Jj=1

Show that By~ is the bounded operator from C'(R™) to C(R™), and moreover
| By~ || < N. Indeed for all x € C(R™),

|Buval, < 2" Aq / 1t dtlelc =
Gy I=1
2mA, T —ay
= oo H ()™ llzllc = Nlz|lc-
e

m y . . .
For any z € (| H?“7, estimate the deviation ||D%x — Bj,~x|c. We have
i=1
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| D& — BthHC < ||Aq / Ayz(u) H t;a'j_l dt|| <
j=1

R7A\G(hN) o

<om-lg, / mm{wl(tl),...,wm(tm)}Ht;af‘ldt.
RPAG(hN) 7=t

We have obtained the estimation of the value E N(D?, N UH J ’“-7) from above.

j=1
Let us estimate this value from below. From (10) we obtain

Ex|DZ, mUHj’wj >sup Q19, ﬂUHjawj _N§

=1 §>0 =1

Using Corollary 1 and condition (11) we have
Ey|D2, (\UH™| >
j=1

m

> sup 2m71Aa/min{26,w1(t1)7~-.,wm(tm)} tj—aj-ldt_

6>0 ;
Jj=1
RY

—9MAS / ¢ at

G(hN) Jj=1

Set
Sn =wi () = ... = wn(hY).

Note that for t € G(hY),
min {26N7w1(t1)7 oo ,W(tm)} = 25N
and for t € R\ G(hY),

min {25N, wi(t), ... ,w(tm)} — min {wl(tl), o ,w(tm)}.
From (20) we derive
En | D2, ﬂ UH™i | >
j=1
>om=lg / min {25N7w1(t1), . ,wm(tm)} H tj_@j_1 dt—

Jj=1
R}

(19)

(20)
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—om=lya, / min {261\7,wl(t1)7 . ,wm(tm)} H tj_a-’j1 dt =
G(hY) j=1
m
=2m"14, / min {wl(tl),...,wm(tm)} Ht;a"fl dt.
RIPAG(RN) 7=t

We have obtained the required estimation from below.

Theorem 2 is proved.

Proof of Theorem 3. Let us consider the case ¢ = (+,...,+). For 6 > 0
and modulus of continuity wy,...,wm, by f(+; d;w1,...,wm) denote the function
f constructed in the proof of Theorem 1. Suppose the inequality (12) holds true and
select 0 < Lo < M, such that

M, =2""1A, / min {QLO, M wi(t1),. .., Mwmwm(tm)} H tj_a"_l dt.
R J=1
For the function f(-; Lo; My, w1, ..., My, wm), we have
£ (5 Los My, wi, .., My, wm)|| o < Lo < M.

In addition, it is easy to verify that

Hf('éLo;Mwlwl,---7Mw,,,me)H =M., j=1,...,m.

wj

As in the proof of Theorem 1, we obtain

||D?f(aL0a Mw1w17 .- "MWMWm)HC -

—om=lg, / min {QLO,Mwlwl(tl), . .,Mwmwm(tm)} 11 t;“j* dt = M,,.
j=1

R
Now construct the function

z(u) = f(u; Lo; Mo, w1, . . ., My, wm) + Mo — || £ (-5 Lo; Munwr, . -, Mey,,wm)|| -

m .
It is obvious that x € (| H7“4, and also
j=1

|zl =Mo, Dzl = Ma,  |#llw, =M, j=1,...,m.
Theorem 3 is proved.
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