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ON THE RELATION BETWEEN MEASURES DEFINING
THE STIELTJES AND THE INVERTED STIELTJES FUNCTIONS

ITPO 3B’A30K MI’K MIPAMM, 11O BU3BHAYAIOTD
IMOYATKOBY TA OBEPHEHY ®YHKIIII CTUIBTHECA

A compact formula is found for a measure of the inverted Stieltjes function expressed by the measure of the
original Stieltjes function.

Bcranosieno ¢popmyity uist Mipu obepHeHoi GyHKIii CTinbTbECa, IO BUPAXKEHA Yepe3 Mipy 1oYaTKkoBoi QyHK-
uii CrinbTheca.

In 1991 Gilewicz [1] posed an open problem of giving an explicit expression for a
measure of the inverted Stieltjes function. Peherstorfer [2] gave an answer to this question
for a certain class of measures for Stieltjes functions. Here we present a completely
different derivation than the one given in [2], actually a quite elementary one, which is
also valid for more general types of measures.

Let us recall that if g is a Stieltjes function
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seC\(~oe,—Rl: g2) = [ {40 m
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then it is well known that the function i defined by
9(0)
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is also a Stieltjes function (see, e.g., [3]). The function & is called the inverted Stieltjes
function. Formula (1) defines the function which is analytic in the whole complex z-
plane, except for the cut between —R and —oo. Therefore h has the same analytic
properties. However if we want to write h in a similar form, namely

then it is not quite obvious what is the relation between the measures dy and dv.
When the relation (2) is reversed, we get

and using (1), it can be written as

[/ it

_Jo 14tz
h‘(z) - 1/R du(t) . (3)
fO 1+tz

*M. Pindor passed away in 2003.

© J. GILEWICZ, M. PINDOR, 2010
ISSN 1027-3190. Ykp. mam. xcypn., 2010, m. 62, Ne 3 327



328 J. GILEWICZ, M. PINDOR
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Fig. 1. The contour C for the Cauchy integral and contours C. and C,, into which C' is deformed.

In order to find an integral representation of h we use the standard Cauchy formula.
However we will work in the (-plane where { = —1/z, because then both branch points
of h lie inside a bounded domain. Therefore, if we set A({) = h(—1/(), then formula (3)

becomes
fl/R tdu(t)

RO = T 4)
I
On the other hand _
i L [ h(§dE
C

where the contour C' encircles counterclockwise the point ( and does not contain the
points 0 and 1/R (see Fig. 1).

Now (see Fig. 2) we can deform C' in such a way that it becomes the contours C.,
(encircling both branch points and the cut joining them, clockwise) and C, (being a
circle of radius p > 1/R where we move counterclockwise). Thus

N h(€)d¢ h(€)d¢
0= | [E0H
C. c,
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By (4), if £ — oo, then
- VB Lt
Q) — w
fo dﬂ(t)

Therefore when p — oo
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Fig. 2. The final form of the contour Cl.
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On the other hand the contour C, can be split into four paths: C,, Cy,, C_ and Cy, as
indicated on Fig. 2. The contours C,. and C5, are circles of radius 7 arround the points
0 and 1/R, respectively. When r — 0, integrals over C'; and C_ become integrals
between 0 and 1/R over the upper and lower lips of the cut joining the branch points,
while integrals over C1, and Cs, converge to 0. As a consequence, we deduce

h(¢) =

fl/R tdpu(t) 1 h(z)dz h(z)dz
I/ dut T omi /Z—C+/Z—C
u(t) a, a

Our task now is to express the difference of integrals over the upper and lower lips of the
cut by an integral containing the measure dy defining the function g. If the bounded and
nondecreasing function p is differentiable, then dy(t) may be written in the form p/(t)dt
and we may directly use (4). In the following we shall use du(t) = p/(t)dt for more
general situations meaning that we consider such dyu(t) that there exists a distribution
' (t) with the necessary properties for the existence of the integrals considered. The
same for dv(t) and v/ (¢).

In particular we consider a case where p contains a contribution from a Heaviside
function, i.e., we take

1, for ¢t >0,
p(t) = GH(t) +o(t),  H(t) =
0, for t <0,

where now o has no jump at ¢ = 0. In this case (4) becomes

"1/R tdo(t)

hQ) = Gjifl/f{;m )
t
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Using now the well known Sokhotskij — Plemelj formulae for (5) with ( = x + ie for the
sum of integrals over C'y and C_ we get

h(z)dz h(z)dz

=l =
Cy C_

_75 o'() |G+ Jy " o (1)t o
5 {Q o) gy ()log(——1)}24-772(0’(1‘))236_('

x

Going back to z variable we get

yr, 1/R
t)dt
G+f o’ (t)dt
1/R
. _/ o'(x)dz n
’ / 2
) g {(f _ Ol/R %dt —o'(z)log (& — 1)) + WQ(U/(CC))Q:|
1/R
. / o' (z)dz
’ ’ 2
) x(1+zx)[(§ 01/R T=0"@) gy — o/ (2) log (1 — 1)) +7r2(o’(x))2}

This formula can be stated in a more compact form using the fact that

1/R 1/R

G_ O/UI(t)_Ul(x)dt —o'(z)log (Rlx - 1) + mio'(z) = O/CW7 (6)

T t—zx x+tic—t

where, by (1), we immediately see that the right-hand side is just g(—1/z)/z for z =
= x % ie. Another simplification comes from the following observation:

1/R

/ (a)dz _
0 T [(f - Ol/R Wdt —o'(x)log (7 — 1))2 + 7T2(g/(x))2}
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) 1/R o' (t)d .
2w a (G- Py R 20 i ()

1/R
dx
- - (7
J < PVfl/R o’/ tzcdt _ TFiU/(I))
The denominators of the two integrals above are
1/ 1/R
G / du(t) ( 1)
€T _ = = g _——
T T —t T
0
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for x just below and just above the interval [0,1/R] (i.e., over C_ and C (see (6))).
Therefore the integrals on the right-hand side of (7) may be written as

L dz B i I dz ®)
2 O 0 ) (¢ - /e o)
o z 0 t—z Cy, z 0 t—=z

(see Fig. 2) because an integral over the small circle around 1/R converges to 0 with
the radius r of that circle. Now, the integral over C), can be deformed to a large circle
of radius p going to co. In this limit the integral is

omi [} o (£)dt
-
(G + [ Ra’(t)dt)

To understand what is the limit of the integral over Cy,. when r — 0, we recall that
z = re'? on Cy,. Looking now at the explicit form of the denominator of the integrand
in (8) and using

1/R

!
lim re’? / odt =0,

r—0 t — rei®
0

it follows that if G # 0 then the limit of the integral over Cy, is 0. The same is true if
G =0, and

R
t)dt
lim / & =0
r—0 t—rew
0
Finally, if the above limit is finite, then
. dz 271
im = .
r—0 g(—=1/z) fol/RJ’(z)dt
Therefore, since
1/R

1/R

h(z) = g(0) %li ) df/Rd - +/ tdo (1) i

T r— a _
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or
i dg to’(t)
V' (t) = g(0) | 5(¢) lim — /

r—0 2 1/R do(u) _ 2|

- mCh G+¢Jq Fu g (=1/1)]

where 6(t) = H'(t) is the Dirac distribution. In particular this result shows that if the
measure dyu defining g contains a ¢ (Dirac) at the origin (that is, if G # 0), then the
measure dv defining h does not contain ¢ at the origin, and vice-versa.
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