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KERNEL OF MAP OF A SHIFT ALONG THE ORBITS
OF CONTINUOUS FLOWS"

AAPO BIJOBPA’KEHHA 3CYBY B3/10BXK OPBIT
HEIIEPEPBHHUX ITIOTOKIB

Let F: M x R — M be a continuous flow on a topological manifold M. For every subset V' C M we
denote by P (V) the set of all continuous functions £: V' — R such that F(x,{(z)) = « for all z € V. These
functions vanish at non-periodic points of the flow, while their values at periodic points are integer multiples
of the corresponding periods (in general not minimal). In this paper, the structure of P(V) is described for
arbitrary connected open subset V' C M.

Hexait F: M x R — M — HenepepBHUI HOTIK Ha TOMOIOTiYHOMY MHOTOBUAI M. JIjisi KOXKHOT MiAMHOKXHUHA
V' C M nosuaanmo uepe3 P (V') MEHOKHHY Beix HenepepBHUX QyHKUil £: V' — R, 1110 32J0BONBHAIOTH YMO-
By F(z,&(x)) = = ms Beix @ € V. Taxi ¢yHkuii HaOyBaroTh HyJIbOBOIO 3HaYEHHs B HENEPIOANYHHUX TOYKAX
[OTOKY, & B MEPIOAMYHHUX TOYKaxX X 3HAYCHHS € LIUTHMH KPaTHUMH BIANOBIJHUX MEpiofiB (B 3aralbHOMYy He
MiHiManbHuMH). B crarti onucauno crpykrypy P(V') st NoBiUIbHOT BiAKpHTOI 3B s13H01 miamMHOkuHK V' C M.

1. Introduction. Let F: M x R — M be a continuous flow on a topological finite-
dimensional manifold M. For x € M we will denote by o, the orbit of z. If x is periodic,
then Per(z) is the period of z. The set of fixed points of F will be denoted by 3.

For each subset V' C M define the following map

Ppv: C(MaR) - C(Vv M)v </7V(O‘)(I) = F(Ivo‘(x))v

for o € C(V,R) and x € V. We will call v the shift map along the orbits of F. It was
used by the author for study of homotopy types of certain infinite-dimensional functional
spaces, see, e.g., [1-6].

Let iy : V C M be the inclusion map. Then the following set

P(V) =y (iv)

will be called the kernel of ¢y .
Thus a continuous function £: V' — R belongs to P(V) iff

F(x,{(x)) =2 Yz eV (L.1)

In this case we will say that £ is a period function or simply a P-function for F on V.

The aim of this paper is to give a description of P(V') for open connected subsets
V' C M with respect to a continuous flow on a topological manifold M (Theorem 1.1).
Such a description was given in [1] (Theorem 12) for C*° flows. It turns out that
both descriptions almost coincide. Our methods are based on well-known theorems of
M. Newman about actions of finite groups.

The following easy lemma explains the term P-function. The proof is the same as in
[1] (Lemmas 5 and 7) and we leave it for the reader.

*This research is done within the program of National Academy of Sciences of Ukraine “Modern methods
of investigation of mathematical models in the problems of natural sciences”, research No. 0107U002333.
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652 S. I. MAKSYMENKO

Lemma 1.1 [1] (Lemmas 5 and 7). For any subset V. C M the set P(V') is a group
with respect to the point-wise addition.

Let x € V and £ € P(V). Then £ is locally constant on o, N'V. In particular, if
x is non-periodic, then &|,,nv = 0. Suppose x is periodic, and let w be some path
component of o, N V. Then £ = n,, - Per(o,) for some n,, € Z depending on w.

It is not true that any P-function on any subset V' C M is constant on all of 0, NV
for each x € V, see Example 1.1 below. Therefore we give the following definition.

Definition 1.1. A P-function £: 'V — R will be called regular if € is constant on
o NV foreachz €V.

Denote by RP(V) the set of all regular P-functions on V. Then RP (V) is a subgroup
of P(V).

Remark 1.1. If for any periodic orbit o the intersection o N V' is either empty or
connected, e.g. in the case when V' is F-invariant, then any P-function on V' is regular.

The following theorem extends [1] (Theorem 12) for continuous case.

Theorem 1.1. Let M be a finite-dimensional topological manifold possibly non-
compact and with or without boundary, F: M x R — M be a flow, and V C M be an
open, connected set.

(A) If Int(X)NV £ o, then

P(V)={£cC(V,R): &ly\mm(x) = 0}

(B) Suppose Int(X) NV = &. Then one of the following possibilities is realized:
either
pP(V) ={0}

P(V) ={nb}nez

for some continuous function 6: V. — R having the following properties:

(1) 8 >00nV\X, so this set consists of periodic points only.

(2) There exists an open and everywhere dense subset Q C V such that 6(x) =
= Per(z) for all x € Q.

(3) 0 is a regular P-function.

(4) Denote U = F(V x R). Then 0 extends to a P-function on U and there is a
circle action G: U x St — U defined by G(x,t) = F(z,t0(z)), z € U, t € St =R/Z.
The orbits of this action coincide with the ones of F.

In particular, in all the cases RP(V) = P(V).

Theorem 1.1 will be proved in Section 3.

The following simple example illustrates necessity of conditions of Theorem 1.1.
It shows that on non-open or disconnected sets V' C M there may exist non-regular
P-functions and that P-functions for continuous flows may vanish at fixed points.

Example 1.1. Let F: C x R — C be a continuous flow on the complex plane C
defined by

627rit/|z|2 z, z 7& O,
F(z,t) =
0, z=0.

The orbits of F are the origin 0 € C and the concentric circles centered at 0. Then
6 = |z|? is a P-function on C and
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RP(C) = P(C) = {nf}nez.

Also notice that §(0) = 0 and > 0 on C \ 0. This agrees with (1) of Theorem 1.1
and shows that non-zero P-functions may vanish at fixed points of flows.

Let V;, © = 1,2, 3, be the corresponding subset in C shown in Fig. 1.1. Thus V; is
an open segment, say (—1, 1), on the real axis, V5 is a union of two closed triangles
with common vertex at the origin 0, and V3 is union of a triangle with a segment (—1, 0]

of the real axis intersecting at the origin. In particular, Int(V;) = @, Int(V2) is not
Fig. 1.1

connected, and Int(V3) is not dense in V. For any pair m,n € Z define the function
Emmn: Vi = Rby
—mlz|, R(z) <0,
Em,n (Z) =
n|z|, R(z) > 0.
Evidently, P(V;) = {&m.n}m.nez, while RP(V;) = {&m.m}mez. Thus not every P-
function is regular.

Structure of the paper. In next section we describe certain properties of P-function
for continuous flows: local uniqueness, local regularity, and continuity of extensions of
regular P-functions. We also deduce from well-known M. Newman’s theorem a sufficient
condition for divisibility of regular P-functions by integers in P(V"). These results will
be used in Section 3 for the proof of Theorem 1.1.

2. Properties of P-functions.

Lemma 2.1. Let z € M. Suppose there exists a sequence of periodic points
{z; }ien converging to z and such that Zlg]élo Per(z;) = 0. Then z € X.

Proof. Suppose z ¢ %, so there exists 7 > 0 such that z # F,(z). Let U be a
neighbourhood of z such that

UNF,.U)=2. (2.1)

Since F(z,0) = %, there exists ¢ > 0 and a neighbourhood W of z such that F(W x
x [0,€]) C U. Then we can find z; € W with Per(z;) < . Hence

F,(z;) e F.(U).
On the other hand,
F.(z;) € 0y, = F(x;,[0,Per(x;)]) C F(W x [0,¢]) C U,

which contradicts to (2.1).

Lemma 2.2 (Local uniqueness of P-functions, c.f. [1], Corollary 8). Let V. C M
be any subset, z € V\X and ¢ € P(V). If&(z) = 0, then £ = 0 on some neighbourhood
of zin'V.
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Proof. Suppose £ is not identically zero on any neighbourhood of z in V' \ ¥. Then
there exists a sequence {z; };en C V'\ X converging to z and such that &(z;) # 0. Hence
every x; is periodic and &(z;) = n;Per(x;) for some n; € Z \ {0}. By continuity of £
we get

0 = lim &(x;) = lim n;Per(z;).
71— 00 11— 00
Since |n;| > 1, it follows that lim Per(x;) = 0, whence by Lemma 2.1 z € ¥, which
contradicts to the assumption. e

Lemma 2.3 (Local regularity of P-functions on open sets). LetV C M be an open
subset and £ € P(V'). Then for each z € V there exists a neighbourhood W C V such
that the restriction &|w is regular.

Proof. Suppose £ is not regular on arbitrary small neighbourhood of z. Then we can
find two sequences {z;};en and {y; }ien converging to z such that y; = F(x;,7;) for
some 7; € R and &(x;) < &(y;) forall ¢ € N.

It follows that x; and y; are periodic. Otherwise, by Lemma 1.1, we would have
&(z;) = &(y;). Hence 0 < &(y;) — &(x;) = n;Per(x;) for some n; € Z \ {0}.

We claim that llirgo Per(z;) = 0. Indeed, take any ¢ > 0. Then there is a nei-
ghbourhood W of z such that [£(y) — {(x)| < € for all x,y € W. Let N > 0 be such
that x;,y, € W fori > N,

Per(z;) < n;Per(x;) = &(y;) — &(xi) <e, i> N.

This implies lim Per(x;) = 0, whence, by Lemma 2.1, z € X. But in this case there
11— 00

exists a neighbourhood W7 of z and € > 0 such that F(1W; x [0,¢]) C V. Take x; € W3
such that Per(z;) < €, then

0y, = F(z; x [0,Per(z;)) C F(W7 x [0,¢]) C V.

In other words o, NV = o0, is connected, whence by Lemma 1.1 £ is constant on o,.
Therefore &(x;) = £(y;) which contradicts to the assumption.

Lemma 2.4 (Continuity of extensions of regular P-functions). Let V' C M be an
open subset and § € RP(V') be a regular P-function on V. Put U = F(V x R). Then
& extends to a P-function gon all of U.

If M is a C" manifold, F is C" on V x R, and £ is C" on V, then gis C"onU.

Proof. The definition of ¢ is evident: if y € U, so y = F(x,7) for some (,7) €
€ V x R, then we put £ (y) = &(z). Since ¢ is regular, this definition does not depend
on a particular choice of such (z, 7).

It remains to prove continuity of £ on U. Let y = F(x,t) € U for some (z,t) €
€ V x R. Since V is open, there exists a neighbourhood W of y in U such that
F_i(W) C V. Then £ can be defined on W by £(z) = £ o F_4(2) for all z € W. This
shows continuity of E on W.

Moreover, if M is a C" manifold, £ and F are C", then so is E

In order to formulate the last preliminary result we recall the following well-known
theorem of M. Newman:

Theorem 2.1 (M. Newman [7], see also [8-10]). If a compact Lie group effecti-
vely acts on a connected manifold M, then the set ¥ of fixed points of this action is
nowhere dense in M and, by [9], it does not separate M.
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Lemma 2.5 (Condition of divisibility by integers). Let V. C M be a connected
open subset and £:V — R be a regular P-function. Suppose that there exist an
integer p > 2 and a non-empty open subset W C V such that F (z,£(z)/p) = x for all
x € W, so the restriction of £ /p to W is a P-function. Then £ /p is also a P-function on
all of V.

Proof. By Lemma 2.4 we can assume that V' is F-invariant. Moreover, it suffices to
consider the case when p is a prime. Define the following map h: V' — V by h(z) =
= F(z,&(x)/p). Since £ is constant along orbits of F, it follows that {(h(z)) = &(z),
whence

hoh(z) =F(h(z), &(h(x))/p) = F(F(z,&(x)/p, &(x)/p) = F(,2¢(x)/p).

Similarly,
h¥(z) = F(z,ké(2)/p), keN.

In particular, we obtain that h? = idy, and thus h yields a Zy-action on V. But by
assumption this action is trivial on the non-empty open set W. Then by M. Newman’s
Theorem 2.1 the action is trivial on all of V] so &/p is a P-function on V.

Corollary 2.1. Let £ be a regular P-function on a connected open subset V.C M.

1) FVNInt(X) # @, then £ =0o0n V \ Int(X).

(i) IV NInt(X) = & and £ = 0 on some open non-empty subset W C V, then
E=0onall of V.

Proof. Evidently, it suffices to show that in both cases ¢ =0 on V' \ X.

In the case (i) put W =V NInt(X).

Let p be any prime. Then in both cases F(y,&(y)/p) = y for all y € W, where W
is a non-empty open set. Hence by Lemma 2.5 F(y,&(y)/p) = y for all y € V, that is
&/p is a P-function on V. Thus if £(z) = nPer(x) # 0 forsome z € V' \ X and n € Z,
then n is divided by p. Since p is arbitrary, we get n = 0.

3. Proof of Theorem 1.1. (A). Suppose Int(X) NV # &. We should prove that the
following set

P'={¢€C(V,R): &lvamz) =0}
coincides with P(V'). Evidently, P" C P(V).

Conversely, let £ € P(V). We claim that for every connected component T of
V \ Int(X) there exists z € T such that £(z) = 0. By Lemma 2.2 this will imply that
&lr = 0. Since T is arbitrary we will get that £ = 0 on all of V' \ Int(X) and, in
particular, that ¢ is a regular P-function.

As V is connected, the following set is non-empty, see Fig. 2.1:

B:=TNVn (Int(E) \ Int(Z)) £ 2.

Let z € B ¢ V = Int(V). Then by Lemma 2.3 there exists an open connected
neighbourhood W such that £|y is a regular P-function. Then we have that W N
N Int(X) # @ and W NT # & as well. Since £ is regular on W, it follows from (i) of
Corollary 2.1 that £ = 0 on W \ Int(X) and, in particular, on W N T.

(B). Suppose that Int(X) NV = @ and P(V) # {0}, so there exists £ € P(V)
which is not identically zero on V. We have to show that P(V) = {nf},cz for some
P-function §: V' — R satisfying (1)—(4).

Denote by Y the subset of V' consisting of all points x having one of the following
two properties:
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‘ '& 74

Fig. 2.1

(L) z €V \Xand&(z) = 0;

(L) x € VN X and there exists a sequence {z; }ien C V \ X converging to z and
such that (z;) = 0 for all i € N.

Evidently, ¢ =0 on Y.

Lemma 3.1. Y is open and closed in V. Hence if V is connected and {(x) = 0
for some x € V \ 3, then £ = 0 on all of V.

Proof. Y is open. Let z € Y. We will show that there exists an open neighbourhood
W of x such that W C Y.

If 2 € V'\ %, then, by Lemma 2.2, £ = 0 on some neighbourhood W C V'\ ¥ of z.
Hence, by (L), W C Y.

Suppose z € XNV C V = Int(V). Then by Lemma 2.3 there exists an open
connected neighbourhood W, of x such that &|y, is regular. We claim that W, C Y.

First we show that £ = 0 on W,.. Indeed, by (L») there exists a sequence {z; }ien C
C V\ X converging to « and such that {(x;) = 0 for all ¢ € N. In particular, z; € W,
for some ¢ € N. Let C' be the connected component of W, \ ¥ containing x;. Then
& =0 on an open set C' C W, whence, by (ii) of Corollary 2.1, £ = 0 on W,.

Therefore W, \ ¥ C Y. Let y € W, N X. Since W, N X is nowhere dense in W,
there exists a sequence {y; }ien C W, \ & converging to y. But then &(y;) = 0, whence,
by (L), y € Y as well.

Y is closed. Let {x;};en C Y be a sequence converging to some = € V. We have to
show that = € Y. Since {(x;) = 0, we have {(z) = 0 as well.

IfzeV\X, thenby (L) z €Y.

Suppose z € V' NX. Then we can assume that either {z; };eny C V' \ X or {x; }ien C
C V N X. In the first case x € Y by (L2).

Suppose {z;}iey C V N X. Since z; € Y, it follows from (Ly) for z; that there
exists a sequence {yf }jen C V'\ X converging to z; and such that £ (yl7 ) = 0. Then for
each i € N we can find n(i) € N such that the diagonal sequence {y," (i)}ieN CV\Z
converges to x, and satisfies & (y?(i)) = 0. Hence, by (L2), z € Y.

The lemma is proved.

Thus we can assume that £ # 0 on V' \ 3. In particular, all points in V' \ ¥ are
periodic.

Take any x € V' \ X and consider the following homomorphism

ex: P(V)—=1Z, ex(v)=v(z)/Per(zx),

for v € P(V). If v(x) = 0, then, as noted above, ¥ = 0 on all of V, whence e, is
a monomorphism. Moreover, e, (§) = £(z) # 0, whence e, yields an isomorphism of
P(V) onto a non-zero subgroup kZ of Z for some k € N. Put § = e, (k). Then

P(V) = {nb}nez.
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It remains to verify properties of 6.

(2) = (1). We have that §(z) = Per(z) > 0 on an open and everywhere dense subset
Q@ C V, whence 6 > 0 on V. On the other hand, by Lemma 3.1, § # 0 on V' \ X, whence
6>0o0nV\ZX.

(2) = (3). We have to show that 6 is regular, that is

b(x) = O(F, (2))

forany x € V' \ ¥ and 7 € R such that F.(z) € V.
First notice that for any open subsets A, B C M we have that

ANB=ANnB=ANB. (3.1
Since @ is open and everywhere dense in V, it follows that

F.(2) e VAF.(V)CQnF, (V) ¥

(3.1 = (€X)]
= QN FT(V) =Q@nN FT(Q) = QN FT(Q)
In other words, there exists a sequence {;};cny C @ converging to x and such that
{Fr(xi)}ieN C Q Then H(FT(LQ)) = 9(1‘1) = Per(xi). Whence

O(F;(z)) = lim 6(F,(z;)) = lim 0(x;) = 0(x).
71— 00 11— 00

(3) = (4). See Lemma 2.4.

(2) The proof consists of the following three statements.

Claim 3.1. Let x € V \ X. Then there exist an open connected neighbourhood
Wy of x in V, a regular P-function 0, € P(Wy,,), a number m,, € Z\ {0}, and an open
and everywhere dense subset QQ,, C W, consisting of periodic points such that

(@) P(Wm) = {mem}melu

(b) 8 =my0, on W,

(©) 0,(y) = Per(y) for all y € Q.

Proof. By Lemma 2.3 there exists an open connected neighbourhood W, of x such
that W, C V'\ ¥ and 6|, is regular. Notice that if we decrease W, then the restriction
of # to W, remains regular. Therefore we can additionally assume that there exists
e € (0,Per(z)) such that

(i) O(y) < 0(x) + ¢ forall y € W,;

(i) Per(z) < Per(y) + ¢ forall y € W;

(iii) there is N > 0 such that n, := 6(y)/Per(y) < N for all y € W,..
Indeed, (i) follows from continuity of 6, and (ii) from lower semicontinuity of Per,
c.f[11].

More precisely, suppose (ii) fails. Then there exists a sequence {z;}ieny C V \ X
converging to x and such that Per(xz) > Per(z;) + €. In particular, periods of x; are
bounded above and we can assume that .1_i)m Per(z;) = 7 < oo for some 7. Then

Per(z) > 7+4¢> 7. (3.2)

But F(z,7) = lim F(x;,Per(x;)) = x, so 7 = nPer(z) > Per(x) for some n € N,
11— 00
which contradicts to (3.2). This proves (ii).
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To establish (iii) notice that it follows from (i) and (ii) that
ny(Per(z) — ) < nyPer(y) = 0(y) < 0(x) + ¢,

whence
N O(x)+e

== > .
Per(z) —c ¥

This proves (iii).

Consider the group P(W,,). As W, is open and connected, we have that P(W,) =
= {mb;}mez for some 6, € C(W,R). By assumption, 6 is a P-function on W,
whence 0|y, = my0, for some m, € Z \ {0}.

To construct ), notice that for each y € W, \ X there exists a unique n, € Z such
that 6, (y) = nyPer(y). For every n € N denote by T}, the subset of W, consisting of
all y such that n, is divided by n. Since the values n, are bounded above, it follows
that 7T}, is non-empty only for finitely many n. Also notice that

N
W\ = T
n=1

We claim that T, is nowhere dense for n > 2. Indeed, suppose Int(7},,) # . Then
0,/n is a regular P-function on Int(7;,) and therefore, by Lemma 2.5, on all of W,.
However this is possible only for n = 1 as 6, generates P(WV,). Thus the subset
Q. := Int(Ty) N W, is open and everywhere dense in W and 6(y) = Per(y) for all
Y € Q.

Claim 3.1 is proved.

Claim 3.2. Letz,y € V\X. Then 0, =6, on W, N W, and m, = m,.

Proof. Indeed, since @, (Qy) is open and everywhere dense in W, (W), it follows
that Q. NQ), is open and everywhere dense in W, NW,. Moreover, for each z € Q,NQ,
we have that 0,(z) = 6,(z) = Per(z). Then by continuity 6, = 6,, on W, N W,,.

In particular, if z € Q. N Q,, then 0(z) = myPer(z) = m,Per(z), whence m, =
= my.

Claim 3.2 is proved.

Let T be a connected component of V' \ ¥. Then by Claim 3.2 m,, is the same for
all x € T and we denote their common value by my. It also follows that the functions
{0:}zer define a continuous function 67 : T — R such that 6|7 = mp 0. Thus if we
put Qr = wLEJT Q.., then Qr is open and everywhere dense in T and 61 (y) = Per(y)
forall y € Qr.

Claim 3.3. Let S and T be any connected components of V '\ X such that SNT #
# &. Then mg = mr.

Proof. We can assume that T # S. Let z € SNT C V N X and W, be an open,
connected neighbourhood of z in V' such that 8|y, is a regular P-function on W,.
Notice that s = 6/mg is a regular P-function on the non-empty open set W, N S,
whence, by Lemma 2.5, 8/mg is a P-function on all of W,.

If z € Qp N Wy, then 0(x) = mplr(x) = myPer(z), therefore my is divided by
mg. By symmetry mg is divided by my as well, whence mg = mr.

Claim 3.3 is proved.
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Since V is connected, it follows from Claim 3.3 that the number m is the same
for all connected components T of V' \ X. Denote the common value of these numbers
by m. Then §/m is continuous on V and F(z,6(x)/m) = « for all z € V. Since
generates P(V'), we obtain that m = 1.

Let @ be the union of all @1, where T runs over the set of all connected components
of V'\ X. Since for every such component 7" we have that 6 = mfy = 0 on T, it
follows that 6(z) = Per(x) for all z € Q.

Theorem 1.1 is proved.
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