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ARE THE DEGREES OF BEST (CO)CONVEX
AND UNCONSTRAINED POLYNOMIAL APPROXIMATION
THE SAME? II

ЧИ ОДНАКОВI ПОРЯДКИ НАЙКРАЩОГО (КО)ОПУКЛОГО
НАБЛИЖЕННЯ ТА ПОЛIНОМIАЛЬНОГО НАБЛИЖЕННЯ
БЕЗ ОБМЕЖЕНЬ? II

In Part I of this paper, we proved that for every α > 0 and a continuous function f , which is either convex
(s = 0) or changes convexity at a finite collection Ys = {yi}si=1 of points yi ∈ (−1, 1), one has

sup{nαE(2)
n (f, Ys) : n ≥ N ∗} ≤ c(α, s) sup{nαEn(f) : n ≥ 1},

where En(f) and E(2)
n (f, Ys) denote, respectively, the degrees of best unconstrained and (co)convex approxi-

mation, and c(α, s) is a constant depending only on α and s. Moreover, we showed that N ∗ may be chosen
to be 1 if s = 0 or s = 1, α 6= 4, and that it has to depend on Ys and α if s = 1, α = 4 or s ≥ 2.

In this Part II, we show that a more general inequality

sup{nαE(2)
n (f, Ys) : n ≥ N ∗} ≤ c(α,N , s) sup{nαEn(f) : n ≥ N},

is valid, where, depending on the triple (α,N , s), N ∗ may or may not depend on α, N , Ys and f.

У частинi I цiєї статтi доведено, що для кожного α > 0 та неперервної функцiї f , яка або опукла
(s = 0) або змiнює опуклiсть у скiнченному наборi Ys = {yi}si=1 точок yi ∈ (−1, 1),

sup{nαE(2)
n (f, Ys) : n ≥ N ∗} ≤ c(α, s) sup{nαEn(f) : n ≥ 1},

де En(f) та E
(2)
n (f, Ys) означають вiдповiдно порядок найкращого наближення без обмежень та

(ко)опуклого наближення, c(α, s) є сталою, що залежить лише вiд α i s. Бiльш того, було показа-
но, що N ∗ можна вибрати рiвним одиницi, якщо s = 0 або s = 1, α 6= 4, i що воно повинно залежати
вiд Ys i α, якщо s = 1, α = 4 або s ≥ 2.

У частинi II показано, що виконується бiльш загальна нерiвнiсть

sup{nαE(2)
n (f, Ys) : n ≥ N ∗} ≤ c(α,N , s) sup{nαEn(f) : n ≥ N},

де в залежностi вiд трiйки (α,N , s) число N ∗ може залежати або нi вiд α, N , Ys та f.

1. Introduction and main results. Let C[−1, 1] be the space of continuous functions on
[−1, 1] equipped with the uniform norm ‖·‖, and let Ys, s ∈ N, be the set of all collections
Ys :=

{
yi
}s
i=1

of points yi, such that ys+1 := −1 < ys < . . . < y1 < 1 =: y0. For
Ys ∈ Ys denote by ∆2(Ys) the set of all piecewise convex functions f ∈ C[−1, 1], that
change convexity at the points Ys, and are convex on [y1, 1]. In particular, Y0 = {∅},
and ∆2 = ∆2(Y0) denotes the set of all convex continuous functions. If f is twice
continuously differentiable in (−1, 1), then f ∈ ∆2(Ys) if and only if f ′′(x)Π(x;Ys) ≥
≥ 0, x ∈ (−1, 1), where Π(x;Ys) :=

∏s

i=1
(x− yi), (Π(x, Y0) :≡ 1).

We also denote by

En(f) := inf
{
‖f − Pn‖ : Pn ∈ Pn

}
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and
E(2)
n (f, Ys) := inf

{
‖f − Pn‖ : Pn ∈ Pn ∩∆2(Ys)

}
the degrees of best unconstrained and coconvex approximation of a function f by
polynomials from Pn, the space of algebraic polynomials of degree < n. In particular,

E(2)
n (f) := E(2)

n (f, Y0) = inf
{
‖f − Pn‖ : Pn ∈ Pn ∩∆2

}
is the degree of best convex approximation of f.

While it is obvious that En(f) ≤ E
(2)
n (f), Lorentz and Zeller [1] showed that the

inverse inequality E
(2)
n (f) ≤ cEn(f), is invalid even if a constant c is allowed to

depend on the function f ∈ ∆2. There are many examples showing that the same is
true for piecewise convex functions from ∆2(Ys). The existence of counterexamples
notwithstanding, we recently have proved the following result.

Theorem A [2]. For each α > 0 and integer s ≥ 0 there is a constant c(α, s), such
that for every collection Ys ∈ Ys and a function f ∈ ∆2(Ys) we have

sup
{
nαE(2)

n (f, Ys) : n ≥ N ∗
}
≤ c(α, s) sup

{
nαEn(f) : n ≥ 1

}
, (1.1)

where N ∗ = 1, if either s = 0, or s = 1 and α 6= 4, and N ∗ = N ∗(α, Ys) — a constant,
depending only on α and Ys, if either s ≥ 2, or s = 1 and α = 4.

We also have shown that Theorem A cannot be improved, that is, if either s ≥ 2, or
s = 1 and α = 4, then the constant N ∗ cannot be made independent of Ys.

Theorem B [2]. Let s ≥ 2. Then for every α > 0 and m ∈ N, there exist a
collection Ys ∈ Ys and a function f ∈ ∆2(Ys), such that

mαE(2)
m (f, Ys) ≥ c(α, s)mα+1−dαe sup

{
nαEn(f) : n ≥ 1

}
, (1.2)

where c(α, s) is a positive constant and dαe is the ceiling function (i.e., the smallest
integer not less than α).

Theorem C [2]. For every Y1 ∈ Y1 there exists a function f ∈ ∆2(Y1), satisfying

sup
{
n4En(f) : n ∈ N

}
= 1,

such that for each m ∈ N, we have

m4E(2)
m (f, Y1) ≥

(
c ln

m

1 +m2ϕ(y1)
− 1
)
, (1.3)

and
sup

{
n4E(2)

n (f, Y1) : n ∈ N
}
≥ c |lnϕ(y1)|, (1.4)

where ϕ(y) :=
√

1− y2 and c is an absolute positive constant.
Everywhere below, we denote by c(. . . ) positive real constants that depend only

on the parameters, sets, functions in the parentheses and which may vary from one
occurrence to another even when they appear in the same line. In particular, c denote
absolute positive constants. Similarly, N (. . . ) denote natural numbers that depend only
on the quantities in the parentheses. For instance, N (α, Ys) denotes a natural number
that depends only on α and Ys and nothing else.

The main goal in this paper is to answer the following questions:
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What happens if we replace n ≥ 1 in (1.1) by n ≥ N , where N ∈ N? Is
Theorem A still valid? What can be said about the dependence of N ∗ on α,
N , Ys and f?

Our first result is the following generalization of Theorem A.
Theorem 1.1. For each α > 0, N ∈ N, s ∈ N0 := N ∪ {0}, Ys ∈ Ys and

f ∈ ∆2(Ys), there exists an N ∗ ∈ N, such that

sup
{
nαE(2)

n (f, Ys) : n ≥ N ∗
}
≤ c(α,N , s) sup

{
nαEn(f) : n ≥ N

}
. (1.5)

Note that N ∗ ∈ N in the statement of Theorem 1.1 may or may not depend on α,
N , Ys and f. Our Theorem 1.2 below provides a complete answer to when and how this
dependence occurs.

It is rather easy to see that the assertion of Theorem 1.1 in the case N = 2 immedi-
ately follows from Theorem A. Namely,

if N = 2, then Theorem 1.1 is valid with N ∗ = 2, if either s = 0, or s = 1
and α 6= 4, and N ∗ = N ∗(α, Ys) if either s ≥ 2, or s = 1 and α = 4.

Indeed, noting that the function g := f−p2,where p2 := arg infp∈P2 ‖f−p‖, satisfies

En(g) = En(f), E(2)
n (g, Ys) = E

(2)
n (f, Ys) for all n ≥ 2, and E1(g) ≤ ‖g‖ = E2(f),

we have

sup
{
nαE(2)

n (f, Ys) : n ≥ N ∗
}

= sup
{
nαE(2)

n (g, Ys) : n ≥ N ∗
}
≤

≤ c(α, s) sup
{
nαEn(g) : n ≥ 1

}
= c(α, s) sup

{
nαEn(f) : n ≥ 2

}
.

Moreover, Theorems B and C imply that

if N ∗ = 2, then N ∗ cannot be made independent of Ys if either s ≥ 2, or
s = 1 and α = 4.

We now emphasize that, except when 3 ≤ N ≤ s+2, N ∗ cannot be smaller than N .
Indeed, to see this it suffices to consider any function fs ∈ ∆2(Ys) which is a polynomial
of degree exactly N − 1, for instance, such that f ′′s (x) := (x + 2)N−s−3Π(x;Ys) if
N ≥ s + 3, and fs(x) := x if N = 2. Then, En(fs) = 0 for all n ≥ N , and one
immediately gets a contradiction assuming that N ∗ in (1.5) is strictly smaller than N . If
3 ≤ N ≤ s+ 2, then PN ∩∆2(Ys) = P2 ∩∆2(Ys) (any polynomial of degree ≤ s+ 1
which has s convexity changes must be linear), and so E

(2)
N (f, Ys) = E

(2)
2 (f, Ys) =

= E2(f), i.e., if (1.5) is valid with N ∗ = N , then it is also valid with N ∗ = 2.
Also, by Theorem B one may not expect, for s ≥ 2, that N ∗ be independent of Ys.
Given a triple (α,N , s), we want to determine the exact dependence of N ∗ on all

the quantities appearing in the statement of Theorem 1.1 so that (1.5) is satisfied.
We will show that there are three different types of behavior of N ∗, and in order to

describe them we introduce the following notations.
Definition. Let (α,N , s) ∈ R+ × N× N0.

1. We write (α,N , s) ∈ “+”, if Theorem 1.1 holds with N ∗ = N .
2. We write (α,N , s) ∈ “⊕”, if
(a) Theorem 1.1 holds with N ∗ = N ∗(α,N , Ys), and
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(b) Theorem 1.1 is not valid with N ∗ which is independent of Ys, that is, for each
A > 0 and M ∈ N there are a number m > M, a collection Ys ∈ Ys, and a function
f ∈ ∆2(Ys), such that

mαE(2)
m (f, Ys) ≥ A sup

{
nαEn(f) : n ≥ N

}
. (1.6)

3. We write (α,N , s) ∈ “	”, if

(a) Theorem 1.1 holds with N ∗ = N ∗(α,N , Ys, f), and

(b) Theorem 1.1 is not valid with N ∗ which is independent of f, that is, for each
A > 0, M ∈ N, and Ys ∈ Ys, there are m > M and f ∈ ∆2(Ys), such that (1.6) holds.

It turns out that N ∗ depends on

α := dα/2e (1.7)

rather than on α itself with the only exception in the case α = 2, N ≤ 2 and s = 1,
which has already been discussed above.

Theorem 1.2. Let (α,N , s) ∈ R+ × N× N0. Then

(i) (α,N , s) ∈ “ + ”] if

s = 0, α ≤ 2 and N ≤ 3;

s = 0, α ≥ 3 and N ∈ N;

s = 1, α = 1 and N ≤ 2;

s = 1, α = 2, α 6= 4 and N ≤ 2;

s = 1, α = 3 and N ≤ 4;

s = 1, α ≥ 4 and N ∈ N.

(ii) (α,N , s) ∈ “	 ”] if

s ≥ 0, α ≤ 2 and N ≥ s+ 4;

s ≥ 1, α = 1 and N = s+ 3.

(iii) (α,N , s) ∈ “ ⊕ ” in all other cases, except perhaps the case s ≥ 3, α = 2 and
N = s+ 3.

We recall that the casesN = 1 andN = 2 in this theorem follow from Theorems A –
C and the discussion following the statement of Theorem 1.1.

In order to make it easier to see and remember what Theorem 1.2 establishes, and to
recognize the patterns of behavior of the triples (α,N , s), we summarize the results in
tables relating N and α, for the various values of s.

The symbol “
◦
+” in the positions (α,N ) = (2, 1) and (2, 2) for s = 1 (the exceptional

case) means that (α,N , s) ∈ “+” if α 6= 4 (i.e., 2 < α < 4), and (α,N , s) ∈ “⊕” if
α = 4.

We also write “?” in the position (α,N ) = (2, s+3) for s ≥ 3 since we do not know
exactly what happens in this case. We do know, however, that (α,N , s) ∈ “	” or “⊕”,
when s ≥ 3, 2 < α ≤ 4 and N = s+ 3 (see Theorem B and case 11 in Section 4.2).
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α
...

...
...

...
... . .

.

4 + + + + + · · ·
3 + + + + + · · ·
2 + + + 	 	 · · ·
1 + + + 	 	 · · ·

1 2 3 4 5 N

s = 0

α
...

...
...

...
...

... . .
.

5 + + + + + + · · ·
4 + + + + + + · · ·
3 + + + + ⊕ ⊕ · · ·
2

◦
+

◦
+ ⊕ ⊕ 	 	 · · ·

1 + + ⊕ 	 	 	 · · ·
1 2 3 4 5 6 N

s = 1

α
...

...
...

...
...

...
... . .

.

4 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
3 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
2 ⊕ ⊕ ⊕ ⊕ ⊕ 	 	 · · ·
1 ⊕ ⊕ ⊕ ⊕ 	 	 	 · · ·

1 2 3 4 5 6 7 N

s = 2

α
...

...
...

...
...

...
...

... . .
.

4 ⊕ ⊕ · · · ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
3 ⊕ ⊕ · · · ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
2 ⊕ ⊕ · · · ⊕ ⊕ ? 	 	 · · ·
1 ⊕ ⊕ · · · ⊕ ⊕ 	 	 	 · · ·

1 2 · · · s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 N

s ≥ 3

2. Proofs of the negative results. We first state the following well known result
(see, e.g., [3, p. 418], Theorem 7.5.2).

Lemma 2.1. Let r ∈ N and Gr(x) = (x+ 1)r ln(x+ 1), Gr(−1) := 0. Then

En(Gr) ≤ c(r)n−2r, n ∈ N. (2.1)

Next we prove the following lemma.
Lemma 2.2. For every A > 0 and m ∈ N, there are points y1 ∈ (−1, 1) and

ỹ1 ∈ (−1, 1), and functions f ∈ ∆2(Y1) and f̃ ∈ ∆2(Ỹ1), where Y1 := {y1} and
Ỹ1 := {ỹ1}, such that

n4En(f) ≤ 1, n ≥ 3, and n6En(f̃) ≤ 1, n ≥ 5, (2.2)

while
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E(2)
m (f, Y1) ≥ A and E(2)

m (f̃ , Ỹ1) ≥ A.

Proof. Given A > 0 and m ∈ N, in the proof of [4] (Theorem 2.4), we have
constructed functions g4 ∈ ∆2(Y1) and g6 ∈ ∆2(Ỹ1), for some −1 < y1 < 1 and
−1 < ỹ1 < 1, such that

E(2)
m (g4, Y1) ≥ A and E(2)

m (g6, Ỹ1) ≥ A. (2.3)

The functions had the representation g2r = P2r−1 + crGr, r = 2, 3, where P2r−1 ∈
∈ P2r−1 and cr is an absolute constant. By virtue of (2.1) we therefore conclude that

n2rEn(g2r) ≤ c, n ≥ 2r − 1,

and the proof is complete.
Remark 2.1. Note that Lemma 2.2 readily implies that if s = 1, then for α = 1, 2

and all N ≥ 3 as well as for α = 3 and all N ≥ 5, there cannot be “+” in the position
(α,N ).

Our next result is valid for arbitrary s ∈ N0.

Lemma 2.3. Let s ∈ N0 and Ys ∈ Ys. For every A > 0 and m ∈ N, there is a
function f ∈ ∆2(Ys), such that

n4En(f) ≤ 1, n ≥ s+ 4,

while
E(2)
m (f, Ys) ≥ A.

Proof. Following [4], for each b ∈ (−1, 0), we denote

fb(x) :=

x∫
0

(x− t)Π(t;Ys)

 t∫
b

t− u
(u+ 1)2

du

 dt.

Clearly, f ′′b (x)Π(x;Ys) ≥ 0, x ∈ (−1, 1), so that fb ∈ ∆2(Ys). Straightforward
computations using the Taylor expansion of Π(x;Ys) about t = −1, yield,

fb = Ps+4 −
s∑
r=0

Π(r)(−1;Ys)
(r + 2)!

Gr+2,

where Ps+4 ∈ Ps+4. Hence, by virtue of Lemma 2.1, we obtain,

n4En(fb) ≤ c(s), n ≥ s+ 4, (2.4)

since
∥∥Π(r)(·;Ys)

∥∥ ≤ c(s), 0 ≤ r ≤ s.
The polynomial

ps+4(x) :=

x∫
0

(x− t)Π(t;Ys)

 1∫
b

t− u
(u+ 1)2

du

 dt,

belongs to Ps+4 and satisfies Π(−1;Ys)p′′s+4(−1) = Π2(−1;Ys) ln
b+ 1

2
. Hence, for

each polynomial Pm ∈ Pm ∩∆2(Ys), m ≥ s+ 4, we have
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−Π2(−1;Ys) ln
b+ 1

2
= −Π(−1;Ys)p′′s+4(−1) ≤

≤ Π(−1;Ys)
(
P ′′m(−1)− p′′s+4(−1)

)
≤

≤ m4|Π(−1;Ys)|‖Pm − ps+4‖, (2.5)

where we used Markov’s inequality. Also

ps+4(x)− fb(x) =

x∫
0

(x− t)Π(t;Ys)

 1∫
t

t− u
(u+ 1)2

du

 dt,

which is independent of b. Hence, by (2.5),

m−4
∣∣Π(−1;Ys)

∣∣ ln 2
b+ 1

≤ ‖Pm − fb‖+ ‖fb − ps+4‖ ≤ ‖Pm − fb‖+ c(s).

Thus,

E(2)
m (fb, Ys) ≥ m−4

∣∣Π(−1;Ys)
∣∣ ln 2

b+ 1
− c(s),

and taking f := cfb with suitable c = c(s) and b concludes the proof of the lemma.
Remark 2.2. Lemma 2.3 implies that if α = 1 or 2, then for all s ≥ 0 and

N ≥ s+ 4, there cannot be “+” or “⊕” in the position (α,N ) (and so the best we can
hope for is that there is “	” in those positions which, as will be shown below, is indeed
the case).

Finally, for s ≥ 1, we have the following lemma.
Lemma 2.4. Let s ∈ N and Ys ∈ Ys. For each A > 0 and m ∈ N, there is a

function f ∈ ∆2(Ys), such that

n2En(f) ≤ 1, n ≥ s+ 3,

and
E(2)
m (f, Ys) ≥ A.

Proof. Denote Dj(x) := xj ln |x| (Dj(0) := 0). It is well known (and is easy to

check) that for j ≥ 1, D(j−1)
j belongs to the Zygmund class, i.e., ω2(D(j−1)

j , t) ≤ c(j)t.
Thus, for j ≥ 2, En(Dj) ≤ c(j)n−j ≤ c(j)n−2, n ≥ 1. Hence, for Dj,γ(x) :=
:= Dj(x+ γ), −1 < γ < 1, j ≥ 2, it follows that

En(Dj,γ) ≤ c(j)
n2

n ≥ 1. (2.6)

Take 0 < b <
1
2

min{y1 − y2, 1− y1}, and let

l̃b(x) :=
x

b
− 1 + ln b. (2.7)

(Note that y = lb(x) is the tangent to the function ln |x| at the point x = b.) Further, let
b∗ be the other (clearly negative) root of the equation l̃b(x) = ln |x|. Clearly,

|b∗| = −b∗ < b, (2.8)
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and (x− b∗)
(
l̃b(x)− ln |x|

)
≥ 0, x 6= 0, so that for

lb(x) := l̃b(x+ b∗), (2.9)

we have
x(lb(x)− ln |x+ b∗|) ≥ 0, x 6= |b∗|. (2.10)

Denote
Π1(x) := Πs

i=2(x− yi)

(Π1 :≡ 1 if s = 1), and let

Lb(x) :=

x∫
0

(x− u)Π1(u)lb(u− y1)du,

and

gb(x) :=

x∫
0

(x− u)Π1(u) ln |u+ b∗ − y1|du.

Finally, write
fb := Lb − gb.

Integration by parts yields

x∫
0

(x− u) ln |u+ b∗ − y1|du =
1
2
D2(x+ b∗ − y1) + p3(x),

where p3 ∈ P3. Similarly,

gb(x) =
s−1∑
r=0

Π(r)
1 (y1 − b∗)
(r + 2)!

Dr+2(x+ b∗ − y1) + ps+2(x), (2.11)

where ps+2 ∈ Ps+2, and since Lb ∈ Ps+3, (2.6) yields

En(fb) ≤
c(s)
n2

, n ≥ s+ 3. (2.12)

At the same time, it follows by (2.10) that fb ∈ ∆2(Ys).
On the other hand, given Pm ∈ Pm ∩∆2(Ys), we conclude by (2.7) through (2.9)

that

0 < Π1(y1) ln
1
b
< Π1(y1)

(
ln

1
b

+ 1− b∗

b

)
=

= −L′′b (y1) = P ′′m(y1)− L′′b (y1) ≤ c(s, y1)m2‖Pm − Lb‖,

where we applied Bernstein’s inequality. Since

‖gb‖ ≤ 2‖Π1‖
1∫

0

| lnx|dx = 2‖Π1‖ ≤ 2s,
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then

0 < Π1(y1) ln
1
b
≤ c(s, y1)m2

(
‖Pm − fb‖+ ‖gb‖

)
≤ c(Ys)m2(‖Pm − fb‖+ 1).

Hence

E(2)
m (fb, Ys) ≥

c(Ys)
m2

ln
1
b
− 1,

and this combined with (2.12) implies the statement of the lemma for f := cfb with
suitable c = c(s) and b.

Remark 2.3. Lemma 2.4 implies that if α = 1 and s ≥ 1, then for all N ≥ s+ 3,
there cannot be “+” or “⊕” in the position (α,N ) (and so the best we can hope for is
that there is “	” in those positions which is indeed the case, see below).

3. Auxiliary results. Recall that ϕ(x) =
√

1− x2, and let Crϕ, r ≥ 1, be the space
of functions f ∈ Cr(−1, 1) ∩ C[−1, 1] such that

lim
x→±1

ϕr(x)f (r)(x) = 0,

and C0
ϕ := C[−1, 1].

If

∆k
δ (g, x) :=

k∑
i=0

(
k

i

)
(−1)k−ig

(
x− kδ

2
+ iδ

)
,

denotes the k-th symmetric difference of a function g with a step δ, then the Ditzian –
Totik type modulus of smoothness of the rth derivative of a function f ∈ Crϕ, is
defined by

ωϕk,r(f
(r), t) := sup

h∈[0,t]

sup
x:|x|+(kh)ϕ(x)/2<1

W r

(
x,
kh

2

)∣∣∣∆k
hϕ(x)(f

(r), x)
∣∣∣ , (3.1)

with the weight

W (x, µ) := ϕ
(
|x|+ µϕ(x)

)
, |x|+ µϕ(x) < 1. (3.2)

If r = 0, then
ωϕk (f, t) := ωϕk,0(f, t)

is the (usual) Ditzian – Totik modulus of smoothness. Finally, let ‖f‖C[a,b] denote the
uniform norm of a function f ∈ C[a, b] (in particular, ‖f‖C[−1,1] = ‖f‖) and recall that
the ordinary k-th modulus of smoothness of f ∈ C[a, b] is

ωk
(
f, t, [a, b]

)
:= sup

h∈[0,t]

∥∥∆k
h(f, ·)

∥∥
C[a+kh/2,b−kh/2],

and denote ωk(f, t) := ωk(f, t, [−1, 1]).
The following results are so-called inverse theorems. They characterize the smoothness

(i.e., describe the class) of functions that have the prescribed order of polynomial approxi-
mation.

First we formulate a corollary of the classical Dzyadyk – Timan – Lebed – Brudnyi
inverse theorem (see, e.g., [3], Theorem 7.1.2).
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Theorem 3.1. Let 2r < α < 2k + 2r, and f ∈ C[−1, 1]. If

nαEn(f) ≤ 1, n ≥ k + r,

then f ∈ Cr[−1, 1] and

ωk(f (r), t2) ≤ c(α, k, r)tα−2r. (3.3)

For the Ditzian – Totik type moduli of smoothness we need the following result which
is a generalization of [5] (Theorem 7.2.4) in the case p =∞.

Denote by Φ the set of nondecreasing functions φ : [0,∞) → [0,∞), satisfying
φ(0+) = 0.

Theorem 3.2. Given k ∈ N, r ∈ N0, N ∈ N, and φ ∈ Φ such that

1∫
0

rφ(u)
ur+1

du < +∞.

If

En(f) ≤ φ
(

1
n

)
, for all n ≥ N,

then f ∈ Crϕ, and

ωϕk,r(f
(r), t) ≤ c(k, r)

t∫
0

rφ(u)
ur+1

du+ c(k, r)tk
1∫
t

φ(u)
uk+r+1

du+

+c(k, r,N)tkEk+r(f), t ∈ [0, 1/2].

If, in addition, N ≤ k + r, then the following Bari – Stechkin type estimate holds:

ωϕk,r(f
(r), t) ≤ c(k, r)

t∫
0

rφ(u)
ur+1

du+ c(k, r)tk
1∫
t

φ(u)
uk+r+1

du, t ∈ [0, 1/2].

For readers’ sake, we provide a proof of this theorem in the appendix.
In fact, we only need the following theorem which is an immediate consequence of

Theorem 3.2 (φ(u) := uα), but is of special interest in the context of this paper.
Theorem 3.3. Let r ∈ N0, k ∈ N and α > 0, be such that r < α < k+ r, and let

f ∈ C[−1, 1]. If
nαEn(f) ≤ 1, for all n ≥ N,

where N ≥ k + r, then f ∈ Crϕ and

ωϕk,r(f
(r), t) ≤ c(α, k, r)tα−r + c(N, k, r)tkEk+r(f).

In particular, if N = k + r, then

ωϕk,r(f
(r), t) ≤ c(α, k, r)tα−r.

Lemma 3.1 ([6], [4] (Theorems 2.7, 2.8 and 2.11), [2] (Lemma 2.8), [7] (Theo-
rem 3.1)).

I. Let f ∈ ∆2. If f ∈ C[−1, 1], then
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E(2)
n (f) ≤ cωϕ4

(
f,

1
n

)
+ cn−6‖f‖, n ≥ 3. (3.4)

Moreover, if f ∈ C2
ϕ ∩ C1[−1, 1], then

E(2)
n (f) ≤ c(k)n−2ωϕk,2

(
f ′′,

1
n

)
+ c(k)n−2ω2

(
f ′,

1
n2

)
, n ≥ 3. (3.5)

Furthermore, if f ∈ C2
ϕ ∩ C2[−1, 1], and k, l ∈ N, then, for n ≥ l + 2, we have

E(2)
n (f) ≤ c(k, l)n−2ωϕk,2

(
f ′′,

1
n

)
+ c(k, l)n−4ωl

(
f ′′,

1
n2

)
. (3.6)

II. Let f ∈ ∆2(Y1). If f ∈ C[−1, 1], then

E(2)
n (f, Y1) ≤ cωϕ3

(
f,

1
n

)
+ cω2

(
f,

1
n2

)
, n ≥ 2. (3.7)

If, in addition, f ∈ C2
ϕ ∩ C1[−1, 1], then

E(2)
n (f, Y1) ≤ cn−2ωϕ3,2

(
f ′′,

1
n

)
+ cn−2ω1

(
f ′,

1
n2

)
, n ≥ 2, (3.8)

and

E(2)
n (f, Y1) ≤ cn−2ωϕ3,2

(
f ′′,

1
n

)
+ cn−2ω2

(
f ′,

1
n2

)
, nϕ(y1) > 1. (3.9)

If f ∈ C2
ϕ, then

E(2)
n (f, Y1) ≤ cn−2ωϕ3,2

(
f ′′,

1
n

)
+ cn−4ωϕ2,2

(
f ′′,

1
n

)
, n ≥ N(Y1), (3.10)

and

E(2)
n (f, Y1) ≤ cn−2ωϕ3,2

(
f ′′,

1
n

)
, n ≥ N(f). (3.11)

Moreover, if we actually have f ∈ C3
ϕ ∩ C2[−1, 1], then for any k ∈ N,

E(2)
n (f, Y1) ≤ c(k)n−3ωϕk,3

(
f (3),

1
n

)
+ c(k)n−4ω2

(
f ′′,

1
n2

)
, n ≥ 4. (3.12)

Furthermore, if f ∈ C3[−1, 1], then

E(2)
n (f, Y1) ≤ c(k)n−3ωϕk,3

(
f (3),

1
n

)
+c(k)n−6ωk

(
f (3),

1
n2

)
, n ≥ k+3. (3.13)

III. Let f ∈ ∆2(Ys), s ∈ N. If f ∈ C[−1, 1], then

E(2)
n (f, Ys) ≤ c(s)ωϕ3

(
f,

1
n

)
, n ≥ N(Ys). (3.14)

Moreover, if f ∈ C3
ϕ∩C2[−1, 1], s ∈ N, and k, l ∈ N, then there exists N(Ys, k, l) such

that, for all n ≥ N(Ys, k, l),
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E(2)
n (f, Ys) ≤ c(k, l, s)n−3ωϕk,3

(
f (3),

1
n

)
+ c(k, l, s)n−4ωl

(
f ′′,

1
n2

)
. (3.15)

Also, if s ≥ 2 and f ∈ C2
ϕ, then

E(2)
n (f, Ys) ≤ c(s)n−2ωϕ3,2

(
f ′′,

1
n

)
, n ≥ N(Ys). (3.16)

Remark 3.1. Estimate (3.13) was not proved in [2]. However, its proof is very
similar to those in [2], and it is based upon the fact that if f ∈ C3[a, b] is such that f is
concave on [a, y1] and convex on [y1, b] (i.e., f ′′(x)(x− y1) ≥ 0, a ≤ x ≤ b), and pk is
such that pk ≥ f (3) on [a, b] and ‖f (3) − pk‖ ≤ c(k)ωk(f (3), b− a, [a, b]) (for example,
pk := arg infp∈Pk

‖f (3) − p‖C[a,b] + infp∈Pk
‖f (3) − p‖C[a,b]), then

P (x) :=

x∫
a

t∫
a

s∫
y1

pk(v) dv ds dt+ f(a) + f ′(a)(x− a)

is a polynomial from Pk+3 that is coconvex with f on [a, b] and satisfies P (a) = f(a)
and

‖f − P‖C[a,b] ≤ c(k)(b− a)3ωk
(
f (3), b− a, [a, b]

)
. (3.17)

We omit the details.
4. Proofs of the positive results. Since the cases N = 1 and N = 2 have already

been discussed we assume thatN ≥ 3. Given α > 0, integersN ≥ 3, s ≥ 0, a collection
Ys ∈ Ys, and a function f ∈ ∆2(Ys), assume without loss of generality that

nαEn(f) ≤ 1, for all n ≥ N . (4.1)

Then we have to prove the inequality

nαE(2)
n (f, Ys) ≤ c(α,N , s), n ≥ N ∗, (4.2)

with a proper N ∗.
4.1. Convex approximation: s = 0.

1. N = 3, 0 < α < 3 (“+”).
Theorem 3.3 (with r = 0 and k = 3), inequality (4.1), and the estimate E(2)

n (f) ≤
≤ cωϕ3 (f, 1/n), n ≥ 3, proved in [8], yield E

(2)
n (f) ≤ cωϕ3 (f, 1/n) ≤ cn−α, for

n ≥ 3 =: N ∗.
2. N = 3, 3 ≤ α ≤ 4 (“+”).
Theorem 3.3 (with r = 2 and k = 3), Theorem 3.1 (with r = 1 and k = 2),

and inequality (4.1), imply that f ∈ C2
ϕ ∩ C1[−1, 1], ωϕ3,2(f ′′, t) ≤ c(α)tα−2, and

ω2(f ′, t2) ≤ c(α)tα−2. Inequality (3.5) now yields E(2)
n (f) ≤ c(α)n−α for n ≥ 3 =:

=: N ∗.
3. α > 4, N > α (“+”).
Theorem 3.3 (with r = 2 and k = N−2), Theorem 3.1 (with r = 2 and k = N−2),

and inequality (4.1), imply that f ∈ C2
ϕ∩C2[−1, 1], ωϕN−2,2(f ′′, t) ≤ c(α,N )tα−2, and

ωN−2(f ′′, t2) ≤ c(α,N )tα−4. Therefore, (3.6) (with k = l = N − 2) yields (4.2) with
N ∗ = N .
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4. α > 4, 4 < N ≤ α (“+”).
Let N1 := bαc + 1 and note that N1 > α ≥ N . Since (4.1) is satisfied with

N1 instead of N , it follows from case 3 that nαE(2)
n (f) ≤ c(α), n ≥ N1. Now, let

α1 := N/2+2 and note that 4 < α1 < N . It follows from (4.1) that nα1En(f) ≤ 1, for
all n ≥ N , and using case 3 again we get nα1E

(2)
n (f) ≤ c(N ), n ≥ N . Therefore, for

N ≤ n < N1, we have nαE(2)
n (f) ≤ c(N )nα−α1 ≤ c(N )Nα−α1

1 ≤ c(α,N ), which
verifies (4.2) with N ∗ = N .

5. N = 3, α > 4 (“+”).
It follows from cases 3 and 4 that (4.2) is valid for n ≥ 5. We note that the

polynomial of best approximation of degree ≤ 2 to a convex function f has to be
convex (this follows, for example, from the Chebyshev Equioscillation Theorem), and
so E(2)

3 (f) = E3(f). Hence, for n = 3 and 4, we have

E(2)
n (f) ≤ E(2)

3 (f) = E3(f) ≤ 1 ≤ 4αn−α,

and so (4.2) with N ∗ = 3 follows.
6. N = 4, α > 4 (“+”).
As in case 5, it follows from cases 3 and 4 that (4.2) is valid for n ≥ 5 and so

we only need to show that E(2)
4 (f) ≤ c(α). Since (4.1) implies that nα1En(f) ≤ 1,

n ≥ 4, where α1 := min{α, 5}, it follows from Theorem 3.1 (with r = 2 and k = 2)
that f ∈ C2[−1, 1] and ω2(f ′′, t2) ≤ c(α)tα1−4 and, in particular, ω2(f ′′, 1) ≤ c(α).
Therefore, E2(f ′′) ≤ cω2(f ′′, 1) ≤ c(α). Now, since the inequality E(2)

4 (f) ≤ 2E2(f ′′)
holds for each f ∈ C2[−1, 1] ∩∆2, we conclude that E(2)

4 (f) ≤ c(α) as needed.
7. N ≥ 4, 0 < α < 4 (“	”).
Theorem 3.3 (with k = 4 and N = N ), and inequalities (4.1) and (3.4), yield

E(2)
n (f) ≤ c(α)n−α + c(N )n−4‖f‖ ≤ c(α)n−α,

for all n ≥ max
{

3, c(α,N )‖f‖1/(4−α)
}

=: N ∗.
8. N ≥ 4, α = 4 (“	”).
Theorem 3.3 (with r = 2 and k = 3), Theorem 3.3 (with r = 1 and k = 3), and

inequality (4.1), imply that f ∈ C2
ϕ∩C1[−1, 1], ωϕ3,2(f ′′, t) ≤ ct2, and ω3(f ′, t2) ≤ ct2.

By the Marchaud classical inequality (see, e.g., [5], (4.3.1)) the latter estimate implies
ω2(f ′, t) ≤ ct + ct2‖f ′‖. Inequality (3.5) (with k = 3) now yields E(2)

n (f) ≤ cn−4 +
+ cn−6‖f ′‖, n ≥ 3, and hence (4.2) follows with N ∗ := max

{
3, c‖f ′‖1/2

}
.

4.2. Coconvex approximation: the case s ≥ 1. For some cases below we need
the fact (see [9]), that for any f ∈ ∆2(Ys), s ≥ 1,

E2(f) ≤ c(Ys)Es+2(f). (4.3)

Remark 4.1. For the reader’s convenience, we list in each case below, the full
range of α’s for which that particular proof is suitable. Hence, the same triple (α,N , s)
may be covered by more than one case.

1. s = 1, 4 < α < 8, N = 4 (“+”).
Theorem 3.3 (with r = 3 and k = 5), Theorem 3.3 (with r = k = 2), and inequality

(4.1), imply that f ∈ C3
ϕ ∩ C2[−1, 1], ωϕ5,3(f (3), t) ≤ c(α)tα−3, and ω2(f ′′, t2) ≤

≤ c(α)tα−4. Therefore (3.12) (with k = 5), yields (4.2) with N ∗ = 4.
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2. s = 1, 4 < α < 8, N = 3 (“+”).
It follows from case 1 that (4.2) is satisfied for n ≥ 4. Thus, in order to show

that N ∗ = 3 we only need to verify that E(2)
3 (f, Y1) ≤ c(α). Indeed, since (4.1) is

satisfied with α1 := min{α, 5}, it follows from Theorem 3.2 (with r = 2 and k = 1),
that f ∈ C2[−1, 1] (so that f ′′(y1) = 0) and ω1(f ′′, t2) ≤ c(α)tα1−4 and, in particular,
ω1(f ′′, 1) ≤ c(α). Now take p2(x) := f(y1) + f ′(y1)(x− y1), and we have

E
(2)
3 (f, Y1) = E

(2)
2 (f, Y1) = E2(f) ≤ ‖f − p2‖ =

=

∥∥∥∥∥∥
x∫

y1

u∫
y1

(f ′′(s)− f ′′(y1)) ds du

∥∥∥∥∥∥ ≤ cω1(f ′′, 1) ≤ c(α).

3. s = 1, α > 6, N > α (“+”).
Theorems 3.3 and 3.1 (with r = 3 and k = N − 3), and inequality (4.1), imply

that f ∈ C3 and ωϕN−3,3(f (3), t) ≤ c(α,N )tα−3 and ωN−3(f (3), t2) ≤ c(α,N )tα−6.

Estimate (3.13) (with k = N − 3) now yields (4.2) with N ∗ = N .
4. s = 1, α > 6, 6 < N ≤ α (“+”).
Let N1 := bαc + 1 and note that N1 > α ≥ N . Since (4.1) is satisfied with N1

instead of N , it follows from case 3 that nαE(2)
n (f, Y1) ≤ c(α), n ≥ N1. Now, let

α1 := (N + 6)/2 and note that 6 < α1 < N . It follows from (4.1) that nα1En(f) ≤ 1,
for all n ≥ N , and using case 3 again we get nα1E

(2)
n (f, Y1) ≤ c(N ), n ≥ N .

Therefore, for N ≤ n < N1, we have nαE
(2)
n (f, Y1) ≤ c(N )nα−α1 ≤

≤ c(N )Nα−α1
1 ≤ c(α,N ), which verifies (4.2) with N ∗ = N .

5. s = 1, α > 6, N = 3 (“+”).
It follows from cases 3 and 4, that (4.2) is valid with n ≥ 7. Now, since (4.1) is

obviously valid with, say, α = 5, it follows from case 2 that E(2)
3 (f, Y1) ≤ c, and so,

for 3 ≤ n ≤ 6,
nαE(2)

n (f, Y1) ≤ 6αE(2)
3 (f, Y1) ≤ c(α),

and so (4.2) is valid with N ∗ = 3.
6. s = 1, α > 6, N = 4 (“+”).
The proof is completely analogous to the one in case 5 except that the fact that

E
(2)
4 (f, Y1) ≤ c follows from case 1.

7. s = 1, α > 6, N = 6 (“+”).
It follows from cases 3 and 4, that (4.2) is valid with n ≥ 7. Hence, as in case

5, we only need to show that E(2)
6 (f, Y1) ≤ c(α). If α1 := min{α, 7}, it follows from

(4.1) that nα1En(f) ≤ 1, for all n ≥ 6, so that applying Theorem 3.2 (with r = 3 and
k = 3), we conclude that f ∈ C3[−1, 1] and ω3(f (3), t2) ≤ c(α)tα1−6 and, in particular,
ω3(f (3), 1) ≤ c(α). The inequality E(2)

6 (f, Y1) ≤ c(α) now follows from (3.17) (with
k = 3 and [a, b] = [−1, 1]).

8. s = 1, α > 6, N = 5 (“+”).
The argument is exactly the same as in the previous case with the only difference

that k = 2 is used instead of k = 3.
9. s ≥ 1, 0 < α < 3, 3 ≤ N ≤ s+ 2 (“⊕”).
Theorem 3.189 (with k = 3 and f−p3 in place of f where p3 := arg inf

p∈P3
‖f−p‖),

implies ωϕ3 (f, t) ≤ c(α)tα + c(s)t3E3(f). Now, by (4.3) and (4.1),
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E3(f) ≤ E2(f) ≤ c(Ys)Es+2(f) ≤ c(α, Ys).

Therefore, ωϕ3 (f, 1/n) ≤ c(α)n−α + c(α, Ys)n−3 ≤ c(α)n−α, for n ≥ N(α, Ys).
Inequality (4.2) now follows from (3.14).

10. s ≥ 2, 2 < α < 5, 3 ≤ N ≤ s+ 2 (“⊕”).
Theorem 3.3 (with r = 2, k = 3), implies that f ∈ C2

ϕ and ωϕ3,2(f ′′, t) ≤
≤ c(α)tα−2 + c(s)t3E5(f), and by (4.3) and (4.1) we have

E5(f) ≤ E2(f) ≤ c(Ys)Es+2(f) ≤ c(α, Ys).

Hence, ωϕ3,2(f ′′, 1/n) ≤ c(α)n−α+2 + c(α, Ys)n−3 ≤ c(α)n−α+2, for n ≥ N(α, Ys).
Inequality (4.2) now follows from (3.16).

11. s ≥ 1, 2 < α < 5, N ≥ s+ 3 (“	”) (except all “⊕” cases in these regions).
As in case 10, we can prove that ωϕ3,2(f ′′, 1/n) ≤ c(α)n−α+2 + c(s)n−3‖f‖, so

that ωϕ3,2(f ′′, 1/n) ≤ c(α)n−α+2, for n ≥ N(α, f). Hence, (4.2) with N ∗ = N ∗(α, f)
follows from (3.16) for s ≥ 2, and from (3.11) for s = 1.

12. s = 2, 2 < α < 5, N = 5 (“⊕”).
Theorem 3.3 (with r = 2 and k = 3) and (4.1), imply that f ∈ C2

ϕ and ωϕ3,2(f ′′, t) ≤
≤ c(α)tα−2. Now, (3.16) implies (4.2) with N ∗ = N ∗(α, Ys).

13. s = 1, 4 < α ≤ 6, N ≥ 5 and s ≥ 2, α > 4, N ≥ 3 (“⊕”).
If N1 := max{bαc + 1,N}, then Theorem 3.3 (with r = 3 and k = N1 − 3),

Theorem 3.3 (with r = 2 and k = N1 − 2), and (4.1), imply that f ∈ C3
ϕ ∩ C2[−1, 1],

ωϕN1−3,3(f (3), t) ≤ c(α,N )tα−3 and ωN1−2(f ′′, t2) ≤ c(α,N )tα−4. Therefore, (3.15)
(with k = N1 − 3 and l = N1 − 2), yields (4.2) with N ∗ = N ∗(α,N , Ys).

14. s = 1, 2 < α < 5, N = 3 or 4 (“⊕”).
Theorem 3.3 (with r = 2 and k = 3) and (4.1), imply that f ∈ C2

ϕ and ωϕ3,2(f ′′, t) ≤
c(α)tα−2. Setting α1 := min{α, 3}, Theorem 3.3 (with r = k = 2) implies that
ωϕ2,2(f ′′, t) ≤ c(α)tα1−2. Therefore, it follows from (3.10) that

E(2)
n (f, Y1) ≤ cn−α + cn−α1−2 ≤ cn−α, n ≥ N(Y1),

as required.
15. s ≥ 1, 0 < α < 3, N ≥ s+ 3 (“⊕”).
Theorem 3.3 (with k = 3 and N = N ), and inequalities (4.1) and (3.14), yield

E
(2)
n (f) ≤ c(α)n−α + c(N )n−3‖f‖ ≤ c(α)n−α, for all sufficiently large n, n ≥
N ∗(α,N , Ys, f).

5. Appendix: proof of Theorem 3.2. We first give the proof for the case r ≥ 1.
Without any loss of generality assume that N ≥ k + r. Set mj := N2j and φj :=
:= φ(m−1

j ). We expand f into the telescopic series

f = Pk+r + (PN − Pk+r) +
∞∑
j=0

(Pmj+1 − Pmj
) =: Pk+r +Q+

∞∑
j=0

Qj , (5.1)

where Pn ∈ Pn are the polynomials of best approximation of f, that is ‖f − Pn‖ =
= En(f). Hence, the polynomialsQj are of degree< mj+1 and satisfy ‖Qj‖ ≤ φj+1+
+ φj ≤ 2φj . For a fixed x ∈ (−1, 1) and h ∈ [0, t], satisfying khϕ(x)/2 < 1− |x|, set
x∗ := |x|+khϕ(x)/2 and note that if u ∈ [−x∗, x∗] ⊇ [x−khϕ(x)/2, x+khϕ(x)/2] =:
=: A, then ϕ(u) ≥ ϕ(x∗). Hence, for u ∈ A and l ∈ N, the Markov – Bernstein
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inequality implies,

∣∣Q(l)
j (u)

∣∣ ≤ c(l)ml
j+1

(
1

mj+1
+ ϕ(u)

)−l
φj ≤ c(l)ml

j

(
1
mj

+ ϕ(x∗)
)−l

φj , (5.2)

which in turn yields for l = r,

∣∣∆k
hϕ(x)(Q

(r)
j , x)

∣∣ ≤ 2k max
u∈A
|Q(r)

j (u)| ≤ c(r)2k
mr
j

ϕr(x∗)
φj .

Therefore, if we denote J := min{j : 1/mj ≤ h}, then we have

ϕr(x∗)
∞∑

j=J+1

∣∣∣∆k
hϕ(x)

(
Q

(r)
j , x

)∣∣∣ ≤ c(r)2k ∞∑
j=J+1

mr
jφj =

= c(k, r)
∞∑

j=J+1

m−1
j−1∫

m−1
j

φj
ur+1

du ≤ c(k, r)
∞∑

j=J+1

m−1
j−1∫

m−1
j

φ(u)
ur+1

du =

= c(k, r)

m−1
J∫

0

φ(u)
ur+1

du ≤ c(k, r)
h∫

0

φ(u)
ur+1

du. (5.3)

We also note that

ϕ(x)− ϕ(x∗)
kh/2

=
ϕ(x)− ϕ(x∗)
x∗ − |x|

ϕ(x) <

<
ϕ(x)− ϕ(x∗)
x∗ − |x|

(
ϕ(x) + ϕ(x∗)

)
= x∗ + |x| < 2,

so that
ϕ(x) < kh+ ϕ(x∗).

Hence, for 0 ≤ j ≤ J, taking into account that 1/mj > h/2, we obtain by (5.2) with
l = r + k, ∣∣∆k

hϕ(x)(Q
(r)
j , x)

∣∣ ≤ (hϕ(x))k max
u∈A

∣∣Q(k+r)
j (u)

∣∣ ≤
≤ c(k, r)

hkmk+r
j ϕk(x)

(kh+ ϕ(x∗))k+r
φj ≤ c(k, r)

hkmk+r
j

ϕr(x∗)
φj ≤

≤ c(k, r) hk

ϕr(x∗)

m−1
j−1∫

m−1
j

φj
uk+r+1

du ≤

≤ c(k, r) hk

ϕr(x∗)

m−1
j−1∫

m−1
j

φ(u)
uk+r+1

du,
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where m−1 := N/2. Hence, we get

ϕr(x∗)
J∑
j=0

∣∣∣∆k
hϕ(x)

(
Q

(r)
j , x

)∣∣∣ ≤ c(k, r)hk J∑
j=0

m−1
j−1∫

m−1
j

φ(u)
uk+r+1

du =

= c(k, r)hk
2/N∫
m−1

J

φ(u)
uk+r+1

du ≤ c(k, r)hk
1∫

h/2

φ(u)
uk+r+1

du ≤

≤ c(k, r)hk
∫ 1

h

φ(u)
uk+r+1

du, (5.4)

and note that

h∫
0

φ(u)
ur+1

du+ hk
1∫
h

φ(u)
uk+r+1

du ≤
t∫

0

φ(u)
ur+1

du+ tk
1∫
t

φ(u)
uk+r+1

du, h ≤ t.

Finally, we have the estimate∣∣∆k
hϕ(x)(Q

(r), x)
∣∣ ≤ hk∥∥Q(k+r)

∥∥ ≤ 2N2(k+r)hkEk+r(f), (5.5)

which follows by Markov’s inequality. Note that if N = k + r, then Q ≡ 0, so that the
left-hand side of (5.5) vanishes and no estimate is needed

Now, the observation that ∆k
hϕ(x)(P

(r)
k+r, x) = 0, combined with (5.3), (5.4), and

(5.5), completes the proof of the theorem for r ≥ 1.
For r = 0, we write

f = Pk +Q+
J∑
j=0

Qj + (f − PmJ+1),

where Q := PN − Pk and Qj := Pmj+1 − Pmj
(see (5.1)), and complete the proof as

above, just applying (5.4), (5.5) and the inequality

hk
∫ 1

h

φ(u)
uk+1

du ≤ 3tk
1∫
t

φ(u)
uk+1

du, h ≤ t ≤ 1
2
.

Theorem 3.2 is proved.
Remark 5.1. In the definition of the modulus ωϕk,r in this paper, we have used the

weight W (x, µ) from (3.2) where µ = kh/2. Note that we could also use the weights
(see [4, 10])

W1(x, µ) :=
(
(1− µϕ(x))2 − x2

)1/2
,

or (see [2])

W2(x, µ) :=
(
ϕ2(x)− µϕ(x)(1 + |x|)

)1/2
,

which would yield equivalent definitions of the modulus ωϕk,r since, for µ ∈ (0, 1) and
x : |x|+ µϕ(x) < 1, √

1− µ
1 + µ

W ≤W1 ≤W2 ≤W.
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