DOI: 10.37863/umzh.v73i5.288

UDC 512.5

- I. Dimitrova (South-West University "Neofit Rilski", Blagoevgrad, Bulgaria),
- J. Koppitz (Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria)

ON RELATIVE RANKS OF FINITE TRANSFORMATION SEMIGROUPS WITH RESTRICTED RANGE

ПРО ВІДНОСНІ РАНГИ НАПІВГРУП ФІНІТНИХ ПЕРЕТВОРЕНЬ З ОБМЕЖЕНОЮ ОБЛАСТЮ ЗНАЧЕНЬ

We determine the relative rank of the semigroup $\mathcal{T}(X,Y)$ of all transformations on a finite chain X with restricted range $Y\subseteq X$ modulo the set $\mathcal{OP}(X,Y)$ of all orientation-preserving transformations in $\mathcal{T}(X,Y)$. Moreover, we state the relative rank of the semigroup $\mathcal{OP}(X,Y)$ modulo the set $\mathcal{O}(X,Y)$ of all order-preserving transformations in $\mathcal{OP}(X,Y)$. In both cases we characterize the minimal relative generating sets.

Визначено відносний ранг напівгрупи $\mathcal{T}(X,Y)$ усіх перетворень на скінченному ланцюгу X з обмеженою областю значень $Y\subseteq X$ за модулем множини $\mathcal{OP}(X,Y)$ усіх перетворень у $\mathcal{T}(X,Y)$, що зберігають орієнтацію. Крім того, встановлено відносний ранг напівгрупи $\mathcal{OP}(X,Y)$ за модулем множини $\mathcal{O}(X,Y)$ усіх перетворень в $\mathcal{OP}(X,Y)$, що зберігають порядок. В обох випадках охарактеризовано відповідні мінімальні породжуючі множини.

1. Introduction and preliminaries. Let S be a semigroup. The rank of S (denoted by rank S) is defined to be the minimal number of elements of a generating set of S. The ranks of various known semigroups have been calculated [7, 8, 10, 11]. For a set $A \subseteq S$, the $relative\ rank$ of S modulo A, denoted by rank(S:A), is the minimal cardinality of a set $B \subseteq S$ such that $A \cup B$ generates S. It follows immediately from the definition that $rank(S:\varnothing) = rank S$, rank(S:S) = 0, rank(S:A) = rank(S:A) = rank(S:A) and rank(S:A) = 0 if and only if A is a generating set for S. The relative rank of a semigroup modulo a suitable set was first introduced by Ruškuc in [14] in order to describe the generating sets of semigroups with infinite rank. In [12], Howie, Ruškuc, and Higgins considered the relative ranks of the monoid $\mathcal{T}(X)$ of all full transformations on X, where X is an infinite set, modulo some distinguished subsets of $\mathcal{T}(X)$. They showed that $rank(\mathcal{T}(X):\mathcal{S}(X)) = 2$, $rank(\mathcal{T}(X):\mathcal{E}(X)) = 2$ and $rank(\mathcal{T}(X):J) = 0$, where $\mathcal{S}(X)$ is the symmetric group on X, $\mathcal{E}(X)$ is the set of all idempotent transformations on X and X is the top X-class of X-

Let X be a finite chain, say $X=\{1<2<\ldots< n\}$ for a natural number n. A transformation $\alpha\in\mathcal{T}(X)$ is called *order-preserving* if $x\leq y$ implies $x\alpha\leq y\alpha$ for all $x,y\in X$. We denote by $\mathcal{O}(X)$ the submonoid of $\mathcal{T}(X)$ of all order-preserving full transformations on X. The relative rank of $\mathcal{T}(X)$ modulo $\mathcal{O}(X)$ was considered by Higgins, Mitchell, and Ruškuc in [9]. They showed that $\mathrm{rank}(\mathcal{T}(X):\mathcal{O}(X))=1$, when X is an arbitrary countable chain or an arbitrary well-ordered set, while $\mathrm{rank}(\mathcal{T}(\mathbb{R}):\mathcal{O}(\mathbb{R}))$ is uncountable, by considering the usual order of the set \mathbb{R} of real numbers. In [2], Dimitrova, Fernandes, and Koppitz studied the relative rank of the semigroup $\mathcal{O}(X)$ modulo $J=\{\alpha\in\mathcal{O}(X)\colon |X\alpha|=|X|\}$ for an infinite countable chain X. We say that a transformation $\alpha\in\mathcal{T}(X)$ is *orientation-preserving* if there are subsets $X_1,X_2\subseteq X$ with $\varnothing\neq$

618 I. DIMITROVA, J. KOPPITZ

 $\neq X_1 < X_2$ (i.e., $x_1 < x_2$ for $x_1 \in X_1$ and $x_2 \in X_2$), $X = X_1 \cup X_2$, and $x\alpha \leq y\alpha$, whenever either $(x,y) \in X_1^2 \cup X_2^2$ with $x \leq y$ or $(x,y) \in X_2 \times X_1$. Note that $X_2 = \varnothing$ provides $\alpha \in \mathcal{O}(X)$. We denote by $\mathcal{OP}(X)$ the submonoid of $\mathcal{T}(X)$ of all orientation-preserving full transformations on X. An equivalent notion of an orientation-preserving transformation was first introduced by McAlister in [13] and, independently, by Catarino and Higgins in [1]. It is clear that $\mathcal{O}(X)$ is a submonoid of $\mathcal{OP}(X)$, i.e., $\mathcal{O}(X) \subset \mathcal{OP}(X) \subset \mathcal{T}(X)$. It is interesting to note that the relative rank of $\mathcal{T}(X)$ modulo $\mathcal{OP}(X)$ as well as the relative rank of $\mathcal{OP}(X)$ modulo $\mathcal{O}(X)$ is one (see [1, 12]), but the situation will change if one considers transformations with restricted range.

Let $Y = \{a_1 < a_2 < \ldots < a_m\}$ be a nonempty subset of X, for a natural number $m \leq n$, and denote by $\mathcal{T}(X,Y)$ the subsemigroup $\{\alpha \in \mathcal{T}(X) : X\alpha \subseteq Y\}$ of $\mathcal{T}(X)$ of all transformations with range (image) restricted to Y. The set $\mathcal{T}(X,Y)$ coincides with $\mathcal{T}(X)$, whenever Y = X (i.e., m = n). In 1975, Symons [15] introduced and studied the semigroup $\mathcal{T}(X,Y)$, which is called semigroup of transformations with restricted range. Recently, the rank of $\mathcal{T}(X,Y)$ was computed by Fernandes and Sanwong in [6]. They proved that the rank of $\mathcal{T}(X,Y)$ is the Sterling number S(n,m) of second kind with |X| = n and |Y| = m. The rank of the order-preserving counterpart $\mathcal{O}(X,Y)$ of $\mathcal{T}(X,Y)$ was studied in [4] by Fernandes, Honyam, Quinteiro, and Singha. The authors found that $\mathrm{rank}\,\mathcal{O}(X,Y) = \binom{n-1}{m-1} + |Y^\#|$, where $Y^\#$ denotes the set of all $y \in Y$ with one of the following properties: (i) y has no successor in X; (ii) y is no successor of any element in X; (iii) both the successor of Y and the element whose successor is y belong to Y. Moreover, the regularity and the rank of the semigroup $\mathcal{OP}(X,Y)$ were studied by the same authors in [5]. They showed that $\mathrm{rank}\,\mathcal{OP}(X,Y) = \binom{n}{m}$. In [16], Tinpun and Koppitz studied the relative rank of

 $\mathcal{T}(X,Y) \text{ modulo } \mathcal{O}(X,Y) \text{ and proved that } \operatorname{rank}(\mathcal{T}(X,Y):\mathcal{O}(X,Y)) = S(n,m) - \binom{n-1}{m-1} + a,$ where $a \in \{0,1\}$ depending on the set Y. In this paper, we determine the relative rank of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ as well as the relative rank of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$.

Let $\alpha \in \mathcal{T}(X,Y)$. The kernel of α is the equivalence relation $\ker \alpha$ with $(x,y) \in \ker \alpha$ if $x\alpha = y\alpha$. It corresponds uniquely to a partition on X. This justifies to regard $\ker \alpha$ as a partition on X. We will call a block of this partition as $\ker \alpha$ -class. In particular, the sets $x\alpha^{-1} = \{y \in X : y\alpha = x\}$, for $x \in X\alpha$, are the $\ker \alpha$ -classes. We say that a partition P is a subpartition of a partition Q of X if for all $p \in P$ there is $q \in Q$ with $p \subseteq q$. A set $T \subseteq X$ with $|T \cap x\alpha^{-1}| = 1$, for all $x \in X\alpha$, is called a transversal of $\ker \alpha$. Let $A \subseteq X$. Then $\alpha|_A : A \to Y$ denotes the restriction of α to A and A will be called convex if x < y < z with $x, z \in A$ implies $y \in A$.

Let $l \in \{1, \ldots, m\}$. We denote by \mathcal{P}_l the set of all partitions $\{A_1, \ldots, A_l\}$ of X such that $A_2 < A_3 < \ldots < A_l$ are convex sets (if l > 1) and A_1 is the union of two convex sets with $1, n \in A_1$. Further, let \mathcal{Q}_l be the set of all partitions $\{A_1, \ldots, A_l\}$ of X such that $A_1 < A_2 < \ldots < A_l$ are convex and let \mathcal{R}_l be the set of all partitions of X, which not belong to $\mathcal{Q}_l \cup \mathcal{P}_l$. We observe that $\ker \beta \in \mathcal{Q}_l \cup \mathcal{P}_l$, whenever $\beta \in \mathcal{OP}(X,Y)$ with $|X\beta| = l$. In particular, $\ker \beta \in \mathcal{Q}_l$, whenever $\beta \in \mathcal{O}(X,Y)$.

Let us consider the case l=m>1. For $P\in\mathcal{P}_m$ with the blocks $A_1,\ A_2<\ldots< A_m,$ let α_P be the transformation on X defined by

$$x\alpha_P := a_i$$
, whenever $x \in A_i$ for $1 \le i \le m$,

in the case $1 \notin Y$ or $n \notin Y$ and

$$x\alpha_P := \begin{cases} a_{i+1}, & \text{if} \quad x \in A_i \quad \text{for} \quad 1 \le i < m, \\ a_1, & \text{if} \quad x \in A_m, \end{cases}$$

in the case $1, n \in Y$. Clearly, $\ker \alpha_P = P$. For $X_1 = \{1, \ldots, \max A_m\}$, $X_2 = \{\max A_m + 1, \ldots, n\}$ in the case $1 \notin Y$ or $n \notin Y$ and $X_1 = \{1, \ldots, \max A_{m-1}\}$, $X_2 = \{\max A_{m-1} + 1, \ldots, n\}$ in the case $1, n \in Y$, where $\max A_m$ ($\max A_{m-1}$) denotes the greatest element in the set A_m (A_{m-1} , respectively), we can easy verify that α_P is orientation-preserving.

Further, let $\eta \in \mathcal{T}(X,Y)$ be defined by

$$x\eta := \begin{cases} a_{i+1}, & \text{if} \quad a_i \leq x < a_{i+1}, \quad 1 \leq i < m, \\ a_1, & \text{if} \quad x = a_m, \\ a_{\Gamma}, & \text{otherwise,} \end{cases} \qquad \text{with} \qquad \Gamma := \begin{cases} 1, & \text{if} \quad 1 \notin Y, \\ 2, & \text{otherwise,} \end{cases}$$

in the case $1 \notin Y$ or $n \notin Y$ and

$$x\eta := \begin{cases} a_{i+1}, & \text{if} \quad a_i \le x < a_{i+1}, \quad 1 \le i < m, \\ a_1 = 1, & \text{if} \quad x = a_m = n, \end{cases}$$

in the case that $1, n \in Y$. Notice that $P_0 := \ker \eta \in \mathcal{P}_m$ if $1 \notin Y$ or $n \notin Y$ and $\ker \eta \in \mathcal{Q}_m$ if $1, n \in Y$. In fact, $\eta \in \mathcal{OP}(X,Y)$ with $X_1 = \{1, 2, \dots, a_m - 1\}$ and $X_2 = \{a_m, a_m + 1, \dots, n\}$. Moreover, $\eta|_Y$ is a permutation on Y, namely

$$\eta|_Y = \begin{pmatrix} a_1 & \dots & a_{m-1} & a_m \\ a_2 & \dots & a_m & a_1 \end{pmatrix}.$$

We will denote by S(Y) the set of all permutations on Y. Note that $\beta \in \mathcal{O}(X,Y)$ implies that either $\beta|_Y$ is the identity mapping on Y or $\beta|_Y \notin S(Y)$.

2. The relative rank of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. In this section, we determine the relative rank of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. A part of these results were presented at the 47th spring conference of the Union of Bulgarian mathematicians in March 2018 and are published in the proceedings of this conference [3].

If m = 1, then $\mathcal{OP}(X, Y)$ is the set of all constant mappings and coincides with $\mathcal{O}(X, Y)$, i.e., $\operatorname{rank}(\mathcal{OP}(X, Y) : \mathcal{O}(X, Y)) = 0$. So, we admit that m > 1.

First, we will show that

$$\mathcal{A} := \{\alpha_P : P \in \mathcal{P}_m\} \cup \{\eta\}$$

is a relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. Notice that $\eta = \alpha_{P_0}$ if $1 \notin Y$ or $n \notin Y$. **Lemma 1.** For each $\alpha \in \mathcal{OP}(X,Y)$ with rank $\alpha = m$, there is $\widehat{\alpha} \in \{\alpha_P : P \in \mathcal{P}_m\} \cup \mathcal{O}(X,Y)$ with $\ker \alpha = \ker \widehat{\alpha}$. **Proof.** Let $\alpha \in \mathcal{OP}(X,Y)$ and let $X_1, X_2 \subseteq X$ as in the definition of an orientation-preserving transformation. If $X_2 = \varnothing$, then $\alpha \in \mathcal{O}(X,Y)$. Suppose now that $X_2 \neq \varnothing$ and let $X_1\alpha = \{x_1 < \ldots < x_r\}$ and $X_2\alpha = \{y_1 < \ldots < y_s\}$ for suitable natural numbers r and s. We observe that $X_1\alpha$ and $X_2\alpha$ have at most one joint element (only $x_1 = y_s$ could be possible). If $x_1 \neq y_s$, then

$$\ker \alpha = \{x_1 \alpha^{-1} < \dots < x_r \alpha^{-1} < y_1 \alpha^{-1} < \dots < y_s \alpha^{-1}\} = \ker \widehat{\alpha}$$

with

620

$$\widehat{\alpha} = \begin{pmatrix} x_1 \alpha^{-1} & \dots & x_r \alpha^{-1} & y_1 \alpha^{-1} & \dots & y_s \alpha^{-1} \\ a_1 & \dots & a_r & a_{r+1} & \dots & a_{r+s} \end{pmatrix} \in \mathcal{O}(X, Y).$$

If $x_1 = y_s$, then $1, n \in x_1 \alpha^{-1} = y_s \alpha^{-1}$ and $\ker \alpha = \ker \alpha_P$ with

$$P = \left\{ x_1 \alpha^{-1}, x_2 \alpha^{-1} < \dots < x_r \alpha^{-1} < y_1 \alpha^{-1} < \dots < y_{s-1} \alpha^{-1} \right\} \in \mathcal{P}_m.$$

Lemma 1 is proved.

Proposition 1. $\mathcal{OP}(X,Y) = \langle \mathcal{O}(X,Y), \mathcal{A} \rangle$.

Proof. Let $\beta \in \mathcal{OP}(X,Y)$ with rank $\beta = m$. Then there is $\theta \in \{\alpha_P : P \in \mathcal{P}_m\} \cup \mathcal{O}(X,Y)$ with $\ker \beta = \ker \theta$ by Lemma 1. In particular, there is $r \in \{0, \dots, m-1\}$ with $a_1\theta^{-1} = a_{r+1}\beta^{-1}$. Then it is easy to verify that $\beta = \theta\eta^r$, where $\eta^0 = \eta^m$.

Admit now that $i=\operatorname{rank}\beta < m$. Suppose that $\ker \beta \in \mathcal{P}_i$, say $\ker \beta = \{A_1,A_2 < \ldots < A_i\}$ with $1,n\in A_1$. Then there is a subpartition $P'\in \mathcal{P}_m$ of $\ker \beta$. We put $\theta = \alpha_{P'},\ a = \min X\beta$, and let T be a transversal of $\ker \theta$. In particular, we have $Y=\{x(\theta|_T)\eta^k:x\in T\}$ for all $k\in \{1,\ldots,m\}$. Since both mappings $\theta|_T\colon T\to Y$ and $\eta|_Y\colon Y\to Y$ are bijections, there is $k\in \{1,\ldots,m\}$ with $a_1((\theta|_T)\eta^k)^{-1}\beta=a$ and $a_1((\theta|_T)\eta^{k+1})^{-1}\beta\neq a$. Moreover, since $(\theta|_T)\eta^k$ is a bijection from T to Y and both transformations $\theta\eta^k$ and β are orientation-preserving, it is easy to verify that $f^*=\left((\theta|_T)\eta^k\right)^{-1}\beta$ can be extended to an orientation-preserving transformation f defined by

$$xf = \begin{cases} a_1 f^*, & \text{if } x < a_1, \\ a_i f^*, & \text{if } a_i \le x < a_{i+1}, & 1 \le i < m, \\ a_m f^*, & \text{if } a_m \le x, \end{cases}$$

i.e., f and f^* coincide on Y. Moreover, $a_1f = a_1f^* = a_1\big((\theta|_T)\eta^k\big)^{-1}\beta = a$. In order to show that f is order-preserving, it left to verify that $nf \neq a$. Assume that nf = a, where $n \geq a_m$. Then $nf = a_mf^* = a_mf$, i.e., $(n,a_m) \in \ker f$ and $n\eta = a_m\eta = a_1$. So, there is $x^* \in T$ such that $x^*\big((\theta|_T)\eta^k\big) = a_m$, i.e., $x^* = a_m\big((\theta|_T)\eta^k\big)^{-1}$. Now, we have $a = nf = a_mf^* = a_m\big((\theta|_T)\eta^k\big)^{-1}\beta = a_m(\eta^k|_Y)^{-1}(\theta|_T)^{-1}\beta = a_1((\theta|_T)\eta^{k+1})^{-1}\beta \neq a$, a contradiction.

Finally, we will verify that $\beta = \theta \eta^k f \in \langle \mathcal{O}(X,Y), \mathcal{A} \rangle$. For this let $x \in X$. Then there is $\widetilde{x} \in T$ such that $(x,\widetilde{x}) \in \ker \beta$. So, we have $x\theta \eta^k f = x\theta \eta^k f^* = \widetilde{x}\theta \eta^k \big((\theta|_T)\eta^k\big)^{-1}\beta = \widetilde{x}\beta = x\beta$.

Suppose now that $\ker \beta \notin \mathcal{P}_i$ and, thus, $\ker \beta \in \mathcal{Q}_i$. Let $X\beta = \{b_1, \ldots, b_i\}$ such that $b_1\beta^{-1} < \ldots < b_i\beta^{-1}$. Then we define a transformation φ by $x\varphi = a_j$ for all $x \in b_{j-1}\beta^{-1}$ and $2 \le j \le i+1$. Clearly, $\varphi \in \mathcal{O}(X,Y)$. Further, we define a transformation $\nu \in \mathcal{T}(X,Y)$ by

$$x\nu = \begin{cases} b_{j-1}, & \text{if} \quad a_j \le x < a_{j+1}, \quad 2 \le j \le i, \\ b_i, & \text{otherwise.} \end{cases}$$

Since β is orientation-preserving, there is $k \in \{1, \ldots, i\}$ such that k = i or $b_1 < \ldots < b_{k-1} < \ldots < b_{k-1}$ $< b_k < ... < b_i$. Then $X_1 = \{a_1, ..., a_{k+1} - 1\}$ and $X_2 = \{a_{k+1}, ..., n\}$ gives a partition of X providing that ν is orientation-preserving. Clearly, rank $\nu = i$ and $1\nu = n\nu = b_i$. Thus, it is easy to verify that $\ker \nu \in \mathcal{P}_i$. Hence, $\nu \in \langle \mathcal{O}(X,Y), \mathcal{A} \rangle$ by the previous case and it remains to show that $\beta = \varphi \nu \in \langle \mathcal{O}(X,Y), \mathcal{A} \rangle$. For this let $x \in X$. Then $x \in b_j \beta^{-1}$ for some $j \in \{1, \ldots, i\}$, i.e., $x\varphi\nu = a_{j+1}\nu = b_j = x\beta.$

Proposition 1 is proved.

The previous proposition shows that \mathcal{A} is a relative generating set for $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. It remains to show that \mathcal{A} is of minimal size.

Lemma 2. Let $B \subseteq \mathcal{OP}(X,Y)$ be a relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. Then $\mathcal{P}_m \subseteq \{\ker \alpha : \alpha \in B\}.$

Proof. Let $P \in \mathcal{P}_m$. Since $\alpha_P \in \mathcal{OP}(X,Y) = \langle \mathcal{O}(X,Y), B \rangle$, there are $\theta_1 \in \mathcal{O}(X,Y) \cup B$ and $\theta_2 \in \mathcal{OP}(X,Y)$ with $\alpha_P = \theta_1 \theta_2$. Because of rank $\alpha_P = m$, we obtain $\ker \alpha_P = \ker \theta_1$. Since $1\alpha_P = n\alpha_P$, we conclude that $\theta_1 \notin \mathcal{O}(X,Y)$, i.e., $\theta_1 \in B$ with $\ker \theta_1 = \ker \alpha_P = P$.

Lemma 2 is proved.

In order to find a formula for the number of elements in \mathcal{P}_m , we have to compute the number of possible partitions of X into m+1 convex sets. This number is $\binom{n-1}{m}$.

Remark 1.
$$|\mathcal{P}_m| = \binom{n-1}{m}$$
.

Now, we are able to state the main result of the section. The relative rank of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ depends of the fact whether both 1 and n belong to Y or not.

Theorem 1. For each $1 < m < n \in \mathbb{N}$,

1)
$$\operatorname{rank}(\mathcal{OP}(X,Y):\mathcal{O}(X,Y)) = \binom{n-1}{m} \text{ if } 1 \notin Y \text{ or } n \notin Y;$$

1)
$$\operatorname{rank}(\mathcal{OP}(X,Y):\mathcal{O}(X,Y)) = \binom{n-1}{m}$$
 if $1 \notin Y$ or $n \notin Y$;
2) $\operatorname{rank}(\mathcal{OP}(X,Y):\mathcal{O}(X,Y)) = 1 + \binom{n-1}{m}$ if $\{1,n\} \subseteq Y$.

Proof. 1. Note that $\ker \eta \in \mathcal{P}_m$ and $\eta = \alpha_{P_0}$. Hence, the set $\mathcal{A} = \{\alpha_P : P \in \mathcal{P}_m\}$ is a generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ by Proposition 1, i.e., the relative rank of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ is bounded by the cardinality of \mathcal{P}_m , which is $\binom{n-1}{m}$ by Remark 1. But this number cannot be reduced by Lemma 2.

2. Let $B \subset \mathcal{OP}(X,Y)$ be a relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. By Lemma 2, we know that $\mathcal{P}_m \subseteq \{\ker \alpha : \alpha \in B\}$. Assume that the equality holds. Note that $\ker \eta \in \mathcal{Q}_m$ and η is not order-preserving. Hence, there are $\theta_1, \dots, \theta_l \in \mathcal{O}(X,Y) \cup B$ for a suitable natural number l, such that $\eta = \theta_1 \dots \theta_l$. From rank $\eta = m$, we obtain $\ker \theta_1 = \ker \eta$ and $\operatorname{rank} \theta_i = m \text{ for } i \in \{1, \dots, l\} \text{ and, thus, } \{1, n\} \subseteq Y \text{ implies } (1, n) \notin \ker \theta_i \text{ for } i \in \{2, \dots, l\}.$ This implies $\theta_2, \dots, \theta_l \in \mathcal{O}(X, Y)$. Since $\ker \theta_1 = \ker \eta \notin \mathcal{P}_m$, we get $\theta_1 \in \mathcal{O}(X, Y)$, and, consequently, $\eta = \theta_1 \theta_2 \dots \theta_l \in \mathcal{O}(X,Y)$, a contradiction. So, we have verified that $|\mathcal{P}_m| < |B|$, i.e., the relative rank of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ is greater than $\binom{n-1}{m}$. But it is bounded by

$$1 + \binom{n-1}{m}$$
 due to Proposition 1. This proves the assertion.

Theorem 1 is proved.

We finish this section with the characterization of the minimal relative generating sets of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. We will recognize that among them there are sets with size greater than rank $(\mathcal{OP}(X,Y):\mathcal{O}(X,Y))$.

Theorem 2. Let $B \subseteq \mathcal{OP}(X,Y)$. Then B is a minimal relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ if and only if for the set $\widetilde{B} = \{\beta \in B : \ker \beta \in \mathcal{Q}_m\} \subseteq B$ the following three statements are satisfied:

- (i) $\mathcal{P}_m \subseteq \{ \ker \beta : \beta \in B \setminus B \},$
- (ii) $|B \setminus \widetilde{B}| = |\mathcal{P}_m|$,
- (iii) $\eta|_Y \in \langle \beta|_Y : \beta \in B \rangle$ but $\eta|_Y \notin \langle \beta|_Y : \beta \in B \setminus \{\gamma\} \rangle$ for any $\gamma \in \widetilde{B}$.

Proof. Suppose that the conditions (i)–(iii) are satisfied for $\widetilde{B} = \{\beta \in B : \ker \beta \in \mathcal{Q}_m\}$. We will show that $\mathcal{A} \subseteq \langle \mathcal{O}(X,Y), B \rangle$. Let $\alpha \in \mathcal{A} \setminus \{\eta\}$. Then there is a partition $P = \{A_1, A_2 < \ldots < A_m\} \in \mathcal{P}_m$ such that

$$\alpha = \alpha_P = \begin{pmatrix} A_1 & A_2 & \dots & A_m \\ a_1 & a_2 & \dots & a_m \end{pmatrix}, \quad \text{if} \quad 1 \notin Y \quad \text{or} \quad n \notin Y,$$

or

$$\alpha = \alpha_P = \begin{pmatrix} A_1 & A_2 & \dots & A_{m-1} & A_m \\ a_2 & a_3 & \dots & a_m & a_1 \end{pmatrix}, \quad \text{if} \quad 1, n \in Y.$$

Notice that in the latter case $a_1 = 1$ and $a_m = n$.

Further, from (i) it follows that there is $\beta \in B$ with $\ker \beta = \ker \alpha_P$, i.e., $\beta = \alpha_P$ or

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{m-i+1} & A_{m-i+2} & \dots & A_m \\ a_i & a_{i+1} & \dots & a_m & a_1 & \dots & a_{i-1} \end{pmatrix}$$

for some $i \in \{3, \ldots, m\}$. It is easy to verify that $\alpha_P = \beta^k \in \langle B \rangle$ for a suitable natural number k. Hence, $\{\alpha_P : P \in \mathcal{P}_m\} \subseteq \langle \mathcal{O}(X,Y), B \rangle$. Further, $\ker \eta \in \mathcal{P}_m$, whenever $1 \notin Y$ or $n \notin Y$, and $\ker \eta \in \mathcal{Q}_m$ otherwise. Thus, there is $\delta \in \langle \mathcal{O}(X,Y), B \rangle$ with $\ker \delta = \ker \eta$. Then we obtain as above that $\eta = \delta^l \in \langle \mathcal{O}(X,Y), B \rangle$ for a suitable natural number l. Consequently, $\langle \mathcal{O}(X,Y), A \rangle \subseteq \langle \mathcal{O}(X,Y), B \rangle$. By Proposition 1, we obtain $\mathcal{OP}(X,Y) = \langle \mathcal{O}(X,Y), B \rangle$. The generating set B is minimal by properties (i) and (ii) together with Lemma 2 and by the property (iii) of \widetilde{B} .

Conversely, let B be a minimal relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. By Lemma 2, there is a set $\overline{B} \subseteq B$ such that $\mathcal{P}_m = \{\ker \beta : \beta \in \overline{B}\}$ and $|\overline{B}| = |\mathcal{P}_m|$. Since $\mathcal{OP}(X,Y) = \langle \mathcal{O}(X,Y), B \rangle$, there are $\beta_1, \ldots, \beta_k \in \mathcal{O}(X,Y) \cup B$ such that $\eta = \beta_1 \ldots \beta_k$. Without loss of generality, we can assume that there is not $\gamma \in \{\beta_i : 1 \le i \le k, \ker \beta_i \in \mathcal{Q}_m\} =: \widehat{B}$ such that η is a product of transformations in $\overline{B} \cup (\widehat{B} \setminus \{\gamma\})$. In the first part of the proof, we have shown that $\overline{B} \cup \widehat{B}$ is a relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$. Because of the minimality of B, we obtain $B = \overline{B} \cup \widehat{B}$, where $\{\ker \beta : \beta \in B \setminus \widehat{B}\} \supseteq \mathcal{P}_m, |B \setminus \widehat{B}| = |\overline{B}| = |\mathcal{P}_m|$ and $\eta|_Y \in \langle \beta|_Y : \beta \in B \rangle$ but $\eta|_Y \notin \langle \beta|_Y : \beta \in B \setminus \{\gamma\}\rangle$ for any $\gamma \in \widehat{B}$.

Theorem 2 is proved.

In particular, for the relative generating sets of minimal size we have the following remark.

Remark 2. $B \subseteq \mathcal{OP}(X,Y)$ is a relative generating set of $\mathcal{OP}(X,Y)$ modulo $\mathcal{O}(X,Y)$ of minimal size if and only if $|\widetilde{B}| = 1$ if $1, n \in Y$ and $\widetilde{B} = \emptyset$, otherwise.

3. The relative rank of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$. In this section, we determine the relative rank of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$ and characterize all minimal relative generating sets of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$. Since $\mathcal{O}(X,Y) \leq \mathcal{OP}(X,Y)$, we see immediately that $\mathrm{rank}(\mathcal{T}(X,Y):\mathcal{OP}(X,Y)) \leq S(n,m) - \binom{n-1}{m-1} + 1$. First, we state a sufficient condition for a set $B \subseteq \mathcal{T}(X,Y)$ to be a relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$.

Lemma 3. Let $B \subseteq \mathcal{T}(X,Y)$. If $\mathcal{R}_m \subseteq \{\ker \beta : \beta \in B\}$ and $\mathcal{S}(Y) \subseteq \langle \{\beta|_Y : \beta \in B\}, \eta|_Y \rangle$, then $\langle \mathcal{OP}(X,Y), B \rangle = \mathcal{T}(X,Y)$.

Proof. Let $\gamma \in \mathcal{T}(X,Y)$ with rank $\gamma = k \leq m$. We will consider two cases.

Case 1. Suppose that $\ker \gamma \in \mathcal{R}_k$. Then $\ker \gamma$ contains a non-convex set which cannot be decomposed into two convex sets, which contain 1 and n, respectively. Since $k \leq m$, we can divide the partition $\ker \gamma$ into a partition $P \in \mathcal{R}_m$ such that P contains a non-convex set which cannot be decomposed into two convex sets, which contain 1 and n, respectively (if k = m, then we put $P = \ker \gamma$). Since $\mathcal{R}_m \subseteq \{\ker \beta : \beta \in B\}$, there is $\lambda \in B$ with $\ker \lambda = P$. It is clear that $X\lambda = Y$.

Further, let $X\gamma = \{y_1 < y_2 < \ldots < y_k\}$ and define the sets

$$A_i = \left\{ x \in Y : x\lambda^{-1} \subseteq y_i \gamma^{-1} \right\}$$

for $i=1,\ldots,k$. It is clear that $\{A_1,A_2,\ldots,A_k\}$ is a partition of Y. Moreover, let $\{C_1 < C_2 < \ldots < C_k\} \in \mathcal{Q}_k$ be a partition of X such that $|C_i \cap Y| = |A_i|$ for all $i=1,\ldots,k$. Let $A_i = \{a_{i_1} < a_{i_2} < \ldots < a_{i_{t_i}}\}$ and $C_i \cap Y = \{c_{i_1} < c_{i_2} < \ldots < c_{i_{t_i}}\}$ with $t_i \in \{1,\ldots,m\}$ for $i \in \{1,\ldots,k\}$. We define a bijection

$$\sigma: \bigcup_{i=1}^k A_i = Y \longrightarrow \bigcup_{i=1}^k (C_i \cap Y) = Y$$

on Y with $a_{i_l}\sigma=c_{i_l}$ for $l=1,\ldots,t_i$ and $i=1,\ldots,k$. Since $\sigma\in\mathcal{S}(Y)$ and $\mathcal{S}(Y)\subseteq \left\langle\{\beta|_Y:\beta\in B\},\eta|_Y\right\rangle$, there is $\mu\in\langle B,\eta\rangle$ with $\mu|_Y=\sigma$.

Finally, we define a transformation $\nu \in \mathcal{O}(X,Y) \subseteq \mathcal{OP}(X,Y)$ with $\ker \nu = \{C_1 < C_2 < \dots < C_k\}$ and $x\nu = y_i$ for all $x \in C_i$ and $i = 1, \dots, k$.

Therefore, we have $\lambda, \mu, \nu \in \langle \mathcal{OP}(X,Y), B \rangle$ and it remains to show that $\gamma = \lambda \mu \nu$, i.e., $\gamma \in \langle \mathcal{OP}(X,Y), B \rangle$. Let $x \in X$. Then $x\gamma = y_i$ for some $i \in \{1, \dots, k\}$ and we get

$$x\gamma = y_i \Rightarrow x\lambda = z \in A_i \Rightarrow z\mu = u \in C_i \cap Y \Rightarrow u\nu = y_i.$$

Hence, $x\gamma = y_i = x(\lambda\mu\nu)$ and we conclude $\gamma = \lambda\mu\nu$.

Case 2. Suppose that $\ker \gamma \notin \mathcal{R}_k$, i.e., $\ker \gamma \in \mathcal{Q}_k \cup \mathcal{P}_k$ and there is $\rho_1 \in \mathcal{OP}(X,Y)$ with $\ker \rho_1 = \ker \gamma$. Further, there is a partition $P = \{D_y \colon y \in X \rho_1\} \in \mathcal{R}_k$ such that $y \in D_y$ for all $y \in X \rho_1$. Then we define a transformation $\rho_2 \colon X \to X \gamma$ with $\ker \rho_2 = P$ and $\{x \rho_2\} = y \rho_1^{-1} \gamma$ for all $x \in D_y$ and $y \in X \rho_1$. Since $\ker \rho_1 = \ker \gamma$, the transformation ρ_2 is well defined and we have $\gamma = \rho_1 \rho_2$. Moreover, $\rho_2 \in \langle \mathcal{OP}(X,Y), B \rangle$ by Case 1 (since $\ker \rho_2 \in \mathcal{R}_k$) and thus $\gamma = \rho_1 \rho_2 \in \langle \mathcal{OP}(X,Y), B \rangle$.

Lemma 3 is proved.

Lemma 4. $\langle \eta |_Y \rangle = \langle \{ \beta |_Y : \beta \in \mathcal{OP}(X,Y) \} \rangle \cap \mathcal{S}(Y).$

Proof. The inclusion $\langle \eta |_Y \rangle \subseteq \langle \{\beta |_Y : \beta \in \mathcal{OP}(X,Y)\} \rangle \cap \mathcal{S}(Y)$ is obviously. Let now $\beta \in \mathcal{OP}(X,Y)$ with $\beta |_Y \in \mathcal{S}(Y)$. Then there is $k \in \{1,\ldots,m\}$ such that

$$\beta = \begin{pmatrix} A_1 & \dots & A_{m-k+1} & A_{m-k} & \dots & A_m \\ a_k & \dots & a_m & a_1 & \dots & a_{k-1} \end{pmatrix}$$

with $\{A_1, A_2 < \ldots < A_m\} \in \mathcal{P}_m \cup \mathcal{Q}_m$ and $a_i \in A_i$ for $i \in \{1, \ldots, m\}$ since Y is a transversal of $\ker \beta$. Thus,

$$\beta|_{Y} = \begin{pmatrix} a_1 & \dots & a_{m-k+1} & a_{m-k} & \dots & a_m \\ a_k & \dots & a_m & a_1 & \dots & a_{k-1} \end{pmatrix} = (\eta|_{Y})^{m-k+1} \in \langle \eta|_{Y} \rangle.$$

This shows that $\langle \{\beta|_Y : \beta \in \mathcal{OP}(X,Y)\} \rangle \cap \mathcal{S}(Y) \subseteq \{(\eta|_Y)^p : p \in \mathbb{N}\} = \langle \eta|_Y \rangle$.

Lemma 4 is proved.

The following lemmas give us necessary conditions for a set $B \subseteq \mathcal{T}(X,Y)$ to be a relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$.

Lemma 5. Let $B \subseteq \mathcal{T}(X,Y) \setminus \mathcal{OP}(X,Y)$ with $\langle \mathcal{OP}(X,Y), B \rangle = \mathcal{T}(X,Y)$. Then $\mathcal{S}(Y) \subseteq \langle \{\beta|_Y : \beta \in B\}, \eta|_Y \rangle$.

Proof. Let $\sigma \in \mathcal{S}(Y)$. We extend σ to a transformation $\gamma \colon X \to Y$, i.e., $\gamma|_Y = \sigma$. Hence, there are $\gamma_1, \ldots, \gamma_k \in \mathcal{OP}(X,Y) \cup B$ (for a suitable natural number k) such that $\gamma = \gamma_1 \ldots \gamma_k$. Since the image of any transformation in $\mathcal{T}(X,Y)$ belongs to Y, we have $\sigma = \gamma|_Y = \gamma_1|_Y \ldots \gamma_k|_Y$. Moreover, from $\sigma \in \mathcal{S}(Y)$, we conclude $\gamma_i|_Y \in \mathcal{S}(Y)$ for $1 \le i \le k$. Let $\gamma_i \in \mathcal{OP}(X,Y)$ for some $i \in \{1,\ldots,k\}$. Then by Lemma 4

$$\gamma_i|_Y = \begin{pmatrix} a_1 & \dots & a_t & a_{t+1} & \dots & a_m \\ a_{m-t+1} & \dots & a_m & a_1 & \dots & a_{m-t} \end{pmatrix} \in \langle \eta|_Y \rangle$$

for a suitable natural number t. This shows $\sigma \in \langle \{\beta|_Y : \beta \in B\}, \eta|_Y \rangle$

Lemma 5 is proved.

Lemma 6. Let $B \subseteq \mathcal{T}(X,Y) \setminus \mathcal{OP}(X,Y)$ with $\langle \mathcal{OP}(X,Y), B \rangle = \mathcal{T}(X,Y)$. Then $\mathcal{R}_m \subseteq \{\ker \beta : \beta \in B\}$.

Proof. Assume that there is $P \in \mathcal{R}_m$ with $P \notin \{\ker \beta : \beta \in B\}$. Let $\gamma \in \mathcal{T}(X,Y)$ with $\ker \gamma = P$. Then there are $\theta_1 \in \mathcal{OP}(X,Y) \cup B$ and $\theta_2 \in \mathcal{T}(X,Y)$ such that $\gamma = \theta_1\theta_2$. Since $\operatorname{rank} \gamma = m$, we obtain $\ker \gamma = \ker \theta_1 = P$. Thus, $\theta_1 \notin B$, i.e., $\theta_1 \in \mathcal{OP}(X,Y)$ and $\ker \theta_1 \in \mathcal{Q}_m \cup \mathcal{P}_m$, contradicts $\ker \theta_1 = P \in \mathcal{R}_m$.

Lemma 6 is proved.

Lemma 6 shows that $\operatorname{rank}(\mathcal{T}(X,Y) \colon \mathcal{OP}(X,Y)) \geq |\mathcal{R}_m|$. We will verify the equality.

Lemma 7.
$$|\mathcal{R}_m| = S(m,n) - \binom{n}{m}$$
.

Proof. The cardinality of the set $\mathcal{D}_m := \mathcal{R}_m \cup \mathcal{P}_m$ was determined in [16]. The authors show that $|\mathcal{D}_m| = S(m,n) - \binom{n-1}{m-1}$. Because of $\mathcal{R}_m \cap \mathcal{P}_m = \emptyset$, we obtain $\mathcal{R}_m = \mathcal{D}_m \setminus \mathcal{P}_m$. Since

$$|\mathcal{P}_m| = \binom{n-1}{m}$$
 (see Remark 1) it follows

$$|\mathcal{R}_m| = |\mathcal{D}_m| - |\mathcal{P}_m| = S(m,n) - \binom{n-1}{m-1} - \binom{n-1}{m} = S(m,n) - \binom{n}{m}.$$

Lemma 7 is proved.

Finally, we can state the relative rank of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$.

Theorem 3.
$$\operatorname{rank}(\mathcal{T}(X,Y):\mathcal{OP}(X,Y))=S(m,n)-\binom{n}{m}.$$

Proof. If $m=1$ then $\mathcal{T}(X,Y)=\mathcal{OP}(X,Y)$, i.e., $\operatorname{rank}(\mathcal{T}(X,Y):\mathcal{OP}(X,Y))=0.$ On the

Proof. If m=1 then $\mathcal{T}(X,Y)=\mathcal{OP}(X,Y)$, i.e., $\mathrm{rank}(\mathcal{T}(X,Y):\mathcal{OP}(X,Y))=0$. On the other hand, we have $S(1,n)=n=\binom{n}{1}$. Suppose now that $n\geq 2$. By Lemmas 6 and 7, we obtain $\mathrm{rank}(\mathcal{T}(X,Y):\mathcal{OP}(X,Y))\geq |\mathcal{R}_m|=S(m,n)-\binom{n}{m}$. In order to prove the equality, we have to find a relative generating set B of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$ with $|B|=|\mathcal{R}_m|$. We observe that for each $P\in\mathcal{R}_m$, there is $\beta_P\in\mathcal{T}(X,Y)$ with $\ker\beta_P=P$, which will be fixed. Let $\mathcal{B}:=\{\beta_P:P\in\mathcal{R}_m\}$. If m=2 then $\mathcal{R}_m=\emptyset$ and $\mathcal{S}(Y)=\{n|_{Y_n},(n|_{Y_n})^2\}=\langle n|_{Y_n}\rangle$, obviously. If m>3

 $P \in \mathcal{R}_m$. If m=2 then $\mathcal{R}_m=\varnothing$ and $\mathcal{S}(Y)=\{\eta|_Y,(\eta|_Y)^2\}=\langle\eta|_Y\rangle$, obviously. If $m\geq 3$ then without loss of generality, we can assume that there is $P'\in\mathcal{R}_m$ such that Y is a transversal of $\ker\beta_{P'}$ and $\beta_{P'}|_Y=\begin{pmatrix}a_1&a_2&a_3&\dots&a_m\\a_2&a_1&a_3&\dots&a_m\end{pmatrix}$. It is known that $\mathcal{S}(Y)=\langle\beta_{P'}|_Y,\eta|_Y\rangle$. Hence, \mathcal{B} is a relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$ by Lemma 3. Since $|\mathcal{B}|=|\mathcal{R}_m|$, we obtain the required result.

Theorem 3 is proved.

Now we will characterize the minimal relative generating sets of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$. The minimal relative generating sets do not coincide with the relative generating sets of size $\operatorname{rank}(\mathcal{T}(X,Y):\mathcal{OP}(X,Y))$.

Theorem 4. Let $B \subseteq \mathcal{T}(X,Y)$. Then B is a minimal relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$ if and only if there is a set $\widetilde{B} \subseteq B$ such that the following three statements are satisfied:

- (i) $\mathcal{R}_m \subseteq \{ \ker \beta : \beta \in B \setminus \widetilde{B} \},$
- (ii) $|B \setminus \widetilde{B}| = |\mathcal{R}_m|$,
- (iii) $S(Y) \subseteq \langle \{\beta|_Y : \beta \in B\}, \eta|_Y \rangle$ but $S(Y) \nsubseteq \langle \{\beta|_Y : \beta \in B \setminus \{\gamma\}\}, \eta|_Y \rangle$ for any $\gamma \in B$ with $\ker \gamma \in \{\ker \beta : \beta \in \widetilde{B}\}.$

Proof. Suppose that the conditions (i)–(iii) are satisfied. Then by Lemma 3 we have $\langle \mathcal{OP}(X,Y),B\rangle=\mathcal{T}(X,Y)$. It remains to show that B is minimal. Assume that there is $\gamma\in B$ such that $\langle \mathcal{OP}(X,Y),B\setminus\{\gamma\}\rangle=\mathcal{T}(X,Y)$. Note that $\alpha\beta|_Y=\alpha|_Y\beta|_Y$ for all $\alpha,\beta\in\mathcal{T}(X,Y)$. Hence, we can conclude that

$$S(Y) \subseteq \langle \{\beta|_Y : \beta \in \mathcal{T}(X,Y)\} \rangle \subseteq$$

$$\subseteq \left\langle \left\{\beta|_Y : \beta \in \mathcal{OP}(X,Y) \cup (B \setminus \{\gamma\})\right\} \right\rangle = \left\langle \left\{\beta|_Y : \beta \in B \setminus \{\gamma\}\right\}, \eta|_Y \right\rangle$$

by Lemma 4. Hence, $\ker \gamma \notin \{\ker \beta : \beta \in \widetilde{B}\}\$ by (iii). This implies that $\gamma \in B \setminus \widetilde{B}$ and $|(B \setminus \widetilde{B}) \setminus \{\gamma\}| < |\mathcal{R}_m|$ by (ii), i.e., $\mathcal{R}_m \nsubseteq \{\ker \beta : \beta \in (B \setminus \widetilde{B}) \setminus \{\gamma\}\}\$. Since $\ker \gamma \notin \{\ker \beta : \beta \in \widetilde{B}\}\$, we have $\mathcal{R}_m \nsubseteq \{\ker \beta : \beta \in (B \setminus \{\gamma\})\}\$ and, by Lemma 6, we obtain that $\langle \mathcal{OP}(X,Y), B \setminus \{\gamma\} \rangle \neq \mathcal{T}(X,Y)$, a contradiction. This shows that B is a minimal relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$.

Conversely, let B be a minimal relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$. We have $\mathcal{R}_m \subseteq \{\ker \beta : \beta \in B\}$ and $\mathcal{S}(Y) \subseteq \langle \{\beta|_Y : \beta \in B\}, \eta|_Y \rangle$ by Lemmas 5 and 6, respectively. Then there exists a set $\widetilde{B} \subseteq B$ with $|B \setminus \widetilde{B}| = |\mathcal{R}_m|$ and $\mathcal{R}_m \subseteq \{\ker \beta : \beta \in (B \setminus \widetilde{B})\}$. For the set \widetilde{B} , the conditions (i) and (ii) are satisfied. Assume now that there is $\gamma \in B$ with $\ker \gamma \in \{\ker \beta : \beta \in \widetilde{B}\}$ such that $\mathcal{S}(Y) \subseteq \langle \{\beta|_Y : \beta \in B \setminus \{\gamma\}\}, \eta|_Y \rangle$. Then because of $\mathcal{R}_m \subseteq \{\ker \beta : \beta \in (B \setminus \{\gamma\})\}$, the set $B \setminus \{\gamma\}$ is a relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$ by Lemma 3. This contradicts the minimality of B. Consequently, (iii) is satisfied.

Theorem 4 is proved.

In particular, for the relative generating sets of minimal size we have the following remark.

Remark 3. $B \subseteq \mathcal{T}(X,Y)$ is a relative generating set of $\mathcal{T}(X,Y)$ modulo $\mathcal{OP}(X,Y)$ of minimal size if and only if $\widetilde{B} = \emptyset$.

References

- 1. P. M. Catarino, P. M. Higgins, *The monoid of orientation-preserving mappings on a chain*, Semigroup Forum, **58**, 190–206 (1999).
- 2. I. Dimitrova, V. H. Fernandes, J. Koppitz, *A note on generators of the endomorphism semigroup of an infinite countable chain*, J. Algebra and Appl., **16**, № 2, Article 1750031 (2017).
- 3. I. Dimitrova, J. Koppitz, K. Tinpun, *On the relative rank of the semigroup of orientation-preserving transformations with restricted range*, Proc. 47th Spring Conf. Union Bulg. Math., 109 114 (2018).
- 4. V. H. Fernandes, P. Honyam, T. M. Quinteiro, B. Singha, *On semigroups of endomorphisms of a chain with restricted range*, Semigroup Forum, **89**, 77 104 (2014).
- 5. V. H. Fernandes, P. Honyam, T. M. Quinteiro, B. Singha, *On semigroups of orientation-preserving transformations with restricted range*, Commun. Algebra, **44**, 253–264 (2016).
- 6. V. H. Fernandes, J. Sanwong, *On the rank of semigroups of transformations on a finite set with restricted range*, Algebra Colloq., **21**, 497 510 (2014).
- 7. G. M. S. Gomes, J. M. Howie, On the rank of certain semigroups of order-preserving transformations, Semigroup Forum, 51, 275 282 (1992).
- 8. G. M. S. Gomes, J. M. Howie, *On the ranks of certain finite semigroups of transformations*, Math. Proc. Cambridge Phil. Soc., **101**, 395 403 (1987).
- 9. P. M. Higgins, J. D. Mitchell, N. Ruškuc, *Generating the full transformation semigroup using order preserving mappings*, Glasgow Math. J., **45**, 557–566 (2003).
- 10. J. M. Howie, Fundamentals of semigroup theory, Oxford Univ. Press, Oxford (1995).
- 11. J. M. Howie, R. B. McFadden, *Idempotent rank in finite full transformation semigroups*, Proc. Roy. Soc. Edinburgh A, **114**, 161 167 (1990).
- 12. J. M. Howie, N. Ruškuc, P. M. Higgins, On relative ranks of full transformation semigroups, Commun. Algebra, 26, 733 748 (1998).
- 13. D. McAlister, Semigroups generated by a group and an idempotent, Commun. Algebra, 26, 515-547 (1998).
- 14. N. Ruškuc, On the rank of completely 0-simple semigroups, Math. Proc. Cambridge Phil. Soc., 116, 325 338 (1994).
- 15. J. S. V. Symons, Some results concerning a transformation semigroup, J. Austr. Math. Soc., 19, 413-425 (1975).
- 16. K. Tinpun, J. Koppitz, *Relative rank of the finite full transformation semigroup with restricted range*, Acta Math. Univ. Comenian., **85**, № 2, 347–356 (2016).

Received 04.09.18