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ITPO BIITHOCHI PAHI' HAIIIBI'PYII ®IHITHUX IEPETBOPEHD
3 OBMEXEHOIO OBJIACTIO 3HAYEHb

We determine the relative rank of the semigroup 7 (X,Y") of all transformations on a finite chain X with restricted range
Y C X modulo the set OP(X,Y) of all orientation-preserving transformations in 7 (X,Y’). Moreover, we state the
relative rank of the semigroup OP(X,Y") modulo the set O(X,Y") of all order-preserving transformations in OP(X,Y").
In both cases we characterize the minimal relative generating sets.

Busnadeno BinHOCHui padr HamiBrpymu 7 (X, Y') ycix mepeTBopeHs Ha CKIHICHHOMY JIaHIIOTy X 3 0OMEXEHOI0 001acTio
suaders Y C X 3a moxyinem muoskuan OP(X,Y') ycix nepersopens y 7 (X, Y'), mo 36epiratots opienranio. Kpim Toro,
BCTaHOBIIEHO BigHocHH# panr HamiBrpymn OP(X,Y) 3a moxynem muoxuan O(X,Y) ycix mepersopens B OP(X,Y),
110 30epiraroTh MOps oK. B 000X BHIaaKax oxapakTepu30BaHO BiJIIOBIIHI MiHIMaJbHI IOPOKYIOYi MHOXKHHH.

1. Introduction and preliminaries. Let S be a semigroup. The rank of S (denoted by rank.S) is
defined to be the minimal number of elements of a generating set of S. The ranks of various known
semigroups have been calculated [7, 8, 10, 11]. For a set A C S, the relative rank of S modulo A,
denoted by rank(S: A), is the minimal cardinality of a set B C S such that A U B generates S.
It follows immediately from the definition that rank(S: @) = rank S, rank(S: S) = 0, rank(S':
A) = rank(S: (A)) and rank(S: A) = 0 if and only if A is a generating set for S. The relative
rank of a semigroup modulo a suitable set was first introduced by Ruskuc in [14] in order to describe
the generating sets of semigroups with infinite rank. In [12], Howie, Ruskuc, and Higgins considered
the relative ranks of the monoid 7 (X) of all full transformations on X, where X is an infinite
set, modulo some distinguished subsets of 7(X). They showed that rank(7(X): S(X)) = 2,
rank(7(X): £(X)) = 2 and rank(7(X): J) = 0, where S(X) is the symmetric group on X,
E(X) is the set of all idempotent transformations on X and J is the top J-class of 7(X), i.e.,
J ={{a € T(X):|Xa| = |X|}. But also if the rank is finite, the relative rank gives information
about the generating sets. In the present paper, we will determine the relative rank for a particular
semigroup of transformations on a finite set.

Let X be a finite chain, say X = {1 < 2 < ... < n} for a natural number n. A transformation
a € T(X) is called order-preserving if x < y implies zav < ya for all z, y € X. We denote by
O(X) the submonoid of 7 (X) of all order-preserving full transformations on X. The relative rank
of 7(X) modulo O(X) was considered by Higgins, Mitchell, and Ruskuc in [9]. They showed
that rank(7(X): O(X)) = 1, when X is an arbitrary countable chain or an arbitrary well-ordered
set, while rank(7 (R): O(R)) is uncountable, by considering the usual order of the set R of real
numbers. In [2], Dimitrova, Fernandes, and Koppitz studied the relative rank of the semigroup
O(X) modulo J = {a € O(X): |Xa| = |X]|} for an infinite countable chain X. We say that
a transformation o € T (X) is orientation-preserving if there are subsets X, Xo C X with @ #
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# X1 < Xg (ie., 1 < 2o for 1 € Xq and 22 € X5), X = X1UX>, and za < ya, whenever either
(z,y) € X? U X3 with z < y or (z,y) € X2 x X;. Note that Xo = @ provides o € O(X). We
denote by OP(X) the submonoid of 7(X) of all orientation-preserving full transformations on X.
An equivalent notion of an orientation-preserving transformation was first introduced by McAlister
in [13] and, independently, by Catarino and Higgins in [1]. It is clear that O(X) is a submonoid
of OP(X), ie., O(X) C OP(X) C T(X). It is interesting to note that the relative rank of 7 (X)
modulo OP(X) as well as the relative rank of OP(X) modulo O(X) is one (see [1, 12]), but the
situation will change if one considers transformations with restricted range.

Let Y = {a1 < a2 < ... < a,,} be a nonempty subset of X, for a natural number m < n,
and denote by 7(X,Y") the subsemigroup {a € T(X): Xa C Y} of T(X) of all transformations
with range (image) restricted to Y. The set 7 (X,Y’) coincides with 7 (X ), whenever Y = X (i.e.,
m = n). In 1975, Symons [15] introduced and studied the semigroup 7 (X,Y’), which is called
semigroup of transformations with restricted range. Recently, the rank of 7(X,Y) was computed
by Fernandes and Sanwong in [6]. They proved that the rank of 7(X,Y) is the Sterling number
S(n,m) of second kind with |X| = n and |Y'| = m. The rank of the order-preserving counterpart
O(X,Y) of T(X,Y) was studied in [4] by Fernandes, Honyam, Quinteiro, and Singha. The authors

found that rank O(X,Y) = <:@ - 11

the following properties: (i) y has no successor in X; (ii) y is no successor of any element in X;

) + |Y#|, where Y# denotes the set of all y € Y with one of

(iii) both the successor of Y and the element whose successor is y belong to Y. Moreover, the

regularity and the rank of the semigroup OP(X,Y’) were studied by the same authors in [5]. They

showed that rank OP(X,Y) = <:1) In [16], Tinpun and Koppitz studied the relative rank of

T(X,Y) modulo O(X,Y) and proved that rank(7(X,Y): O(X,Y)) = S(n,m) — <:;__ 11> +a,

where a € {0, 1} depending on the set Y. In this paper, we determine the relative rank of OP(X,Y)
modulo O(X,Y) as well as the relative rank of 7(X,Y’) modulo OP(X,Y).

Let o € T(X,Y). The kernel of « is the equivalence relation ker a with (z,y) € ker a if zav =
= ya. It corresponds uniquely to a partition on X. This justifies to regard ker « as a partition on X.
We will call a block of this partition as ker a-class. In particular, the sets za™' = {y € X : ya = z},
for © € X, are the ker a-classes. We say that a partition P is a subpartition of a partition @) of X
if for all p € P there is ¢ € Q with p C q. Aset T C X with [T Naza™'| =1, forall z € Xa, is
called a transversal of ker a. Let A C X. Then |4 : A — Y denotes the restriction of a to A and
A will be called convex if z < y < z with z, z € A implies y € A.

Letl € {1,...,m}. We denote by P; the set of all partitions { Ay, ..., A;} of X such that Ay <
< Az < ...< Aj are convex sets (if [ > 1) and A; is the union of two convex sets with 1,n € A;.
Further, let Q; be the set of all partitions {Aj,..., 4;} of X such that A} < Ay < ... < A are
convex and let R; be the set of all partitions of X, which not belong to Q; U P;. We observe that
ker 5 € Q; U P, whenever § € OP(X,Y) with |X3| = [. In particular, ker § € Q;, whenever
g eOX,Y).

Let us consider the case [ = m > 1. For P € P, with the blocks A, Ay < ... < Ay, let ap
be the transformation on X defined by
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Tap = a, whenever x € A; for 1<i<m,

inthecase 1 ¢ Y orn ¢ Y and

ai+1, if zeAd; for 1<i<m,
Tap =
ai, if xe Ay,

in the case 1,n € Y. Clearly, kerap = P. For X; = {1,...,max A,,}, Xo = {max A, +1,...,n}
inthecase 1 ¢ Y orn ¢ Y and X; = {1,...,maxA,,_1}, Xo = {maxA4,,_1+1,...,n} in the
case 1,n € Y, where max A,, (max 4,,_1) denotes the greatest element in the set A,, (A;,—1,
respectively), we can easy verify that ap is orientation-preserving.

Further, let n € 7(X,Y") be defined by

air1, if a; <z <aip1, 1<i<m,
1, if 1¢Y,
xn =< a, if = =apn, with I':=
2, otherwise,
ar, otherwise,

inthecase 1 ¢ Y orn ¢ Y and

Q41 if a; <x <ajq1, 1<i<m,
xn =
a1 =1, if z=a,=n,

in the case that 1,n € Y. Notice that Py := kern € P, if 1 ¢ Y or n ¢ Y and kern € Q,,
if ,n €Y. In fact, n € OP(X,Y) with X; ={1,2,...,a,, — 1} and X5 = {am,am + 1,...,n}.
Moreover, 71|y is a permutation on Y, namely

al e Am—1 A
nly = ( )
a9 . Qo aj
We will denote by S(Y') the set of all permutations on Y. Note that 5 € O(X,Y") implies that either
Bly is the identity mapping on Y or |y ¢ S(Y).

2. The relative rank of OP(X,Y) modulo O(X,Y). In this section, we determine the
relative rank of OP(X,Y) modulo O(X,Y). A part of these results were presented at the 47 th
spring conference of the Union of Bulgarian mathematicians in March 2018 and are published in the
proceedings of this conference [3].

If m =1, then OP(X,Y) is the set of all constant mappings and coincides with O(X,Y), i.e.,
rank(OP(X,Y): O(X,Y)) = 0. So, we admit that m > 1.

First, we will show that

A:={ap: PeP,}U{n}

is a relative generating set of OP(X,Y’) modulo O(X,Y"). Notice that n = ap, if 1 ¢ Y orn ¢ Y.

Lemma 1. Foreach o € OP(X,Y) with rank o = m, thereis & € {ap: P € P,,}UO(X,Y)
with ker a = ker Q.
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Proof. Leta € OP(X,Y) and let X7, Xo C X as in the definition of an orientation-preserving
transformation. If Xo = &, then a € O(X,Y). Suppose now that Xo # & and let X0 =
={r1 <...<uz}and Xoa = {y1 < ... < ys} for suitable natural numbers r and s. We observe
that Xia and Xsa have at most one joint element (only x1 = ys could be possible). If z1 # ys,

then

1 1

keroa = {mloz_ <. .<rmalt<yal<.< ysoz_l} = ker &

with
<x1a_1 . ZETOé_l yla_l .. ysa_1

€ 0(X,Y).
ajl oo Ay Ar41 NN Ar4g
If 21 = ys, then 1,n € x107! = ysa™! and ker o = ker ap with

-1 1

P = {xla_l,xga <. .. .<zat< ya < ... < ys_loc_l} € P

Lemma 1 is proved.

Proposition 1. OP(X,Y) = (0O(X,Y),A).

Proof. Let § € OP(X,Y) with rank 8 = m. Then there is § € {ap : P € P,,} UO(X,Y)
with ker 3 = ker § by Lemma 1. In particular, there is r € {0,...,m — 1} with a10~! = a, 1871
Then it is easy to verify that 3 = 05", where n° = ™.

Admit now that ¢ = rank 5 < m. Suppose that ker € P;, say ker § = {41, A2 < ... < A;}
with 1,n € A;. Then there is a subpartition P’ € P,, of ker 3. We put § = ap/, a = min Xj3,
and let T be a transversal of ker§. In particular, we have Y = {x(f|7)n*: 2 € T} for all k €
€ {1,...,m}. Since both mappings 0|7: T — Y and n|y : Y — Y are bijections, there is k €
€ {1,...,m} with a1((0|7)n*)"'8 = a and a1 ((0|7)n**1)~'3 # a. Moreover, since (0|7)n* is
a bijection from 7" to Y and both transformations #n* and /3 are orientation-preserving, it is easy
to verify that f* = ((H\T)nk)_l B can be extended to an orientation-preserving transformation f
defined by

a1 f*, if = <a,
xf: aif*v if ai§$<ai+17 1§Z<m7
am f*, if ap <uw,

i.e., f and f* coincide on Y. Moreover, a1 f = a1 f* = al((0|T)nk)_1B = a. In order to show
that f is order-preserving, it left to verify that nf # a. Assume that nf = a, where n > a,.
Then nf = anf* = anf, ie, (n,ay) € ker f and nn = a,,n = ay. So, there is z* € T
such that x*((0|T)77k) = am, ie., z* = am((H\T)nk)_l. Now, we have a = nf = a,f* =
= am(@l7)n*) " 8 = an(n*ly) " 0l7) 78 = ar(nly) " (0*[y) "M Olr) '8 = ar((Olr)n* )76 #
# a, a contradiction.

Finally, we will verify that 3 = On* f € (O(X,Y),.A). For this let 2 € X. Then there is 7 € T
such that (z,2) € ker 3. So, we have z0n* f = 20n* f* = %917"3((9|T)77k)716 =26 = af.

Suppose now that ker 5 ¢ P; and, thus, ker5 € Q;. Let X = {b1,...,b;} such that
b1B~1 < ... < b8!, Then we define a transformation ¢ by x¢p = a; for all x € bj_157!
and 2 < j <i+ 1. Clearly, ¢ € O(X,Y). Further, we define a transformation v € 7(X,Y) by

bj_l, if a; §$<a]‘+1, 2§j§i,

TV =
b;, otherwise.
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Since [ is orientation-preserving, there is k£ € {1,...,i} such that k =i or by < ... < b1 <
<bg <...<b. Then Xy = {ay,...,ap+1 — 1} and Xy = {ag41,...,n} gives a partition of X
providing that v is orientation-preserving. Clearly, rankv = i and 1v = nv = b;. Thus, it is easy
to verify that kerv € P;. Hence, v € (O(X,Y),.A) by the previous case and it remains to show
that 8 = pv € (O(X,Y),A). For this let z € X. Then z € b;3~! for some j € {1,...,i}, i.e,
TPV = aj1v = b; = xf.

Proposition 1 is proved.

The previous proposition shows that A is a relative generating set for OP(X,Y) modulo
O(X,Y). It remains to show that A is of minimal size.

Lemma 2. Let B C OP(X,Y) be a relative generating set of OP(X,Y) modulo O(X,Y).
Then Py, C {kera: a € B}.

Proof. Let P € Py,. Since ap € OP(X,Y) = (O(X,Y), B), there are §; € O(X,Y)UB
and 6, € OP(X,Y) with ap = 016,. Because of rank ap = m, we obtain ker ap = ker ;. Since
lap = nap, we conclude that 6; ¢ O(X,Y), i.e., 1 € B with ker0; = kerap = P.

Lemma 2 is proved.

In order to find a formula for the number of elements in P,,, we have to compute the number of

. iy . . . -1
possible partitions of X into m + 1 convex sets. This number is (nm )

-1
Remark1. |Pp,| = <nm )

Now, we are able to state the main result of the section. The relative rank of OP(X,Y’) modulo
O(X,Y) depends of the fact whether both 1 and n belong to Y or not.

Theorem 1. Foreach 1 <m <n €N,

1) rank(OP(X,Y): O(X,Y)) = (”m 1) if1eéY orngy;

2) rank(OP(X,Y): O(X,Y)) =1+ <"ﬂ;1> if {1,n} CY.

Proof. 1. Note that kern € P, and n = ap,. Hence, the set A = {ap: P € Py} is a
generating set of OP(X,Y) modulo O(X,Y’) by Proposition 1, i.e., the relative rank of OP(X,Y)

modulo O(X,Y) is bounded by the cardinality of P,,, which is (nn_z 1> by Remark 1. But this

number cannot be reduced by Lemma 2.

2. Let B C OP(X,Y) be a relative generating set of OP(X,Y) modulo O(X,Y). By
Lemma 2, we know that P,, C {kera: a € B}. Assume that the equality holds. Note that
kern € Q,, and 7 is not order-preserving. Hence, there are 61,...,0; € O(X,Y) U B for a sui-
table natural number [, such that n = 6 ...6;. From rankn = m, we obtain ker §; = kern and
rank0; = m for i € {1,...,1} and, thus, {1,n} C Y implies (1,n) ¢ ker6; for i € {2,...,1}.
This implies 05,...,0; € O(X,Y). Since ker§; = kern ¢ P,,, we get §; € O(X,Y), and, con-
sequently, n = 6162...0; € O(X,Y), a contradiction. So, we have verified that |P,,| < |B|, i.e.,

the relative rank of OP(X,Y) modulo O(X,Y) is greater than (nn_z 1>. But it is bounded by

-1 . : .
1+ <nm > due to Proposition 1. This proves the assertion.

Theorem 1 is proved.
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We finish this section with the characterization of the minimal relative generating sets of
OP(X,Y) modulo O(X,Y). We will recognize that among them there are sets with size greater
than rank (OP(X,Y): O(X,Y)).

Theorem 2. Let B C OP(X,Y). Then B is a minimal relative generating set of OP(X,Y’)
modulo O(X,Y) if and only if for the set B = {B € B: ker8 € Qp,} C B the following three
Statements are satisfied:

(i) Pm C {kerB: € B\ B},

(i) [B\ B| = |Pml, _

(i) nly € (Bly : B€ BY but yly ¢ (Bly: € B\ {7}) for any 7 € B.

Proof. Suppose that the conditions (i) (iii) are satisfied for B = {8 € B: ker3 € Q,,,}. We
will show that A C (O(X,Y),B). Let « € A\ {n}. Then there is a partition P = {A;, Ay < ...

. < Ap} € Py, such that

A Ay L. A
a=ap= , if 1¢Y or né¢Yy,
al a9 (0797
or
Al A2 Am—l Am .
a=ap= , if 1,neY.
as as ... am, ay

Notice that in the latter case a; = 1 and a,, = n.
Further, from (i) it follows that there is 8 € B with ker 8 = ker ap, i.e., 8 = ap or

8 <A1 Az oo Am—it1t Am—iv2 - Am>
a; Aj4+1 PN [07%9) al PN (07
for some i € {3,...,m}. It is easy to verify that ap = % € (B) for a suitable natural number k.

Hence, {ap: P € Pp} C (O(X,Y), B). Further, kern € Py,, whenever 1 ¢ Y or n ¢ Y, and
kern € Q,, otherwise. Thus, there is § € (O(X,Y), B) with ker§ = kern. Then we obtain as
above that n = 6! € (O(X,Y), B) for a suitable natural number . Consequently, (O(X,Y), A) C
C (O(X,Y), B) . By Proposition 1, we obtain OP(X,Y) = (O(X,Y), B) . The generating set B
is minimal by properties (i) and (ii) together with Lemma 2 and by the property (iii) of B.

Conversely, let B be a minimal relative generating set of OP(X,Y) modulo O(X,Y). B
Lemma 2, there is a set B C B such that P,, = {ker3: 8 € B} and |B| = |Pp]. Since
OP(X,Y) = (O(X,Y), B), there are B1,..., 8, € O(X,Y) U B such that n = S ... Bj. Without
loss of generality, we can assume that there is not v € {ﬁl. 1 <i<k, ker3; € Qm} —: B such
that 7 is a product of transformations in BU(B\ {7}). In the first part of the proof, we have shown
that B U B is a relative generating set of OP(X,Y’) modulo O(X,Y). Because of the minimality
of B, we obtain B = B U B, where {ker3: 3 € B\ B} 2 Pon; IB\ B| = |B| = |Pn| and
nly € (Bly: B € B) butnly ¢ (Bly: B € B\ {y}) forany v € B.

Theorem 2 is proved.

In particular, for the relative generating sets of minimal size we have the following remark.

Remark2. B C OP(X,Y) is a relative generating set of OP(X,Y) modulo O(X,Y) of
minimal size if and only if [B| = 1if 1,n € Y and B = @, otherwise.
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3. The relative rank of 7 (X,Y) modulo OP(X,Y). In this section, we determine
the relative rank of 7(X,Y) modulo OP(X,Y) and characterize all minimal relative genera-
ting sets of 7(X,Y) modulo OP(X,Y). Since O(X,Y) < OP(X,Y), we see immediately that
rank(T(X,Y): OP(X,Y)) < S(n,m) — <;‘1‘_11
set B C 7T(X,Y) to be a relative generating set of 7 (X,Y) modulo OP(X,Y).

Lemma 3. Let BC T(X,Y). If Ry, C{ker3: g € B} and S(Y') C <{ﬁ]y: B8 e B},n\y>,
then (OP(X,Y),B) =T(X,Y).

Proof. Let vy € T(X,Y) with ranky = k& < m. We will consider two cases.

Case 1. Suppose that kery € Ri. Then ker~ contains a non-convex set which cannot be
decomposed into two convex sets, which contain 1 and n, respectively. Since £ < m, we can divide
the partition ker~ into a partition P € R,, such that P contains a non-convex set which cannot
be decomposed into two convex sets, which contain 1 and n, respectively (if £ = m, then we put
P = ker~). Since R, C {ker 3: g € B}, there is A € B with ker A\ = P. It is clear that X\ =Y.

Further, let Xy = {y1 < y2 < ... < yx} and define the sets

+ 1. First, we state a sufficient condition for a

A; = {x eY:azxtcC yi’yfl}

fori=1,...,k. Itis clear that {A;, Ao, ..., A} is a partition of Y. Moreover, let {C; < Cy < ...
... < Cy} € Qi be apartition of X such that [C;NY| = |4;| forall i =1,... k. Let A; = {a;; <
<, <...<aj }and GiNY ={c;, <cjp <...<¢, fwitht; € {1,...,m} fori e {1,... k}.
We define a bijection

k k

o: | JAa=Yy = |JCinYy)=Y
i=1 i=1

on Y with a0 = ¢;, for l =1,...,¢; and i = 1,...,k. Since 0 € S(Y) and S(Y) C ({Bly:
B € B}, nly), there is p € (B,n) with ply = o.

Finally, we define a transformation v € O(X,Y) C OP(X,Y) with kerv = {C} < C2 < ...
..<Citand zv =vy; forallz € C;and i =1,... k.

Therefore, we have A, u,v € (OP(X,Y), B) and it remains to show that v = Auv, ie., v €
€ (OP(X,Y),B). Let z € X. Then ay = y; for some i € {1,...,k} and we get

ry=y;=>axA=z€ A, = zu=ueC;NY = uv =y,

Hence, 2y = y; = x(Aur) and we conclude v = Auv.

Case 2. Suppose that kery ¢ Ry, i.e., kery € Qp U Py and there is p; € OP(X,Y) with
ker p1 = ker~y. Further, there is a partition P = {D,:y € Xp1} € Ry, such that y € D, for all
y € Xp;. Then we define a transformation py: X — X+~ with kerpy = P and {zp2} = yp; 'y
for all z € D, and y € Xp;. Since ker p; = kerr, the transformation po is well defined and
we have v = pipe. Moreover, po € (OP(X,Y),B) by Case 1 (since ker ps € Ry) and thus
v =pp2 € (OP(X7Y)7B> :

Lemma 3 is proved.

Lemma 4. (nly) = ({Bly: € OP(X,Y)})NS(Y).

Proof.  The inclusion (n]y) C ({Bly: 8 € OP(X,Y)})NS(Y) is obviously. Let now 8 €

€ OP(X,Y) with 8|y € S(Y). Then there is k € {1,...,m} such that
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8=

ag .. am al T

<A1 o Ameer Amer .. Am>

with {41, A2 < ... < Ap} € P,UQ,, and a; € A; fori € {1,...,m} since Y is a transversal of
ker 8. Thus,

aj PN Am—k+1 A —k PN QA _
Bly = = (nly)" € (nly).
Qg Am al e Qp—1

This shows that ({8]y : 3 € OP(X,Y)})NS(Y) C {(nly)?: pe N} = (n|y).

Lemma 4 is proved.

The following lemmas give us necessary conditions for a set B C 7(X,Y) to be a relative
generating set of 7 (X,Y’) modulo OP(X,Y).

Lemma5. Let B C T(X,Y)\ OP(X,Y) with (OP(X,Y),B) = T(X,Y). Then S(Y) C
C ({Bly: B € Bhaly).

Proof. Let 0 € S(Y). We extend o to a transformation v: X — Y, i.e., 7|y = o. Hence,
there are v1,...,7 € OP(X,Y) U B (for a suitable natural number k) such that v = ;... .
Since the image of any transformation in 7 (X, Y") belongs to Y, we have 0 = |y =y ... Vkly-
Moreover, from o € S(Y'), we conclude v;|y € S(Y) for 1 <i < k. Let v; € OP(X,Y) for some
i€ {1,...,k}. Then by Lemma 4

aj oo Q¢ ag4+1 .o Qo
Yily = € (nly)
t

Am—t+1 e A, al N Qg —

for a suitable natural number t. This shows o € ({8|y : 8 € B}, n|y).

Lemma 5 is proved.

Lemma 6. Let B C T(X,Y)\ OP(X,Y) with (OP(X,Y),B) = T(X,Y). Then Ry, C
C {ker: g € B}.

Proof.  Assume that there is P € R, with P ¢ {ker3: 8 € B}. Let v € T(X,Y) with
kery = P. Then there are §; € OP(X,Y)U B and 63 € T(X,Y) such that v = ;6. Since
ranky = m, we obtain kery = ker6; = P. Thus, 6; ¢ B, ie., 0; € OP(X,Y) and kerf; €
€ 9., UPy,, contradicts ker 01 = P € R,,.

Lemma 6 is proved.

Lemma 6 shows that rank(7(X,Y): OP(X,Y)) > |Ryn|. We will verify the equality.

Lemma 7. |R,,|= S(m,n)— "
Proof. The cardinality of the set D, := R,, U P,, was determined in [16]. The authors show
that |D,,| = S(m,n) — (;:ﬁ) Because of R,,, N P,,, = &, we obtain R,,, = Dy, \ Py, Since

|Pm| = <nn—1 1) (see Remark 1) it follows

n—1 n—1 n
|Rm| = |Dm| — |Pm| = S(m,n) — (m—l) — ( . > =S(m,n) — <m>

Lemma 7 is proved.
Finally, we can state the relative rank of 7(X,Y’) modulo OP(X,Y).
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Theorem 3. rank(7(X,Y): OP(X,Y)) = S(m,n) — (Z)
Proof. If m =1then T(X,Y) = OP(X,Y), i, rank(7T(X,Y): OP(X,Y)) = 0. On the

other hand, we have S(1,n) =n = 711 . Suppose now that n > 2. By Lemmas 6 and 7, we obtain

rank(7(X,Y): OP(X,Y)) > [Rn| = S(m,n) — <:1> In order to prove the equality, we have to

find a relative generating set B of 7(X,Y) modulo OP(X,Y) with |B| = |R,,|. We observe that
for each P € R,,, there is Bp € T(X,Y) with ker Bp = P, which will be fixed. Let B := {fp:
P € Ry} If m =2 then R, = @ and S(Y) = {nly,(nly)?} = (nly), obviously. If m > 3
then without loss of generality, we can assume that there is P’ € R, such that Y is a transversal of
ker Spr and Bp/|y = <a1 42 a3 . It is known that S(Y') = (Bpr|y,n|y) . Hence,
as aj as e Qo

B is a relative generating set of 7(X,Y) modulo OP(X,Y’) by Lemma 3. Since |B| = |R,,|, we
obtain the required result.

Theorem 3 is proved.

Now we will characterize the minimal relative generating sets of 7 (X,Y’) modulo OP(X,Y).
The minimal relative generating sets do not coincide with the relative generating sets of size
rank(7(X,Y): OP(X,Y)).

Theorem 4. Let B C T(X,Y). Then B is a minimal relative generating set of T (X,Y") modulo
OP(X,Y) if and only if there is a set B C B such that the following three statements are satisfied:

(i) Rm C {ker3: 3 € B\ B},

(i) |B\ B| = |Rml,

(i) S(Y) € ({Bly: B € Bynly) but S(Y) € ({Bly: 8 € B\ {}},uly) for any v € B
with ker v € {kerﬁ. B e B}.

Proof. Suppose that the conditions (i)—(iii) are satisfied. Then by Lemma 3 we have
(OP(X,Y),B) = T(X,Y). It remains to show that B is minimal. Assume that there is v € B
such that (OP(X,Y), B\ {7}) = T(X,Y). Note that aB]ly = alyBly forall o,3 € T(X,Y).
Hence, we can conclude that

Y)S ({Bly: BeT(X,Y)}) C

C ({Bly: B OPX,Y)U(B\{7})})={{Blv: B€ B\ {7} }.nly)

by Lemma 4. Hence, kery ¢ {ker 3: 8 € B} by (iii). This implies that v € B\ B and [(B\ B)\
{7} < |Rm| by (i), ie., Ry & {ker3: 8 € (B\ B) \ {7}}. Since kerv ¢ {ker 8: 8 € B}, we
have R, € {ker8: 8 € (B\ {7})} and, by Lemma 6, we obtain that (OP(X,Y), B\ {y}) #

# T(X,Y), a contradiction. This shows that B is a minimal relative generating set of 7 (X,Y)
modulo OP(X,Y).

Conversely, let B be a minimal relative generating set of 7 (X, Y) modulo OP(X,Y’). We have
R C {ker3: 8 € B} and S(Y) C ({Bly : B € B},nly) by Lemmas 5 and 6, respectively. Then
there exists a set B C B with |B\ B| = |R,,| and R,,, C {ker3: 8 € (B\ B)}. For the set B, the
conditions (i) and (ii) are satisfied. Assume now that there is v € B with kery € {ker3: § € B}
such that S(Y') C ({Bly: B € B\ {v}},nly). Then because of R,,, C {ker 3: 8 € (B\{7})}, the
set B\ {7) is a relative generating set of 7(X,Y") modulo OP(X,Y’) by Lemma 3. This contradicts
the minimality of B. Consequently, (iii) is satisfied.

Theorem 4 is proved.
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In particular, for the relative generating sets of minimal size we have the following remark.
Remark3. B C T(X,Y) isarelative generating set of 7(X,Y) modulo OP(X,Y’) of minimal
size if and only if B = @.
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