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BEST APPROXIMATION BY RIDGE FUNCTIONS
IN L,-SPACES

HAWKPAILE HABJIVOKEHHSI XPEBTOBUMU ®YHKIISIMU
B L,-ITIPOCTOPAX

We study the approximation of function classes by the manifold R, formed by all possible linear combinations
of n ridge functions of the form r(a-z)). We prove that for any 1 < g < p < oo, the deviation of the Sobolev
class Wy from the set Ry, of ridge functions in the space Lq(B?) satisfies the sharp order n—r/(d=1),

JocnimkeHo HaOMKeHHs KiIaciB (QyHKIiH MHOrOBHIOM R, , 10 yTBOpeHUH yciMa MOXIMBHMH JiHIHHUMU
KoMOiHawismMu 1 xpeOGToBux QyHKUiN Bursny 7(a - x)). Josenewo, mo mis 6yap-akux 1 < g < p < oo Bix-
xunennst knacy CoGonesa Wy Bin Muoxunuu Ry, xpeOToBux QyHKLUiH y npocropi Lq(Bd) XapaKTePU3y€eThCS

TOYHHUM ITOPSIAKOM n_""/(d_ 1) .

1. Introduction. In this work we continue the study of approximation of multivariate
functions by classes consisting of linear combinations of ridge functions started in
[9, 10, 11, 5]. Ridge functions are defined as functions on R? of the form 7(a - x),
with the parameters ¢ € R?, r: R — R and a - « is the usual inner product. Let
L, = Lp(Bd), 1 < ¢ < o0, be Banach space of all g-integrable functions on the unite
ball BY = {|z| < 1}, where |z|? = 2% + ... + 22, with the norm

1/q

1£llg = / (@) da
Bd

Let A be a set on the unit sphere S?~! = {|z| = 1} in R?. Introduce the set of ridge
functions
R(A) = {ra =r(a-x): 7€ Lajoc(R), a € A},

where r runs over the class Lo 1,c(R) of square integrable functions on all compact
subsets of R, and a runs over A. We denote R = R(S?"1). Let n be a natural number.
Consider the class of functions

R,=R+...+R,

consisting of all possible linear combinations of n functions from the set R.

Approximation by ridge functions has been studied by several authors. In the works
[26] and [6] necessary and sufficient conditions are found on a set A in order that the
closure of the set R(A) coincides with the space of continuous functions. In addition,
Lin and Pinkus [7] proved that for any fixed n the set R,, is not dense in the spaces of
continuous functions on a compact sets. The approximation properties of ridge manifolds
were studied by Barron [1], DeVore, Oskolkov and Petrushev [2], Maiorov [9], Maiorov
and Meir [12]. Makovoz [14], Mhaskar and Micchelli [16], Mhaskar [15], Oskolkov
[17], Petrushev [18], Pinkus [19], Temlyakov [21]. In Gordon, Maiorov, Meyer and
Reisner [5] the results about best approximation by ridge functions in the Banach space
L, are considered.
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BEST APPROXIMATION BY RIDGE FUNCTIONS IN L,-SPACES 397

In this work we consider the problems of best approximation of multivariate functions
from the Sobolev classes W by the class R,, in the space L,, where the parameters
p, q satisfy 1 < q < p < oo. Earlier, the asymptotical estimates of approximation by R,
were studied in [5, 9], but only for 2 < ¢ < p < 0.

Let p = (p1,...,pq) be a multiindex vector, that is, p is the vector with nonnegative
integer coordinates, |p| = p1 + ... + pq. Introduce the differential operator D* =
= 8""/8”%1 .. 0Py

Let r be any natural number. We consider in the space L, = L,(B%) the Sobolev
[23] class of functions

Wy =3 £ g o= 1l + 3 1D, <1

lol=r
For subsets W, V' C L, we define the deviation of W from V' by

e(W,V)q = sup e(f,V)q,
few
where e(f, V), = 1g‘f/ If —vllq-
v
Theorem 1. Letd>2,r>0and1 < p < q < oo be any numbers. Then for the
deviation of the Sobolev class W, from the class R,, the asymptotic inequality holds

E(W;., Rﬂ)q = n—r/(d—l).

We describe briefly the proof of the Theorem 1. In order to obtain the lower bound
in Theorem 1, we construct for any n a function f € W, depending on n such that
the distance of f from the class R,, is greater than cn~"/(4=1)_ The construction of the
function f will be done in the following way. In Section 2 we introduce an orthonormal
system {Px(z)},-, of polynomials on the ball B¢ and study the Fourier coefficients
(ra, Py) of ridge function 7(a - z) respect to the system { Py (z)}. In particular, we show
that the coefficients allow the separation of variables r and a (see [13, 9, 10]), namely for
any k the identity holds (r,, P;) = u(a)v(r), where u and v are some function of a and
linear functional of r, respectively. In Section 3 we estimate the Vapnik — Chervonenkis
dimension of the projection PrgR,, of the class of ridge functions R,, to the polynomial
space PZ. In Section 4 we prove Theorem 1 using the results of Sections 2, 3. In the
Appendix we present well-known results from the theory of orthogonal polynomials on
the segment and from the theory of harmonic analysis on the sphere, which we use in
the proofs of Theorem 1.

In the rest of this paper notations like ¢, ¢, cg, c1, . . ., etc. denote positive constants
which do not depend on the parameter n and may depend only on r, d, p, or g. For two
positive sequences {a,} and {b,}, n = 0,1,... we write a,, < b, if there exist positive
constants ¢; and ¢y such that ¢; < a,, /b, <cg foralln =0,1,....

2. Projection of R,, to the polynomial space. In this section we construct speci-
al orthonormal systems of polynomials on the unit ball B?. Orthogonal systems of
polynomials on the ball play the important part in problems of approximations of multi-
variable functions by manifolds of linear combinations of ridge functions (the plane
waves) (see [2, 18, 9, 10]). In the works [2, 18] these methods were developed for the
construction of orthogonal projections on polynomial subspaces and approximation by

ISSN 1027-3190. Vrp. mam. scypn., 2010, m. 62, Ne 3



398 V. E. MAIOROV

ridge functions. The system of Gegenbauer orthogonal polynomials is the main tool used
in the construction of orthogonal systems of polynomials on the ball [8]. Note, in parti-
cular, that in the case d = 2, these Gegenbauer polynomials coincide with Chebyshev
polynomials of second kind.

In our work the system of orthogonal polynomials on the unit ball is obtained, in a
sense, by the convolution of two orthogonal systems. These are the system of Gegenbauer
polynomials on the segment [—1, 1], and the system of spherical harmonics on the unit
sphere S%~1. We describe this construction.

Let Ly(S?!) be the Hilbert space consisting of all the complex-valued square-
integrable functions A (&) on the sphere S?~! with the inner product

(h, ha) = / h(©Oha(€)de, by, hy € La(S*Y),

Sd—1

where by d¢ we denote the normalized Lebesgue measure on the sphere S9!,

Consider (see the Appendix) in the space Ly(S?~1) the subspace H consisting of
the restrictions on S?~! of the harmonic functions on R%. Let H{, be the subspace in H
generated by all spherical harmonics of degree at most s, i.e., all harmonic polynomials
of degree at most s. Let "™ be the subspace of H, formed by all homogeneous
spherical harmonics of degree s. The functions {hsi}rexs (see Appendix) generate a
basis in the space HIo™ |

The space H, = HEo™ @ HPom @ ... @ HEO™ is the direct sum of the orthogonal
subspaces of the spherical harmonics of degrees 0, 1, . . ., s. Denote by IV, the dimension
of the space H,. We have N, < s%~!. Indeed, using the relation dim Hhom < s4-2
(see (A.2)) we obtain

N, = dim H, = dim HJ°™ + dim H°™ + ... + dim HDom =< 5971

We introduce in the space  the family of functions B(S9~1) := {h;}22, consisting
(see (A.2)) of all ordered spherical harmonics, that is, the functions

U {hemrexce,
s=0

where K® is defined in Appendix. The set B(S?~!) is an orthonormal basis in the space

H, i.e., for indices i # i’ we have (h;, hy) = d;;, where 6;;; = 0 fori # ¢/, and 6;; = 1.
Now we consider (see Appendix) the Gegenbauer polynomials Cf,l,/ 2(t), t € R, of

degree n associated with d/2. We norm the polynomial C’g,/ 2 by a factor, i.e., we set

7V/2(d), T ((d + 1)/2)

w — o l20d/2 o

where (a)g =1, and (a), =ala+1)...(a+n—1).
Let i and j be two arbitrary indices from Z . Construct on R the function

. 1/2
P = [ m@ueoa w- (S
Sd*l
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From (1) we see that for any ¢, j € Z, the function F;; is a polynomial on R? of degree
J- Note that if the indices ¢ and j are such that the degrees of the polynomials h; and u;
satisfy the inequality deg h; > degu; = j, then P;;(z) = 0 (see (A.8)). Let the set 1
consists of the couples of nonnegative integers (i, j) such that deg h; < j and a parity
of numbers deg h; and j are equal. Let I be the subset in I consisting of the couples
(i,7) with deg h; < j < s. Construct the system of polynomials

I :=1(BY) == {Py}; jyes - (2)

We consider in the system II the finite subsystem II; = {P;;}(; j)es, consisting of
polynomials of degree at most s.

Lemma 1 (see [10]). a) The polynomial set 114 is an orthonormal basis in the space
of polynomials P2.

b) The set of polynomials TI(B?) is a complete orthonormal system of functions in
the space Lo(B?).

Let a € S%~! be any unit vector and let A be an orthogonal matrix such that a = Ae,
where e = (1,0,...,0). Let A* be the adjoint matrix to A. We denote a* = A*e.

Lemma 2. Letr, = r(a-x) be any ridge function from the class R. Then any
Fourier coefficient of the function r,, with respect to the orthonormal system II; = {P;;}
admits separation of the variables a and r, that is can be represented as

where

is the j-th coefficient of Fourier — Gegenbauer of the function r.
Proof. By the invariance of the measures d and d¢ relative to the rotation in R¢
and S? we have

/r(a.z)aj(x) dz = Vj/r(a~z) da / hi(€)u; (€ - x) dé =

Bd Bd §d—1

v, [rle-a)dn [ m(argu(e o) d =
Bd gd—1

vy [ W49 de [ e aus(e-a)da
Sd—l Bd

oo
Decompose the function r to the Fourier — Gegenbauer serious (t) = Zk—o Fruk(t) in

the space Lo(I, w). Using the properties (A.2) and (A.3) from Appendix we obtain

/r(e-x)uj(ﬁ-x)da: = 3

Bd

T [ ugp(e- z)u;(€-z)de =
. k/ k

Bd

=7 | uile-z)u; (£ -z xzf-iuj(e'g)
=y [ty (e oo =, M

k=
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400 V. E. MAIOROV

It follows from the property (A.4) that
v [ wsaredg [ re-ayuy(e o) de =
§d—1 Bd

- ﬁ /hi(A*g)uj(e &) dx = 7;hi(A%e).

Sd
The lemma is proved.
n
Denote by m = dim P¢ the dimension of the space PY. Let r(z) = Zkil re(ak )
be any function from the ridge functions class R,,. Consider the projection of the function
7 to the space P4

Pror(z) = Y (r, Pyj)Py(x). 3)

Plj ellg
According to Lemma 2 we can write

n

Pror(z) = > hi(aj)ix; Pij(), 4)

k=1 P;;€ll;

where 7 is the j-th coefficient of Fourier — Gegenbauer of the function g..

3. Vapnik — Chervonenkis dimension of the class PrsR,,. We recall the notions of
Vapnik — Chervonenkis dimension (in details see [24]). Consider the function sgna = 1,
ifa > 0, and sgna = —1, if a < 0. For a vector h = (hq,...,h,) in R™, we denote
by sgn h the vector (sgn hq,...,sgnh,). Let H = {h} be a set of real-valued functions
defined on RY. By sgn H we denote the set of all vectors {sgnh}, h € H.

Definition. The Vapnik— Chervonenkis dimension dimyc H of a functions set
H = {h} is defined as the maximal natural number m such that there exists a
collection {&1,...,6,} in R such that the cardinality of the sgn vectors set S =
= {(sgnh(&1),...,sgnh(&n)): h € H} is equal to 2™. That is, the set S coincides
with the set of all vertices of the unit cube in the space R™.

Let {&1,...,&,} be any collection of points in R?. Consider the set of vectors in R?

Mysn = {(P(§1 1)y P(ép+1)): PEPIR,, te Rd}.

We will need to estimate the cardinality |sgnIL,, ;| of the sign vectors set sgnIl,, s .
To this end we use the following result.

Lemma 3 ([9], Lemma 3). Let m, s, | and q be any natural numbers such that
l+q<m/2 Let mop(0), a =1,...,m, f = 1,...,q be any fixed polynomials with
real coefficients in the variables o € R, each of degree 2s. Construct m polynomials in
the | + q variables b € R? and o € R!

q
To(byo) = Zbgwaﬁ(a), a=1,...,m. %)
p=1

Construct in R™ a polynomial manifold
07, 610 = {(m(b, )y yTm(b,y0)): (byo) € R x Rl}.
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BEST APPROXIMATION BY RIDGE FUNCTIONS IN L,-SPACES 401

Then for the cardinality of the set sgnlly, . . . the following estimate holds:

I+q
2em
Isgn T, L | < (4)H(0 4+ g + 1) () .

Lemma 4. There exist absolute constants cy, c1 and co such that
con < st < 2¢on, clsd <m< CQSd,
and the cardinality of the set sgnlly, , ,, satisfies the inequality
lsgnIl,, sn] <297,

where ¢ < 1/4 is some absolute constant.
Proof. Consider the polynomial space P?¢ with the orthonormal basis I, =
={P; j}i.jer Let P € Prg R, be any polynomial. Then

P(x)= Y (r,Py)Pyx), (6)

(4,5)€ls

where the function r(x) = Z:ﬂ ri(ar - =) belongs to the manifold R,. We will
show that for every point £ € R? the polynomial P(¢ + t) can be represented as a

linear combination of polynomials on the variables aj, ..., a} and ¢. It follows from the
identity (4)
= Z Z i(ap) Tk Pij(z). (7)
k=1(i,j)€ls

Recall that the set I consists of the couples (¢,7) from the set [ satisfying degh; <
< j < s. For every j introduce the set I/ consisting of all numbers i such that
deg h; = j. Then the polynomial P(z) can be written as

v)=> ka-j > hilaj) Py(x). ®)

k=1j=1 " erl
Since {P; j}(,j)er, is an orthonormal basis in the space P2 then for every t there is a
nondegenerate matrix
B Z»/j/
=17 O} @ aner

where (i, j) and (7', j') are the column and row indexes, respectively, of the matrix I'(¢),
such that

m

Pie+t)= > 27 (t)Puy (). 9)

(i",37)€1s

Note that all the functions ’yf;j ,(t) are polynomials from the space P<. Hence, from (8)
and (9) we obtain

P(E+1) = ZZWZ S A Whiap) Py (). (10)

k=1j=1 ier] (¢",5")€ls
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402 V. E. MAIOROV

We enumerate the set {(k,j): 1 <k <n,1<j<s}in{8=1,...,q}, where ¢ = ns
and we put bg = 7;. For every point §,, @ = 1,...,m and index 8 = 1,...,ns we
define the function on R(¢+1n

Tap(ai, ... ap,t Z Z ’YU ay,) Pirjr (€a)-

ierd (¥,5)€ls

Then the identity (10) can be written as
PE+1t) = Zb/ﬁraﬁ (al,...,a;,t), a=1,...,m.

Introduce the variables o = (af,...,a%,t) which belong to the polynomial space P

with | = (d 4 1)n. Thus the vector set I, s ,, belongs to the set IT
From here and Lemma 3 we obtain

mQSlqwnhq:sn.

I+
2em) ! (10

My06n] < (88)'(1+ +1l+2<
sgn Il 25.m] < (85)" (I +q+1) I q

Let ¢g and ¢; < ¢ be a positive numbers with we will choose below. We assume the
numbers m, s, [ satisfy the conditions

con < 471 < 2com, 15 <m<cos and [ = (d+ D)n. (12)

Substituting these conditions to the inequality (11) we complete Lemma 4.

From Lemma 4 we directly obtain the following consequence.

Consequence 1. The Vapnik— Chervonenkis dimension of the polynomial class
PryR,, satisfies the estimate

2
dimyc ProR, < llog,(45) + (14 2)logy (I + ¢+ 1) + (I + q) log, (ﬁ”;) .

d
1 1
4. Approximation of the class P by ridge functions. Let ) = {—d, \/E] be
the cube which belongs to the unit ball B¢. We define the function on R?
1
1, ze=Q,
w(z) = 2
0, z€RI\Q,

and continue it on the space R? such that w belongs to the class W (R%) and 0 < w(x) <
< 1 forall z € R% Let X and m be any natural numbers such that m!/¢ < X\ < 2m!/4.
Consider the lattice subset in the cube €2 consisting of m points

; 1/2 1/2
Em:{<“+ 2 latl/ ) ',...,id:—)\,...,/\—l}.
Vd VdA
Let &, ..., &, be the points of the set =™. Introduce the set

E’"L:{g:(517._,’€m): Ei:i17 i_l,...7m}

of sign vectors in R™. Consider the collection of function
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BEST APPROXIMATION BY RIDGE FUNCTIONS IN L,-SPACES 403

Fm = {fg(:c) =207 sw Mz —&)): e € Em} .
i=1

Obviously, every function f. from F"* belongs to the Sobolev class W . Denote by g.
the polynomial of best approximation of the function f. by the space P¢ in L,-norm,
that is satisfying
Hfs - gs”oo = min ||fs - g”oo
gePY

We know [22] that the error of the best approximation of any function f € W/ from
the polynomial space P¢ in the L.,-norm is bounded above as follows,

T

[1fe = gellow < s

Hence we have the next result.
Proposition 1. Consider the set of polynomials

GY ={g.: e € E™}.
Then the deviation of the set F'™ from the space G satisfies
e(F™, G oo <es™".

Let Q be a set of functions in the space L(B%). Denote by PrsQ = {Pryq: ¢ € Q}
the projection of a set ) to the subspace P2.
Lemma 5. Let 1< q < oo be any number and P € PZ be any polynomial. Then

e(P,R,), > e(P,PrsRy),.

Proof. We have

e(P,R,), = inf
( ’ n)q 7€ L2 10¢(R), a; ERY

(13)

We fix the set of vectors @ = {a1, ..., a,} and consider the linear subspace of functions

Un(a):= {u = Zui(ai ~x): oug € LQJOC(R)} .

Let Uy (a)t = {v € Ly: (v,u) =0 forall u € Uy,(a)} be the annihilator subspace in
L, for the subspace U, (a). Define the number ¢’ such that 1/g + 1/¢’ = 1. Using the
duality in the space L, we have

inf ||P—ulq= sup (P,v) > sup (P, v).
u€Un(a) veUn(a)%Hqufﬁl UEUH(U’)LH”P&HU”Q'SI

Since
Un(a)r NP = {ve P (v,U,(a)) = 0} = {v: (v,PryUpn(a))) = 0},

then using once more the duality in the space P¢, we obtain
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404 V. E. MAIOROV

e(P,Up(a))g > sup P vy = inf P —h,. (14)
( ( ))q vEPr Uy (a) L NPE, Hqu/§1< > hePrs Uy, (a) || ||q

It follows from (13) and (14) that

e(P,R,), = inf e(P,Uy(a)), >

A1;..-5,0n

= almfa ILEPir?IEn(a) 12 = Rll = (P, ProBn)q.

Lemma 5 is proved.

5. Proof of Theorem 1. Consider the space [{* consisting of vectors x € R™
equipped with the norm ||z||;m = [21] + ... + |7,,|. In the space [T* we consider
the subset E™ = {5: Ely.sEm = :tl}. The following lemma is proved in [9]. For
completeness we cite its proof.

Lemma 6. Assume that all conditions of Lemma 4 are satisfied. Then there is a
vector €* € E™ such that

e(e" M sn )iy o= _inf " = aflip > am,

where a is an absolute and strictly positive constant.
o . 1
Proof. Let a < 1 be the absolute constant satisfying the equation 1 — 5(1 —

47
— 2a)%logy e = 51 (ie,a=0.19...). Set Il =sgnll,, ;.. Let 7 be any vector from
II. Consider the subset in £™

E, = {g e E™: Z|5i—7ri| < 2am}.
i=1

Since m; = +1 we have the estimate for cardinality of the set F;

|Ex| = HE e E™: Z(E’ +1) < 2am}

i=1
[am]
= |{5: Z 1 Sam}| = Z (T)
i ei=1 i=0

From the well-known estimate (see, for example, [3], Chapter 8) we have

lam]
> () szmermaror <pm,
i
i=0

1 47
where 3 = m~![am], and b = 1 — 5(1 —2a)?log, e = R Hence |E,| < 247m/64,
Consider in E™ the subset £/ = (| .(E™ \ E,). We estimate the cardinality of E’
via

&=\ | B

meH
By Lemma 4 we have |TI| < 2”/4. From this and (15) we obtain |E’| > 2m—2(63/64)m
> (. Therefore there exists a vector €* such that for every vector 7 € II the following
inequality holds:

> 2™ — | max | Ex| > 2" — [IT|2¢47/60m — (15)
S
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BEST APPROXIMATION BY RIDGE FUNCTIONS IN L,-SPACES 405

e — 7l > 2am.

From here we obtain the inequality

6(6* Hm S, n) > 6(5*,Sgn Hmasﬂb)l{” > am.

N |

Lemma 6 is proved.
Lemma 7. Assume the natural numbers m,s and n satisfy the conditions of
Lemma 4. Then there is a f.« € F™ such that

e(fer, PrsRn)1 > C3nir/(d71)a

where c3 is an absolute and strictly positive constant.
Proof. Let f. and P be any functions from the sets /" and PrgR,,, respectively.
We have

m

||fE—P||1z/\fg<:c> 2)|de = / SO|fl€ 1) — P&+ D)dt.
Q

Q/(2n) =1

Define the function w(t) = (2A)"w(2At). Since f.(&; + t) = w(t)e; for every vector
¢, then for any ¢ from the cube 2/(2)) we have

; |fo(&+t) = P& +1t)| > PePr:nﬂf s Z @(t)e: — P(& +7)| =

= inf Z|5L_ & +1)l

PePrs R, Tele

Thus we obtain

1
P, > — f o(t i i
Ife = Pl mteél/l(w\) |w( )‘PePrh n,TeRdZ|E P& +T)| -
> (e, Ty, 1Y).

~ (2AN)"m

Recall (see (12)) that the numbers m, s, n satisfy the conditions con < s4~1 < 2¢qn,
c15¢ <m < cps% and m'/? < X < 2m!/4. Applying Lemma 6 we obtain that there is
a function f.- € F™ satisfying

Cc3a —r/(d—1) C3a
[for = Pl > oy Zean™ /D0 = — o —
: (2X) cg/d(Qco)T

)

for any polynomial P € Pr R,,.
Lemma 7 is proved.
Lemma 8. The deviation of the set F™ from the class R, satisfies

e(F™, Ryp)1 > cqn~T/(d=1)

Proof. Let f € F™ be any function. According to Proposition 1 there is a polynomial
g € G that
If = gllec <es™". (16)
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Using Lemma 5 and twice the inequality (16) we obtain
e(F™", Ry)1 > e(GT Ry, Ly) —es™ " >
> e(GT, PrsRy)1 —es™" > e(F™, PrsRy)1 — 2¢s™".
We choose ¢ and ¢q such that ¢4 > 2c¢. Then it follows from Lemma 7 that
e(F™ Rp)1 > can /@1 _9egmT o/ (d1)

Lemma 8 is proved.

Now we prove Theorem 1. We know that the collection of functions F™™ belongs to
the class W, . Therefore, using Holder’s inequality for 1 < ¢ < p < co and Lemma 8§,
we obtain

e(W), Ry)q > e(Wi, Ra)1 > e(F™ Ry)1 > en~ /(40

The upper bound
e(Wy, Rn)q < en /(=D

was proved in the paper [9].

Theorem 1 is completely proved.

6. Appendix. We discuss some well-known results connected with orthogonal
polynomials, which we use in this present work.

The Gegenbauer polynomials. The Gegenbauer polynomials are usually defined
via the generating function

(1—2tz 4237 = Z CR(t)2",
k=0
where |2| < 1, [t| < 1, and A > 0. The coefficients C}(t) are algebraic polynomials of
degree k and are termed the Gegenbauer polynomials associated with .
The Gegenbauer polynomials possess the following properties:

1. The family of polynomials {C,i‘} is a complete orthogonal system for the wei-
ghted space Lo (I, w), I = [—1,1], w(t) := wx(t) := (1 — t*)*~1/2, and

0, m#n,

Un,x, MM =Tmn,

/ O (OO (tyw(t)dt = {
1 (4.1)
7/2(20),, T(\ +1/2)

(n+A)nll(A) 7

with v, ) 1=

where we use the usual notation (a)p := 0, (a)y :=ala+1)...(a+ N —1).
2. Let P, denote the set of all algebraic polynomials of total degree n in d real vari-

1/2
12 4d)2 /2 (d),T ((d+1)/2)
ables. Set u,, (t) = v, '“Cy'“(t), where v, = (0 + d/ 20T (d)2)

un (€ - x), & € 971, are in P, and the u, (¢ - ) are orthogonal to P,,_; in Ly(B?)
(see [18]):

. The polynomials

/un(§ ~x)p(x)de =0 VE€ STt and Vpe P, ;. (4.2)

Bd
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3. For each &, € S?! we have (see [18])

[ e yuntn- e = “f(l;” (43)

Ba

4. For each polynomial (z) € P, such that h(z) = (—=1)"h(—z) for all z € R?
we have (see [18])

u"(l)h(n), where v, = (n+1)as

- ST (4.4)

/ (€ un (€ - m)de =
Sd—l

An orthogonal system of polynomials on the sphere. We state some facts (see
[4, 25, 20]) from the theory of harmonic analysis on the sphere. Let s be any positive
integer. Consider a space H consisting of the homogeneous harmonic polynomials of
degree s in the d variables x1, ..., 24. Any polynomial from H, is decomposable by a
linear combination of polynomials of the form

d—2 ,
kj—kj141 ~ P42k [ Td—j o \ka—
hsk(z) = A | I Ty Cr, 2y o (w9 £ imy)d-2, (4.5)
i —j
j=o

where 17 =27 +...+ 25 _;. The vector k with integer coordinates belongs to the set
K* = {k = (koyk1,. - ka_s,ckas): 0<hkso<..<k <ky=s, = j:l},

and Agy is the normalization factor. It is known that the dimension of the space H is

given by
-1 _
s s—2

if s > 2, and dim Hy = 1, dim H; = d. It is easy to verify that the dimension of H; is
asymptotically given by

dimHs = (2+ d—2)

+c(s,d)>s(s+1).‘.(s+d—3) = 5972, 4.7
where 0 < ¢(s,d) < 1 is some function depending only on s and d.

The family of functions {hx }rexcs is an orthonormal system in the space Lo (S¢71),
i.e., for any multiindices k, ¥’ € K*, the following holds:

(hages hope) = / ok (€ o (€)dE = S (4.8)

gd—1

Note that the spaces H, and H, for s # s’ are orthogonal with respect to the inner
product (A.8). The family of functions |J,o,{fsk}rek: is a complete orthonormal
system in the space Lo(S471).

The set of polynomials on the sphere {p: p € P, } of degree < n is contained in
the space Ho & H1 & ... & Hn,, which is the direct sum of the orthogonal subspaces
Ho, H1, ..., Hy,. From the above it follows that for any polynomial p € P,, and for any
function h € Hy11 © Hpy2 @ ... the equality
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