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KERNEL OF MAP OF A SHIFT ALONG THE ORBITS

OF CONTINUOUS FLOWS*

ЯДРО ВIДОБРАЖЕННЯ ЗСУВУ ВЗДОВЖ ОРБIТ

НЕПЕРЕРВНИХ ПОТОКIВ

Let F : M × R → M be a continuous flow on a topological manifold M. For every subset V ⊂ M we

denote by P (V ) the set of all continuous functions ξ : V → R such that F(x, ξ(x)) = x for all x ∈ V. These

functions vanish at non-periodic points of the flow, while their values at periodic points are integer multiples

of the corresponding periods (in general not minimal). In this paper, the structure of P (V ) is described for

arbitrary connected open subset V ⊂ M.

Нехай F : M × R → M — неперервний потiк на топологiчному многовидi M. Для кожної пiдмножини

V ⊂ M позначимо через P (V ) множину всiх неперервних функцiй ξ : V → R, що задовольняють умо-

ву F(x, ξ(x)) = x для всiх x ∈ V. Такi функцiї набувають нульового значення в неперiодичних точках

потоку, а в перiодичних точках їх значення є цiлими кратними вiдповiдних перiодiв (в загальному не

мiнiмальними). В статтi описано структуру P (V ) для довiльної вiдкритої зв’язної пiдмножини V ⊂ M.

1. Introduction. Let F : M × R → M be a continuous flow on a topological finite-

dimensional manifoldM. For x ∈ M we will denote by ox the orbit of x. If x is periodic,

then Per(x) is the period of x. The set of fixed points of F will be denoted by Σ.

For each subset V ⊂ M define the following map

ϕV : C(M,R) → C(V,M), ϕV (α)(x) = F(x, α(x)),

for α ∈ C(V,R) and x ∈ V. We will call ϕV the shift map along the orbits of F. It was

used by the author for study of homotopy types of certain infinite-dimensional functional

spaces, see, e.g., [1 – 6].

Let iV : V ⊂ M be the inclusion map. Then the following set

P (V ) = ϕ−1
V (iV )

will be called the kernel of ϕV .

Thus a continuous function ξ : V → R belongs to P (V ) iff

F(x, ξ(x)) = x ∀x ∈ V. (1.1)

In this case we will say that ξ is a period function or simply a P -function for F on V.

The aim of this paper is to give a description of P (V ) for open connected subsets

V ⊂ M with respect to a continuous flow on a topological manifold M (Theorem 1.1).

Such a description was given in [1] (Theorem 12) for C∞ flows. It turns out that

both descriptions almost coincide. Our methods are based on well-known theorems of

M. Newman about actions of finite groups.

The following easy lemma explains the term P -function. The proof is the same as in

[1] (Lemmas 5 and 7) and we leave it for the reader.
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652 S. I. MAKSYMENKO

Lemma 1.1 [1] (Lemmas 5 and 7). For any subset V ⊂ M the set P (V ) is a group

with respect to the point-wise addition.

Let x ∈ V and ξ ∈ P (V ). Then ξ is locally constant on ox ∩ V. In particular, if

x is non-periodic, then ξ|ox∩V = 0. Suppose x is periodic, and let ω be some path

component of ox ∩ V. Then ξ = nω · Per(ox) for some nω ∈ Z depending on ω.

It is not true that any P -function on any subset V ⊂ M is constant on all of ox ∩ V

for each x ∈ V, see Example 1.1 below. Therefore we give the following definition.

Definition 1.1. A P -function ξ : V → R will be called regular if ξ is constant on

ox ∩ V for each x ∈ V.

Denote by RP (V ) the set of all regular P -functions on V. Then RP (V ) is a subgroup

of P (V ).

Remark 1.1. If for any periodic orbit o the intersection o ∩ V is either empty or

connected, e.g. in the case when V is F-invariant, then any P -function on V is regular.

The following theorem extends [1] (Theorem 12) for continuous case.

Theorem 1.1. Let M be a finite-dimensional topological manifold possibly non-

compact and with or without boundary, F : M × R → M be a flow, and V ⊂ M be an

open, connected set.

(A) If Int(Σ) ∩ V 6= ∅, then

P (V ) =
{
ξ ∈ C(V,R) : ξ|V \Int(Σ) = 0

}
.

(B) Suppose Int(Σ) ∩ V = ∅. Then one of the following possibilities is realized:

either

P (V ) = {0}

or

P (V ) = {nθ}n∈Z

for some continuous function θ : V → R having the following properties:

(1) θ > 0 on V \ Σ, so this set consists of periodic points only.

(2) There exists an open and everywhere dense subset Q ⊂ V such that θ(x) =

= Per(x) for all x ∈ Q.

(3) θ is a regular P -function.

(4) Denote U = F(V × R). Then θ extends to a P -function on U and there is a

circle action G : U×S1 → U defined by G(x, t) = F(x, tθ(x)), x ∈ U, t ∈ S1 = R/Z.

The orbits of this action coincide with the ones of F.

In particular, in all the cases RP (V ) = P (V ).

Theorem 1.1 will be proved in Section 3.

The following simple example illustrates necessity of conditions of Theorem 1.1.

It shows that on non-open or disconnected sets V ⊂ M there may exist non-regular

P -functions and that P -functions for continuous flows may vanish at fixed points.

Example 1.1. Let F : C × R → C be a continuous flow on the complex plane C

defined by

F(z, t) =




e2πi t/|z|

2

z, z 6= 0,

0, z = 0.

The orbits of F are the origin 0 ∈ C and the concentric circles centered at 0. Then

θ = |z|2 is a P -function on C and
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RP (C) = P (C) = {nθ}n∈Z.

Also notice that θ(0) = 0 and θ > 0 on C \ 0. This agrees with (1) of Theorem 1.1

and shows that non-zero P -functions may vanish at fixed points of flows.

Let Vi, i = 1, 2, 3, be the corresponding subset in C shown in Fig. 1.1. Thus V1 is

an open segment, say (−1, 1), on the real axis, V2 is a union of two closed triangles

with common vertex at the origin 0, and V3 is union of a triangle with a segment (−1, 0]

of the real axis intersecting at the origin. In particular, Int(V1) = ∅, Int(V2) is not

Fig. 1.1

connected, and Int(V3) is not dense in V. For any pair m,n ∈ Z define the function

ξm,n : Vi → R by

ξm,n(z) =




−m|z|, ℜ(z) ≤ 0,

n|z|, ℜ(z) > 0.

Evidently, P (Vi) = {ξm,n}m,n∈Z, while RP (Vi) = {ξm,m}m∈Z. Thus not every P -

function is regular.

Structure of the paper. In next section we describe certain properties of P -function

for continuous flows: local uniqueness, local regularity, and continuity of extensions of

regularP -functions. We also deduce from well-known M. Newman’s theorem a sufficient

condition for divisibility of regular P -functions by integers in P (V ). These results will

be used in Section 3 for the proof of Theorem 1.1.

2. Properties of P -functions.

Lemma 2.1. Let z ∈ M. Suppose there exists a sequence of periodic points

{xi}i∈N converging to z and such that lim
i→∞

Per(xi) = 0. Then z ∈ Σ.

Proof. Suppose z 6∈ Σ, so there exists τ > 0 such that z 6= Fτ (z). Let U be a

neighbourhood of z such that

U ∩ Fτ (U) = ∅. (2.1)

Since F(z, 0) = z, there exists ε > 0 and a neighbourhood W of z such that F(W ×

× [0, ε]) ⊂ U. Then we can find xi ∈ W with Per(xi) < ε. Hence

Fτ (xi) ∈ Fτ (U).

On the other hand,

Fτ (xi) ∈ oxi
= F(xi, [0,Per(xi)]) ⊂ F(W × [0, ε]) ⊂ U,

which contradicts to (2.1).

Lemma 2.2 (Local uniqueness of P -functions, c.f. [1], Corollary 8). Let V ⊂ M

be any subset, z ∈ V \Σ and ξ ∈ P (V ). If ξ(z) = 0, then ξ = 0 on some neighbourhood

of z in V.
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Proof. Suppose ξ is not identically zero on any neighbourhood of z in V \Σ. Then

there exists a sequence {xi}i∈N ⊂ V \Σ converging to z and such that ξ(xi) 6= 0. Hence

every xi is periodic and ξ(xi) = niPer(xi) for some ni ∈ Z \ {0}. By continuity of ξ

we get

0 = lim
i→∞

ξ(xi) = lim
i→∞

niPer(xi).

Since |ni| ≥ 1, it follows that lim
i→∞

Per(xi) = 0, whence by Lemma 2.1 z ∈ Σ, which

contradicts to the assumption.

Lemma 2.3 (Local regularity of P -functions on open sets). Let V ⊂ M be an open

subset and ξ ∈ P (V ). Then for each z ∈ V there exists a neighbourhood W ⊂ V such

that the restriction ξ|W is regular.

Proof. Suppose ξ is not regular on arbitrary small neighbourhood of z. Then we can

find two sequences {xi}i∈N and {yi}i∈N converging to z such that yi = F(xi, τi) for

some τi ∈ R and ξ(xi) < ξ(yi) for all i ∈ N.

It follows that xi and yi are periodic. Otherwise, by Lemma 1.1, we would have

ξ(xi) = ξ(yi). Hence 0 < ξ(yi)− ξ(xi) = niPer(xi) for some ni ∈ Z \ {0}.

We claim that lim
i→∞

Per(xi) = 0. Indeed, take any ε > 0. Then there is a nei-

ghbourhood W of z such that |ξ(y) − ξ(x)| < ε for all x, y ∈ W. Let N > 0 be such

that xi, yi ∈ W for i > N,

Per(xi) ≤ niPer(xi) = ξ(yi)− ξ(xi) < ε, i > N.

This implies lim
i→∞

Per(xi) = 0, whence, by Lemma 2.1, z ∈ Σ. But in this case there

exists a neighbourhood W1 of z and ε > 0 such that F(W1 × [0, ε]) ⊂ V. Take xi ∈ W1

such that Per(xi) < ε, then

oxi
= F(xi × [0,Per(xi)) ⊂ F(W1 × [0, ε]) ⊂ V.

In other words oxi
∩ V = oxi

is connected, whence by Lemma 1.1 ξ is constant on oxi
.

Therefore ξ(xi) = ξ(yi) which contradicts to the assumption.

Lemma 2.4 (Continuity of extensions of regular P -functions). Let V ⊂ M be an

open subset and ξ ∈ RP (V ) be a regular P -function on V. Put U = F(V × R). Then

ξ extends to a P -function ξ̃ on all of U.

If M is a Cr manifold, F is Cr on V × R, and ξ is Cr on V, then ξ̃ is Cr on U.

Proof. The definition of ξ̃ is evident: if y ∈ U, so y = F(x, τ) for some (x, τ) ∈

∈ V × R, then we put ξ̃(y) = ξ(x). Since ξ is regular, this definition does not depend

on a particular choice of such (x, τ).

It remains to prove continuity of ξ̃ on U. Let y = F(x, t) ∈ U for some (x, t) ∈

∈ V × R. Since V is open, there exists a neighbourhood W of y in U such that

F−t(W ) ⊂ V. Then ξ̃ can be defined on W by ξ̃(z) = ξ ◦ F−t(z) for all z ∈ W. This

shows continuity of ξ̃ on W.

Moreover, if M is a Cr manifold, ξ and F are Cr, then so is ξ̃.

In order to formulate the last preliminary result we recall the following well-known

theorem of M. Newman:

Theorem 2.1 (M. Newman [7], see also [8 – 10]). If a compact Lie group effecti-

vely acts on a connected manifold M, then the set Σ of fixed points of this action is

nowhere dense in M and, by [9], it does not separate M.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5



KERNEL OF MAP OF A SHIFT ALONG THE ORBITS OF CONTINUOUS FLOWS 655

Lemma 2.5 (Condition of divisibility by integers). Let V ⊂ M be a connected

open subset and ξ : V → R be a regular P -function. Suppose that there exist an

integer p ≥ 2 and a non-empty open subset W ⊂ V such that F(x, ξ(x)/p) = x for all

x ∈ W, so the restriction of ξ/p to W is a P -function. Then ξ/p is also a P -function on

all of V.

Proof. By Lemma 2.4 we can assume that V is F-invariant. Moreover, it suffices to

consider the case when p is a prime. Define the following map h : V → V by h(x) =

= F(x, ξ(x)/p). Since ξ is constant along orbits of F, it follows that ξ(h(x)) = ξ(x),

whence

h ◦ h(x) = F
(
h(x), ξ(h(x))/p

)
= F(F

(
x, ξ(x)/p, ξ(x)/p

)
= F

(
x, 2ξ(x)/p

)
.

Similarly,

hk(x) = F
(
x, kξ(x)/p

)
, k ∈ N.

In particular, we obtain that hp = idV , and thus h yields a Zp-action on V. But by

assumption this action is trivial on the non-empty open set W. Then by M. Newman’s

Theorem 2.1 the action is trivial on all of V, so ξ/p is a P -function on V.

Corollary 2.1. Let ξ be a regular P -function on a connected open subset V ⊂ M.

(i) If V ∩ Int(Σ) 6= ∅, then ξ = 0 on V \ Int(Σ).

(ii) If V ∩ Int(Σ) = ∅ and ξ = 0 on some open non-empty subset W ⊂ V, then

ξ = 0 on all of V.

Proof. Evidently, it suffices to show that in both cases ξ = 0 on V \ Σ.

In the case (i) put W = V ∩ Int(Σ).

Let p be any prime. Then in both cases F(y, ξ(y)/p) = y for all y ∈ W, where W

is a non-empty open set. Hence by Lemma 2.5 F(y, ξ(y)/p) = y for all y ∈ V, that is

ξ/p is a P -function on V. Thus if ξ(x) = nPer(x) 6= 0 for some x ∈ V \Σ and n ∈ Z,

then n is divided by p. Since p is arbitrary, we get n = 0.

3. Proof of Theorem 1.1. (A). Suppose Int(Σ) ∩ V 6= ∅. We should prove that the

following set

P ′ =
{
ξ ∈ C(V,R) : ξ|V \Int(Ξ) = 0

}

coincides with P (V ). Evidently, P ′ ⊂ P (V ).

Conversely, let ξ ∈ P (V ). We claim that for every connected component T of

V \ Int(Σ) there exists z ∈ T such that ξ(z) = 0. By Lemma 2.2 this will imply that

ξ|T = 0. Since T is arbitrary we will get that ξ = 0 on all of V \ Int(Σ) and, in

particular, that ξ is a regular P -function.

As V is connected, the following set is non-empty, see Fig. 2.1:

B := T ∩ V ∩
(
Int(Σ) \ Int(Σ)

)
6= ∅.

Let x ∈ B ⊂ V = Int(V ). Then by Lemma 2.3 there exists an open connected

neighbourhood W such that ξ|W is a regular P -function. Then we have that W ∩

∩ Int(Σ) 6= ∅ and W ∩ T 6= ∅ as well. Since ξ is regular on W, it follows from (i) of

Corollary 2.1 that ξ = 0 on W \ Int(Σ) and, in particular, on W ∩ T.

(B). Suppose that Int(Σ) ∩ V = ∅ and P (V ) 6= {0}, so there exists ξ ∈ P (V )

which is not identically zero on V. We have to show that P (V ) = {nθ}n∈Z for some

P -function θ : V → R satisfying (1) – (4).

Denote by Y the subset of V consisting of all points x having one of the following

two properties:
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Fig. 2.1

(L1) x ∈ V \ Σ and ξ(x) = 0;

(L2) x ∈ V ∩ Σ and there exists a sequence {xi}i∈N ⊂ V \ Σ converging to x and

such that ξ(xi) = 0 for all i ∈ N.

Evidently, ξ = 0 on Y.

Lemma 3.1. Y is open and closed in V. Hence if V is connected and ξ(x) = 0

for some x ∈ V \ Σ, then ξ = 0 on all of V.

Proof. Y is open. Let x ∈ Y. We will show that there exists an open neighbourhood

W of x such that W ⊂ Y.

If x ∈ V \Σ, then, by Lemma 2.2, ξ = 0 on some neighbourhood W ⊂ V \Σ of x.

Hence, by (L1), W ⊂ Y.

Suppose x ∈ Σ ∩ V ⊂ V = Int(V ). Then by Lemma 2.3 there exists an open

connected neighbourhood Wx of x such that ξ|Wx
is regular. We claim that Wx ⊂ Y.

First we show that ξ = 0 on Wx. Indeed, by (L2) there exists a sequence {xi}i∈N ⊂

⊂ V \ Σ converging to x and such that ξ(xi) = 0 for all i ∈ N. In particular, xi ∈ Wx

for some i ∈ N. Let C be the connected component of Wx \ Σ containing xi. Then

ξ = 0 on an open set C ⊂ Wx, whence, by (ii) of Corollary 2.1, ξ = 0 on Wx.

Therefore Wx \ Σ ⊂ Y. Let y ∈ Wx ∩ Σ. Since Wx ∩ Σ is nowhere dense in Wx,

there exists a sequence {yi}i∈N ⊂ Wx \Σ converging to y. But then ξ(yi) = 0, whence,

by (L2), y ∈ Y as well.

Y is closed. Let {xi}i∈N ⊂ Y be a sequence converging to some x ∈ V. We have to

show that x ∈ Y. Since ξ(xi) = 0, we have ξ(x) = 0 as well.

If x ∈ V \ Σ, then by (L1) x ∈ Y.

Suppose x ∈ V ∩Σ. Then we can assume that either {xi}i∈N ⊂ V \Σ or {xi}i∈N ⊂

⊂ V ∩Σ. In the first case x ∈ Y by (L2).

Suppose {xi}i∈N ⊂ V ∩ Σ. Since xi ∈ Y, it follows from (L2) for xi that there

exists a sequence {yji }j∈N ⊂ V \Σ converging to xi and such that ξ(yji ) = 0. Then for

each i ∈ N we can find n(i) ∈ N such that the diagonal sequence {y
n(i)
i }i∈N ⊂ V \ Σ

converges to x, and satisfies ξ(y
n(i)
i ) = 0. Hence, by (L2), x ∈ Y.

The lemma is proved.

Thus we can assume that ξ 6= 0 on V \ Σ. In particular, all points in V \ Σ are

periodic.

Take any x ∈ V \ Σ and consider the following homomorphism

ex : P (V ) → Z, ex(ν) = ν(x)/Per(x),

for ν ∈ P (V ). If ν(x) = 0, then, as noted above, ν = 0 on all of V, whence ex is

a monomorphism. Moreover, ex(ξ) = ξ(x) 6= 0, whence ex yields an isomorphism of

P (V ) onto a non-zero subgroup kZ of Z for some k ∈ N. Put θ = e−1
x (k). Then

P (V ) = {nθ}n∈Z.
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It remains to verify properties of θ.

(2) ⇒ (1). We have that θ(x) = Per(x) > 0 on an open and everywhere dense subset

Q ⊂ V, whence θ ≥ 0 on V. On the other hand, by Lemma 3.1, θ 6= 0 on V \Σ, whence

θ > 0 on V \ Σ.

(2) ⇒ (3). We have to show that θ is regular, that is

θ(x) = θ(Fτ (x))

for any x ∈ V \ Σ and τ ∈ R such that Fτ (x) ∈ V.

First notice that for any open subsets A,B ⊂ M we have that

A ∩B = A ∩B = A ∩B. (3.1)

Since Q is open and everywhere dense in V, it follows that

Fτ (x) ∈ V ∩ Fτ (V ) ⊂ Q ∩ Fτ (V )
(3.1)
=

(3.1)
= Q ∩ Fτ (V ) = Q ∩Fτ (Q)

(3.1)
= Q ∩Fτ (Q).

In other words, there exists a sequence {xi}i∈N ⊂ Q converging to x and such that

{Fτ (xi)}i∈N ⊂ Q. Then θ(Fτ (xi)) = θ(xi) = Per(xi). Whence

θ(Fτ (x)) = lim
i→∞

θ(Fτ (xi)) = lim
i→∞

θ(xi) = θ(x).

(3) ⇒ (4). See Lemma 2.4.

(2) The proof consists of the following three statements.

Claim 3.1. Let x ∈ V \ Σ. Then there exist an open connected neighbourhood

Wx of x in V, a regular P -function θx ∈ P (Wx), a number mx ∈ Z \ {0}, and an open

and everywhere dense subset Qx ⊂ Wx consisting of periodic points such that

(a) P (Wx) = {mθx}m∈Z,

(b) θ = mxθx on Wx,

(c) θx(y) = Per(y) for all y ∈ Qx.

Proof. By Lemma 2.3 there exists an open connected neighbourhood Wx of x such

that Wx ⊂ V \Σ and θ|Wx
is regular. Notice that if we decrease Wx, then the restriction

of θ to Wx remains regular. Therefore we can additionally assume that there exists

ε ∈ (0,Per(x)) such that

(i) θ(y) < θ(x) + ε for all y ∈ Wx;

(ii) Per(x) < Per(y) + ε for all y ∈ Wx;

(iii) there is N > 0 such that ny := θ(y)/Per(y) < N for all y ∈ Wx.

Indeed, (i) follows from continuity of θ, and (ii) from lower semicontinuity of Per,

c.f. [11].

More precisely, suppose (ii) fails. Then there exists a sequence {xi}i∈N ⊂ V \ Σ

converging to x and such that Per(x) ≥ Per(xi) + ε. In particular, periods of xi are

bounded above and we can assume that lim
i→∞

Per(xi) = τ < ∞ for some τ. Then

Per(x) ≥ τ + ε > τ. (3.2)

But F(x, τ) = lim
i→∞

F(xi,Per(xi)) = x, so τ = nPer(x) ≥ Per(x) for some n ∈ N,

which contradicts to (3.2). This proves (ii).
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To establish (iii) notice that it follows from (i) and (ii) that

ny(Per(x)− ε) < nyPer(y) = θ(y) < θ(x) + ε,

whence

N :=
θ(x) + ε

Per(x)− ε
> ny.

This proves (iii).

Consider the group P (Wx). As Wx is open and connected, we have that P (Wx) =

= {mθx}m∈Z for some θx ∈ C(W,R). By assumption, θ is a P -function on Wx,

whence θ|Wx
= mxθx for some mx ∈ Z \ {0}.

To construct Qx notice that for each y ∈ Wx \ Σ there exists a unique ny ∈ Z such

that θx(y) = nyPer(y). For every n ∈ N denote by Tn the subset of Wx consisting of

all y such that ny is divided by n. Since the values ny are bounded above, it follows

that Tn is non-empty only for finitely many n. Also notice that

Wx \ Σ =

N⋃

n=1

Tn.

We claim that Tn is nowhere dense for n ≥ 2. Indeed, suppose Int(Tn) 6= ∅. Then

θx/n is a regular P -function on Int(Tn) and therefore, by Lemma 2.5, on all of Wx.

However this is possible only for n = 1 as θx generates P (Wx). Thus the subset

Qx := Int(T1) ∩ Wx is open and everywhere dense in W and θ(y) = Per(y) for all

y ∈ Qx.

Claim 3.1 is proved.

Claim 3.2. Let x, y ∈ V \ Σ. Then θx = θy on Wx ∩Wy and mx = my.

Proof. Indeed, since Qx (Qy) is open and everywhere dense in Wx (Wy), it follows

that Qx∩Qy is open and everywhere dense in Wx∩Wy . Moreover, for each z ∈ Qx∩Qy

we have that θx(z) = θy(z) = Per(z). Then by continuity θx = θy on Wx ∩Wy .

In particular, if z ∈ Qx ∩ Qy, then θ(z) = mxPer(z) = myPer(z), whence mx =

= my.

Claim 3.2 is proved.

Let T be a connected component of V \ Σ. Then by Claim 3.2 mx is the same for

all x ∈ T and we denote their common value by mT . It also follows that the functions

{θx}x∈T define a continuous function θT : T → R such that θ|T = mT θT . Thus if we

put QT = ∪
x∈T

Qx, then QT is open and everywhere dense in T and θT (y) = Per(y)

for all y ∈ QT .

Claim 3.3. Let S and T be any connected components of V \Σ such that S∩T 6=

6= ∅. Then mS = mT .

Proof. We can assume that T 6= S. Let x ∈ S ∩ T ⊂ V ∩ Σ and Wx be an open,

connected neighbourhood of x in V such that θ|Wx
is a regular P -function on Wx.

Notice that θS = θ/mS is a regular P -function on the non-empty open set Wx ∩ S,

whence, by Lemma 2.5, θ/mS is a P -function on all of Wx.

If x ∈ QT ∩Wx, then θ(x) = mT θT (x) = mTPer(x), therefore mT is divided by

mS . By symmetry mS is divided by mT as well, whence mS = mT .

Claim 3.3 is proved.
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Since V is connected, it follows from Claim 3.3 that the number mT is the same

for all connected components T of V \ Σ. Denote the common value of these numbers

by m. Then θ/m is continuous on V and F(x, θ(x)/m) = x for all x ∈ V. Since θ

generates P (V ), we obtain that m = 1.

Let Q be the union of all QT , where T runs over the set of all connected components

of V \ Σ. Since for every such component T we have that θ = mθT = θT on T, it

follows that θ(x) = Per(x) for all x ∈ QT .

Theorem 1.1 is proved.
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