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SOME NOTES CONCERNING RIEMANNIAN EXTENSIONS*

DEQKI ZAUVAÛENNQ WODO RIMANOVYX ROZÍYREN|

In this paper we investigate some properties of Riemannian extensions in the cotangent bundle using the
adapted frames.

DoslidΩeno deqki vlastyvosti rimanovyx rozßyren\ u kodotyçnomu rozßaruvanni z vykorystan-

nqm adaptovanyx reperiv.

1.  Introduction.  Let  M n   be an  n-dimensional differentiable manifold of class  C∞ ,
C

nT M( )   its cotangent bundle, and  π  the natural projection  C
nT M( )  →  M n .  A

system of local coordinates  ( ; )U xi , i = 1, … , n,  in  M n    induces on  C
nT M( )   a

system of local coordinates  π−( 1( )U ; xi , x i  = pi) , i = 1, … , n,  i  = n  + i = n +

+ 1, … , 2n , where  x pi
i=   is the cartesian coordinates of covectors  p  in each co-

tangent space  C
x nT M( ) , x U∈   with respect to the natural coframe  dxi{ } .

We denote by  ℑs
r

nM( )   ℑ ( )( )s
r C

nMΤ ( )   the modul over  F M n( )   F T MC
n( )( )( )

of  C∞   tensor fields of type  ( , )r s ,  where  F M n( )   F T MC
n( )( )( )   is the ring of real-

valued  C∞   functions on  M T Mn
C

n( )( ) .  The so-called Einsteins summation conven-

tion is used.

Let  X = X
x

i
i

∂
∂

  and  ω = ω i idx  be the local expressions in  U M n⊂   of a vector

field  X ∈ ℑ1
0 ( )M n , and  1-form  ω ∈  ℑ1

0 ( )M n   respectively.  Then the horizontal lift
H X  ∈ ℑ ( )0

1 C
nT M( )   of  X  and the vertical lift  V ω  ∈ ℑ ( )0

1 C
nT M( )   of  ω  are given,

respectively, by

H i
i h

i
ij
h j

i
X X

x
p X

x
=

∂
∂

+
∂

∂
∑ Γ (1)

and

V
i

i
ix

ω ω=
∂

∂
∑ (2)

with respect to the natural frame  
∂
∂

∂
∂







x xi i

, ,  where  Γ ij
h   are components of a sym-

metric (torsion-free) affine connection  ∇   on  M n .
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We now consider a tensor field  R∇  ∈  ℑ ( )2
0 C

nT M( ) ,  whose components in

π−1( )U   are given by

R∇   =  R
JI∇( )   =  

−









2

0

ph ji
h

j
i

i
j

Γ δ

δ
(3)

with respect to the natural frame, where  δ j
i   denotes the Kronecker delta.  The indices

I, J, K, … = 1, … , 2n  indicate the indices with respect to the natural frame  
∂
∂



 xi

,

∂
∂



x i

.  This tensor field defines a pseudo-Riemannian metric in  C
nT M( )   and the line

element of pseudo-Riemannian metric  R∇   is given by

ds dx pi
i

2 2= δ ,

where

δp dp p dxi i h ji
h i= − Γ .

This metric is called the Riemannian extension of the symmetric affine connection
∇   [1, 2].  A number of results referring to the applications of the Riemannian exten-
sion are contained in [3, 4].    

The complete lift of vector field  X ∈ ℑ0
1 ( )M n   to cotangent bundle  C

nT M( )   is
defined by

C X   =  X
x

p X
x

i
i h

i
i

h
i

∂
∂

− ∂
∂

∂
∑ . (4)

Using (3) and (4), we easily see that

R C CX Y∇( ),   =  − ∇ + ∇( )γ X YY X , (5)

where

γ ∇ + ∇( )X YY X   =  p X Y Y Xh
i

i
h i

i
h∇ + ∇( ) .

Since the tensor field  R∇  ∈ ℑ ( )2
0 C

nT M( )   is completely determined by its action on

vector fields of type  C X   and  CY   (see Proposition 4.2 of [2, p. 237]), we have an al-

ternative definition of  R∇ : The tensor field  R∇   is completely determined by the
condition (5).

On the other hand, the vector fields H X   and V ω   span the module ℑ ( )0
1 C

nT M( ) .

Hence tensor field  R∇    is also determined by its action of  H X   and  V ω .
From (1), (2) and (3) we have

R V V∇( ) =ω θ, 0 , (6)

R V H X∇( )ω,   =  V Xω( )( )   =  ω π( )X( ) � , (7)

R H HX Y∇( ) =, 0 (8)
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for any  X, Y ∈ ℑ0
1 ( )M n   and  ω, θ ∈  ℑ1

0( )M n .  Thus  R∇   is completely determined
by the conditions (6), (7), (8) because of the above stated reasons.

In this paper we shall develop the Riemannian extension  R∇    using the conditions
(6) – (8).  Moreover, we find it more convenient to refer equations (6) – (8) to the
adapted frame.

2.  Adapted frames.  Let  ∇   be a torsion-free affine connection on  M n .  In
U M n⊂ ,  we put

X
x

i i( ) =
∂
∂

,      θ i idx( ) = ,    i = 1, … , n.

Then from (1) and (2) we see that  H
iX( )   and  V iθ( )   have respectively local ex-

pressions of the form

H
i i a

h
hi
a

h
X

x
p

x
( ) =

∂
∂

+
∂

∂
∑ Γ , (9)

V i
ix

θ( ) =
∂

∂
. (10)

We call the set  H
i

V iX( )
( ), θ{ }  = � �e ei i( ), ( ){ }  = �e( )α{ }  the frame adapted to the affi-

ne connection  ∇ .  The indices  α, β, γ, … = 1, … , 2n  indicate the indices with respect
to the adapted frame.

We now from equations (1), (2) and (9), (10) see that the lifts  H X   and  V ω   have
respectively components

H i
iX X e= �( ) ,      H

i

X
X=






0
, (11)

V
i i

i

eω ω= ( )∑ � ,      V
iω

ω
=







0

(12)

with respect to the adapted frame  �e( )α{ } ,  where  X ∈ ℑ0
1 ( )M n ,  ω ∈  ℑ1

0( )M n ,  Xi

and  ω i   being local components of  X  and  ω,  respectively.  Also from (6) – (8) we
see that

R V i V j∇( )ω θ( ) ( ),   =  R
i je e∇ ( )( ) ( )� �,   =  R

ij
�∇   =  0,

R H
i

H
jX Y∇( )( ) ( ),   =  R

i je e∇ ( )� �( ) ( ),   =  R
ij

�∇   =  0,

R V i H jX∇( )ω( ) ( ),   =  R
i je e∇ ( )( )� �, ( )   =  R

ij
�∇   =  R

ji
�∇   =  dx

x
i

j( ) ∂
∂





   =  δ j

i ,

R H
i

V jX∇( )( )
( ), ω   =  R

i je e∇ ( )( )� �( ),   =  R
ij

�∇   =  R
ji

�∇   =  dx
x

j
i( ) ∂

∂




   =  δi

j ,

i.e.,  R∇   has components

R∇   =  R �∇( )βα   =  
R

ji
R

ji

R
ji

R
ji

� �

� �

∇ ∇

∇ ∇













  =  
0

0

δ

δ

j
i

i
j









 (13)

with respect to the adapted frame  �e( )α{ } .
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Using (9), (10), we now consider local vector fields  �eβ   and 1-forms  �ωα   in

π−1( )U   defined by

�e A A
Aβ β= ∂ ,      �ωα α= A dxB

B ,

where

A A A= ( )β   =  
A A

A A

j
i

j
i

j
i

j
i













  =  
δ

δ

j
i

a ij
a

i
jp

0

Γ











, (14)

A A B
− = ( )1 α   =  

A A

A A

i
j

i
j

i
j

i
j













  =  
δ

δ

j
i

a ij
a

i
jp

0

−









Γ

. (15)

We easily see that the set  �ωα{ }   is the coframe dual to the adapted frame  �eβ{ } ,  i.e.,

� �ωα
βe  = A AB

Bα
β  = δβ

α .

Since the adapted frame  �eβ{ }   is nonholonomic, we put

� � �e e eγ β γβ
α

α,  = Ω

from which we have

Ωγβ
α

γ β β γ
α= −( )� �e A e A AA A

A .

According to (9), (10), (14) and (15), the components of nonholonomic object

Ωγβ
α   are given by

Ω Ω Γlj
i

jl
i

li
j= − = − ,

(16)

Ωlj
i

a lji
ap R=

all the others being zero, where  Rljk
h   being local components of the curvature tensor

R  of  ∇ .

Let  C∇   be the Levi-Civita connection determined by the Riemannian extension
R∇ .  We call   C∇   the complete lift of the symmetric affine connection  ∇   to
C

nT M( ) .  We put

C
e

Ce e∇ =� � �
γ β γβ

α
αΓ .

From the equation  C
X Y∇  – C

Y X∇  = X Y,[ ]   ∀ X , Y ∈ ℑ ( )0
1 C

nT M( )   we have

C CΓ Γ Ωγβ
α

βγ
α

γβ
α− = . (17)

The equation  C
X

R Y Z∇ ∇( ) ( , )  = 0  has form

�e R C R C R
δ γβ δγ

ε
εβ δβ

ε
γ ε∇ − ∇ − ∇ =Γ Γ 0 (18)

with respect to the adapted frame  �eβ{ } .  We have from (17) and (18)
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CΓγβ
α   =  

1

2
R R R Re e e∇ ∇ + ∇ − ∇( )αε

γ εβ β γ ε ε γβ� � �   +  
1

2
Ω Ω Ωγβ

α α
γβ

α
βγ+ +( ) ,

where  Ωα
γβ  = R R∇ ∇αε

δβ εγ
δΩ   and  R∇( )αε  = 

0

0

δ

δ

m
i

i
m









 .

Taking account of (9), (10), (13) and (16) we obtain

C
k j
iΓ   =  C

k j
iΓ   =  C

k j
iΓ   =  C

k j
iΓ   =  C

k j
iΓ   =  0,

C
kj
i

kj
iΓ Γ= ,      C

k j
i

ki
jΓ Γ= − , (19)

C
kj
i

a kji
a

jik
a

ikj
ap R R RΓ = − +( )1

2
.

Let  X ∈ ℑ ( )0
1 C

nT M( )   and  X = � �X eα
α  = � �X ei

i( )  + � �X ei
i( ) .  Then the covariant de-

rivative  C X∇  has components

C CX e X X∇ = +γ
α

γ
α

γβ
α β� � � �Γ .

If  X = H X   and  X = Vω , then using (9), (10), (11), (12) and (19) we see that cova-

riant derivatives  C H X∇   and  C V∇ ω   have  ω  respectively components

C H X∇( )γ
α�   =  

∇

− +( )
















k
i

a kji
a

jik
a

ikj
a i

X

p R R R X

0

1

2
0

, (20)

C V∇( )γ
αω�   =  

0 0

0∇






k iω
(21)

with respect to the adapted frame  �eα{ } .
Taking account (4), (9) and (10), we find

C i
i h i

h
i

i

X X e p X e= + − ∇( ) ( )∑� �( ) (22)

for any  X ∈ ℑ0
1 ( )M n .

Using now (19) and (22), by similar devices we can prove

C C
k

i

h k i
h

a kji
a

jik
a

i

X

X

p X p R R R
∇( ) =

∇

− ∇ ∇ + − +
γ

α�
0

1

2
kkj

a j
i

kX X( ) −∇

















. (23)

From (21) we have the following theorem.

Theorem 1.  The vertical lift of  covector  field   ω ∈ ℑ1
0( )M n    to   C

nT M( )    with

metric  R∇   is parallel if and only if the given covector field  ω  is parallel with respect
to  ∇ .

If  M n   has pseudo-Riemannian metric  g,  then by virtue of

p R Xa kji
a j   =  p X R ga

j
kjis

sa( )   =

=  p X R ga
j

iskj
sa( )   =  p X R ga

j
isjk

sa−( )   =
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=  p X R g ga
j

isj
t

tk
sa−( )   =  − ∇ ∇p g g Xa tk

sa
i s

t
[ ] , (24)

we have from (20) and (23) the following theorem.
Theorem 2.  When  M n   has pseudo-Riemannian metric  g  and the Levi-Civita

connection  ∇   of  g  and  C
nT M( )   has the Riemannian extension  R∇   as its metric,

the horizontal and the complete lifts of a vector field  X ∈ ℑ0
1 ( )M n   to  C

nT M( )   with

the metric  R∇   are parallel if and only if the given vector field  X  is parallel with res-
pect to the Levi-Civita connection  ∇ .

3.  The metric connection of  R∇∇ .  In Introduction and Section 2, we have given

to the cotangent bundle  C
nT M( )   the metric R∇   and considered the Levi-Civita con-

nection  C∇   of  R∇ .  This is the unique connection which satisfies  C R∇ ∇( )  = 0,

and has no torsion.  But there exists another connection which satisfies  �∇ ∇( )R  = 0,

and has nontrivial torsion tensor.  We call this connection the metric connection

of  R∇ .

The horizontal lift  H ∇   of the non-torsion connection  ∇   to the cotangent bundle
C

nT M( )   defined by

H

V
V∇ =θ ω 0 ,      H H

V Y∇ =θ 0 ,
(25)

H

H X
V V

X∇ = ∇( )ω ω ,      H
X

H H
XH Y Y∇ = ∇( )

for any X, Y ∈ ℑ0
1 ( )M n   and  ω, θ ∈ ℑ1

0( )M n .

We now put  H ∇α  = H
e∇ �( )α , where  �e( )α{ }  = � �e ei i( ), ( ){ } -adapted frame.  Then ta-

king account of  C e∇α β�( )  = H eΓαβ
γ

γ�( )   and writing  H �Γαβ
γ   for the different indices,

from (25) we have

H
ij
k

ij
k�Γ Γ= ,      H

i j
k

ik
j�Γ Γ= − ,

(26)
H

ij
k H

i j
k H

i j
k H

i j
k H

ij
k H

i j
� � � � � �Γ Γ Γ Γ Γ Γ= = = = =   

kk = 0 .

Let  T  be the torsion tensor of the horizontal lift  H ∇ .  Then  T  is the skew-sym-

metric tensor field of type (1, 2) in  C
nT M( )   determined by [2, p. 287]

Τ V Vω θ,( ) = 0 ,       Τ H VX, θ( ) = 0 ,      Τ H HX Y R X Y, ,( ) = − ( )γ ,

where  R  is curvature tensor of  ∇   and  γR X Y( , )  = p R X Y
x

h kli
h k l

ii

∂
∂

∑ .  Thus the

connection  H ∇   has nontrivial torsion even for Levi-Civita connection ∇   determined
by  g, unless  g  is locally flat.

Using (6) – (8) and (25), we have
H

V
R V V∇ ∇( ) ( ) =ω θ ε, 0 ,

H

H X
R V V∇ ∇( ) ( )θ ε,   =  − ∇( )( )R V

X
Vg θ ε,   =  0,

ISSN  1027-3190. Ukr. mat. Ωurn., 2010, t. 62, #5



SOME NOTES CONCERNING RIEMANNIAN EXTENSIONS 585

H

V
R V H Z∇ ∇( ) ( )ω θ,   =  V V Zω θ( )( )   =  0,

H

H X
R V H Z∇ ∇( ) ( )θ,   =  H VX Zθ( )( )   –  R V

X
Hg Z

H
∇( )( )θ ,   –

–  R V H
Xg Z

H
θ, ∇( )( )   =  V

X XX Z Z Zθ θ θ( ) − ∇( ) − ∇( )   =  0,

H

V
R H VY∇ ∇( ) ( )ω ε,   =  V V Yω ε( )( )   =  0,

H

H X
R H VY∇ ∇( ) ( ), ε   =  H VX Yε( )( )   –  R V

X
Vg Y

H
∇( )( ), ε   –

–  R H V
Xg Y , ∇( )( )ε   =  V

X XX Y Y Yε ε ε( ) ( )− ∇( ) − ∇( )   =  0,

H

V
R H HY Z∇ ∇( ) ( )ω ,   =  0,

H

H X
R H HY Z∇ ∇( ) ( ),   =  0

for any  X, Y, Z ∈ ℑ0
1 ( )M n   and  ω, θ, ε ∈ ℑ1

0( )M n .

Let now  H R   be a curvature tensor field of  
H
∇ .  The curvature tensor  H R   of

the metric connection  
H
∇   of  

R
∇   has components

H R�δγβ
α

  =  � �e H
δ γβ

α
( ) Γ   –  � �e H

( )γ δβ
αΓ   +  H H� �Γ Γδε

α
γβ
ε   –  H H� �Γ Γγ ε

α
δβ
ε   –  Ω Γδγ

ε
εβ
αH �

(27)
with respect to the adapted frame.

Using (9), (10), (16), (26), (27) and computing components of the contracted curva-

ture tensor field (Ricci tensor field)  H R�γβ  = H R�αγβ
α ,  we obtain

H
kjR�   =  H

kjR�α
α   =  H

ikj
i H

i kj
iR R� �+   =  Rikj

i   =  Rkj ,

(28)
H

k jR� = 0 ,      H
k jR�  = 0 ,      H

k jR�  = 0 ,

where  Rkj   is the Ricci tensor field of  ∇   in  M n .

For the scalar curvature of  C
nT M( )   with the metric connection  H ∇ ,  we have

� � �R RR H= ∇ =γβ
γβ 0

by means of (28) and

R j
k

k
j

�∇( ) =








γβ δ

δ

0

0
.

Thus we have the following theorem.

Theorem 3.  The cotangent bundle  C
nT M( )   with the metric connection  H ∇

has vanishing scalar curvature with respect to the metric  R∇ .

4.  Killing vector fields in  C
n

RT M( ), ∇∇(( )) .  In a manifold with a pseudo-Rieman-

nian metric  g,  a vector field is called a Killing vector field (or, an infinitesimal iso-
metry) if  L gX  = 0,  where  LX   is the Lie derivative.
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The condition  L gX  = 0  can be rewritten as

L g Y ZX( ) ( , )   =  g X ZY∇( ),   +  g X YZ∇( ),   =  0 (29)

for any  Y, Z ∈ ℑ0
1 ( )M n ,  where  ∇   is the Levi-Civita connection of  g.

We now compute the Lie derivative of the metric  R∇ .  In view of the adapted fra-
me  �e( )α{ } ,  from (29) we obtain

R C X e e∇ ∇( )( )β
σ

σ γ� � �( ) ( ),   +  R C X e e∇ ∇( )( )γ
σ

σ β� � �( ) ( ),   =  0

or

C CX X∇ + ∇ =β γ γ β� � 0 , (30)

where  �Xγ( )   is an associated covector field of a vector field  �Xσ( )   is given by

� � �X XR
γ γ σ

σ( ) = ∇( ) .

The associated covector fields of the vertical, horizontal and complete lifts to  C
nT M( )

with the metric  R∇ ,  with respect to the adapted frame  �e( )α{ } ,  are given respectively

by

V X� γ( )   =  R V� �∇( )γσ
σω   =  ( , ),ω k 0

H X� γ( )   =  R H X� �∇( )γσ
σ   =  ( , ),0 Xk

C X� γ( )   =  R C X� �∇( )γσ
σ   =  − ∇( )p X Xh k

h k, ,

because of (11), (12), (13) and (22).

Using (21) and (30) we see that the Lie derivative of  R∇   with respect to  V ω   has
components

LV
R

ω βγ
∇( )   =  C V C V∇ + ∇β γ γ βω ω� �   =  

∇ + ∇





j k k jω ω 0

0 0
(31)

with respect to the adapted frame  �e( )α{ } .  We put  ω i  = g Xij
j   for any  X ∈  ℑ0

1 ( )M n .

Then from (31) we have the following theorem.

Theorem 4.  A necessary and sufficient condition for a vector field  V ω   in cotan-

gent bundle with metric  R∇   to be a Killing vector field is that an associated vector

field is  Xi  = gij
jω   is Killing vector field.

Also, using (20), (23) and (30), we see that  L H X
R∇   and  LC X

R∇   have respecti-

vely components

L H X
R∇( )βγ   =  

p R R X X Xa ksj
a

jsk
a s

k
j

j
k+( ) ∇ + ∇









0 0
,

LC X
R∇( )βγ   =

=  
− ∇ ∇ + ∇ ∇( ) + +( ) ∇ + ∇2 p X X p R R X Xh k j

h
j k

h
a ksj

a
jsk

a s
k

j
jj

k

k
j

j
k

X

X X−∇ − ∇









0
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with respect to the adapted frame  �e( )α{ } .  From these equations and (24) we have the

following theorem.

Theorem 5.  The horizontal and complete lifts of vector fields in  M n   to  C
nT M( )

with metric  R∇   is Killing if the given vector field  X ∈ ℑ0
1 ( )M n   is parallel with re-

spect to the Levi-Civita connection  ∇   of the metric  g  in  M n .

5.  Norden structures in  C
nT M( )   with metric  R∇∇ .  Let  ( , )M n2 ϕ   be an al-

most complex manifold with almost complex structure  ϕ.  A pseudo-Riemannian met-

ric  g ∈ ℑ2
0

2( )M n   is a Norden metric with respect to structure  ϕ  if

g X Y( , )ϕ   =  g X Y( , )ϕ

for any  X, Y ∈  ℑ0
1

2( )M n .  Metrics of this kind have been also studied under the na-
mes: pure, anti-Hermitian and  B-metrics (see, for example, [5 – 10]).  If  ( , )M n2 ϕ   is
an almost complex manifold with Norden metric  g,  we say that  ( , , )M gn2 ϕ   is an

almost Norden manifold.  If  ϕ  is integrable, we say that  ( , , )M gn2 ϕ   is a Norden
manifold.

Let  ( , )M n2 ϕ   be an almost complex manifold with almost complex structure  ϕ.

This structure is said to be integrable if the matrix  ϕ ϕ= ( )j
i   is reduced to the con-

stant form in a certain holonomic natural frame in a neighborhood  Ux   of every point

x M n∈ 2 .  In order that the almost complex structure  ϕ  be integrable, it is necessary
and sufficient that it is possible to introduce a torsion-free affine connection  ∇   with
respect to which the structure tensor  ϕ  is covariantly constant, i. e.,  ∇ =ϕ 0 .  Also,

we know that the integrability of  ϕ  is equivalent to the vanishing of the Nijenhuis ten-

sor  Nϕ  ∈ ℑ2
1

2( )M n .  If  ϕ  is integrable, then  ϕ  is a complex structure and moreover

M n2   is a  C -holomorphic manifold  Xn ( )�   whose transition functions are holo-
morphic mappings.

Let  t
∗

  be a complex tensor field on  Xn ( )� .  The real model of such a tensor field
is a tensor field on  M n2    of the same order that is independent of whether its vector or

covector arguments is subject to the action of the affinor structure  ϕ.  Such tensor
fields are said to be pure with respect to  ϕ.  They were studied by many authors (see,
e. g., [10 – 14]).  In particular, being applied to a  ( , )0 q -tensor field  ω, the purity

means that for any  X1 , … , Xq  ∈ ℑ0
1

2( )M n   the following conditions should hold:

ω ϕ( , , , )X X Xq1 2 …   =  ω ϕ( , , , )X X Xq1 2 …   = … =  ω ϕ( , , , )X X Xq1 2 … .

We define an operator

Φϕ : ( ) ( )ℑ → ℑ +q n q nM M0
2 1

0
2

applied to the pure tensor field  ω  by (see [15])

( ) ( , , , , )Φϕω X Y Y Yq1 2 …   =  ( ) ( , , , )ϕ ωX Y Y Yq1 2 …( )   –

–  X Y Y Yqω ϕ( , , , )1 2 …( )   +  ω ϕ( ) , , ,L X Y YY q1 2 …( )   + …

… +  ω ϕY Y L XYq1 2, , , ( )…( ) ,

where  LY   denotes the Lie differentiation with respect to  Y.
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When  ϕ  is a complex structure on  M n2   and the tensor field  Φϕω   vanishes, the

complex tensor field  ω∗   on  Xn ( )�   is said to be holomorphic (see [11, 15]).  Thus a

holomorphic tensor field  ω∗    on  Xn ( )�   is realized on  M n2   in the form of a pure

tensor field  ω,  such that

( ) ( , , , , )Φϕω X Y Y Yq1 2 0… =

for any  X, Y1 , … , Yq  ∈ ℑ0
1

2( )M n .  Therefore such a tensor field  ω   on  M n2   is also

called holomorphic tensor field.  When  ϕ  is an almost complex structure on  M n2 ,  a

tensor field  ω  satisfying  Φϕω  = 0  is said to be almost holomorphic.

In a Norden manifold a Norden metric  g  is called a holomorphic if

( ) ( , , )Φϕg X Y Z = 0

for any  X, Y, Z ∈ ℑ0
1

2( )M n .
If  ( , , )M gn2 ϕ   is a Norden manifold with holomorphic Norden metric  g,  we say

that  ( , , )M gn2 ϕ   is a holomorphic Norden manifold.
In some aspects, holomorphic Norden manifolds are similar to Kähler manifolds.

The following theorem is analogue to the next known result: An almost Hermitian ma-
nifold is Kähler if and only if the almost complex structure is parallel with respect to
the Levi-Civita connection.

Theorem 6 [6] (For paracomplex version see [9]).  For an almost complex mani-
fold with Norden metric  g,  the condition  Φϕg = 0   is equivalent to   ∇ =ϕ 0 ,   where

∇   is the Levi-Civita connection of  g.
A Kähler – Norden manifold can be defined as a triple  ( , , )M gn2 ϕ   which con-

sists of a manifold  M n2   endowed with an almost complex structure  ϕ  and a pseudo-
Riemannian metric  g  such that  ∇ =ϕ 0 ,  where  ∇   is the Levi-Civita connection of
g  and the metric  g  is assumed to be Nordenian.  Therefore, there exist a one-to-one
correspondence between Kähler – Norden manifolds and Norden manifolds with a
holomorphic metric.  Recall that in such a manifold, the Riemannian curvature tensor
is pure and holomorphic, also the curvature scalar is locally holomorphic function
(see [6, 9]).

Remark 1.  We know that the integrability of the almost complex structure  ϕ  is
equivalent to the existing a torsion-free affine connection with respect to which the
equation  ∇ =ϕ 0   holds.  Since the Levi-Civita connection  ∇   of  g  is a torsion-free

affine connection, we have: If  Φϕg = 0 ,  then  ϕ  is integrable.  Thus, almost Norden

manifold with conditions  Φϕg = 0   and  Nϕ ≠ 0 ,  i. e., almost holomorphic Norden

manifolds does not exist.
Remark 2.  The Levi-Civita connection of Kähler – Norden metric  g  coincides

with the Levi-Civita connection of twin metric  G = g � ϕ   (nonuniquences of the met-
ric for the Levi-Civita connection in Kähler – Norden manifolds).

We define the horizontal lift  H ϕ  ∈ ℑ ( )( )1
1

2
C

nMΤ   by [2, p.281]

H V Vϕ ω ω ϕ= ( )� ,
(32)

H H HX Xϕ ϕ= ( )
for any  X ∈ ℑ0

1
2( )M n   and  ω ∈  ℑ1

0
2( )M n .  We see from (9), (10) and (32) that, the

horizontal lift  H ϕ   has components of the form
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H j
i

i
j

ϕ ϕ
ϕ

ϕ
β
α= ( ) =









�

0

0
(33)

with respect to the adapted frame  �e( )α{ } ,  ϕ j
i   being local components of  ϕ.

It is well known that if  ϕ  an almost complex structure in  M n2   with torsion free

connection  ∇ ,  then  H ϕ   is an almost complex structure in  C
nT M( )   [2, p. 283].

From (6), (7), (8) and (32), we easily verify that

R H R HX Y X Y∇( ) = ∇( )ϕ ϕ� � � �, ,

for any �X XH=   or  V ω   and  �Y YH=   or  V θ ,  that is,  Τ M n( )( , R∇ , H ϕ)   is an

almost Norden manifold.

We now consider covariant derivative of the almost complex structure  H F   with

respect to Levi-Civita connection  C∇   of  R∇ .  Taking account of (19) and (33), we
find that

C
i
H

j
k

i j
k∇ = ∇�ϕ ϕ ,      C

i
H

j
k

i k
j∇ = ∇�ϕ ϕ ,

(34)
C

i
H

j
k∇ �ϕ   =

=  
1

2
p R R R R R Ra imk

a
mki

a
kim

a
j
m

i jm
a

jmi
a

mi j− +( ) − − +ϕ aa
k
m( ) ϕ

the other being all zero, with respect to the adapted frame  �e( )α{ } .

If a torsion free affine connection  ∇   preserving the structure  ϕ  (∇ =ϕ 0 )  satis-

fies the condition  ∇ϕXY  = ϕ ∇( )XY   ∀ X , Y ∈ ℑ ( )0
1

2M n ,  then  ∇   is called a holo-

morphic connection [14, p. 185].  The purity of the curvature tensor field of a connecti-

on  ∇   ( Rmjk
s

i
mϕ  = Rimk

s
j
mϕ  = Rijm

s
k
mϕ  = Rijk

m
m
sϕ )  is a necessary and sufficient

condition for its holomorphy [11, 14].  Therefore, from (34) we have the following
theorem.

Theorem 7.  The cotangent bundle  C
nT M( )   is a Kähler – Norden with respect to

R∇   and the almost complex structure  H ϕ   if the a torsion-free connection  ∇   is a

holomorphic connection with respect to the structure  ϕ.
On the other hand it is well known that in a Kähler – Norden manifold the curvature

tensor of Norden-metric is pure [6].  Therefore, when  M n2   has Kähler – Norden met-

ric  g  and the Levi-Civita connection  ∇   of  g  and  C
nT M( )2   has the Riemannian

extension  R∇   as its metric, we have  the following theorem.

Theorem 8.  The cotangent bundle  C
nT M( )2   of a pseudo-Riemannian manifold

M n2   is a Kähler – Norden with respect to  R∇   and   H ϕ ,  i f  ( , , )M gn2 ϕ   is a
Kähler – Norden.
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