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ON THE CONVERGENCE OF SOLUTIONS
OF CERTAIN NON-HOMOGENEOUS FOURTH ORDER
DIFFERENTIAL EQUATIONS

ITPO 3BIKHICTbD PO3B’A3KIB JEAKUX
HEOJHOPIJHUX JUPEPEHIIAJIBHUX PIBHSAHD
YETBEPTOI'O IOPAAKY

The main purpose of this paper is to give sufficient conditions for the convergence of solutions of a certain
class of fourth order nonlinear differential equations with the use of Lyapunov’s second method. Nonlinear
functions involved are not necessarily differentiable, but a function h satisfies a certain incremental ratio that
lie in the closed sub-interval of the Routh — Hurwitz interval.

T0JI0BHOIO METOIO CTATTi € HABEACHHS JOCTATHIX YMOB [UIsl 301KHOCTI PO3B’A3KIB ACSIKOTO KIACy HENiHIHHUX
JudepeHIiaTbHUX PIBHAHb YETBEPTOrO MOPSAAKY 3 BUKOPUCTaHHAM JApyroro Merony JlsmyHoBa. PosmismyBani
HeJiHilHI QyHKIIT He000B 13k0BO AU(DEPEHIIIHOBHI, ajne QYHKIis h 3aJOBOJNBHSIE AESKE BiJHOLICHHS IIPUPOC-
TiB, IO JIeXaTh y 3aMKHEHOMY IifiHTepBai iHTepBany Pyra—Iypsina.

1. Introduction. The convergence of solutions is very important in the theory and
applications of differential equations. In the recent years, the convergence problem has
been the subject of investigation by a number of authors for various forms and orders
of equations (see, for example, [1-8]). In this connection, Afuwape [2] discussed the
convergence of the solutions of the differential equations of the form

2 4 @i + bii 4 g(&) + hz) = p(t, z, &, 2, ©)

results, Afuwape [2] assumed that h was not necessarily differentiable but satisfied an

incremental ratio =1 (h(€ +n) — h(£)), n # 0, which lies in a closed subinterval Iy of
(ab—c¢)c

the Routh — Hurwitz interval (0, a4 5 , where
a
K(ab—c)c
Ip = | Ay, (72) ) (1
a
Ag>0and K < 1.
In this work, we shall be concerned here with equation of the form
)+ f(&) + b3 + g(2) + h(z) = p(t, z, @, i, ), ©)

where b is a positive constant, the functions f, g, h and p are real-valued and continuous
for values of their respective arguments and dots denote differentiation with respect to
t. Moreover, f(0) = g(0) = h(0) = 0. Using Lyapunov’s second method, our results
assert the existence of convergence of solutions with the functions f, g and h are not
necessarily differentiable.

Definition. Any two solutions x1(t), z2(t) of the equation (2) are said to converge
to each other if

oa(t) — 21 (t) — 0, @o(t) —a1(t) =0,  ia(t) — F1(t) — O,

Zo(t) —21(t) =0 as t— oo.
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2. Main results. The main results of this paper are the following.
Theorem 1. In addition to the fundamental assumptions imposed on f, g, h and
p, we assume that
(1) there are positive constants a, ag such that
f(wz) — f(w1)

a < ————— <aqag, wyFwi; (3)
W2 — W1

(i) there are positive constants c, ¢y such that

CSMSCQ, Yo # 1, 4)
Y2 — Y1

and
abe > c3;

(iii) there are comstants Ay > 0, K < 1 such that for any &, n (n # 0), the
incremental ratio for h satisfies

(W€ +n) = (&)
U

el (5)

with Iy as defined (1);
(iv) there is a continuous function ¢(t) such that

’p(t7$27y27227w2) _p(taxhylazhwl)} S
< p(t){lz2 — 1]+ ly2 — w1l + |22 — 21| + [wo — w1 ]}

holds for arbitrary t, x1, y1, 21, W1, T2, Yo, 22 and w,.
Then if there exists a constant D1 such that if

t
/ ¢" (1)dr < Dyt ©)
0

for some v, with 1 < v < 2, then all solutions of (2) converge.

Theorem 2. Assume the conditions of Theorem 1 are satisfied. Let x1(t), x2(t) be
any two solutions of (2). Then for each fixed v, 1 < v < 2, there are constants Do, D3
and Dy such that for to > tq,

to
S(tg) S DQS(tl) exp —D3(t2 - tl) + D4 / (ZSD(T)CZT s (7)
ty

where
S(t) = {[xz(t) —x1(8)] + [2(t) *i1(t)]2+[iz(t)f'xj(t)]QJr[Ez(t)f'f1(t)]2}. (8)

We have the following corollaries when z1(¢) = 0 and ¢; = 0.

Corollary 1. Suppose that p = 0 in (2) and suppose further that conditions (1), (ii)
and (iii) of Theorem 1 hold, then the trivial solution of (2) is exponentially stable in the
large.
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Also, if we put £ = 0 in (5) with 7 (n # 0) arbitrary, we get:

Corollary 2. If p = 0 and hypotheses (1), (ii) and (iii) of Theorem 1 hold for
arbitrary n (n # 0), and £ = 0, then there exists a constant D5 > 0 such that every
solution x(t) of (2) satisfies

lz()] < D5, |2t)| < Ds,  |2(t)| < Ds, |i(t)| < Ds.
Proof of Theorem 2. 1t is convenient here to consider (2) as the equivalent system
=y,
)

w = 7]0(11)) —bz— g(y) - h(fﬂ) +p(t,m,y,z,w).

Let (z;(t), yi(t), z:(t), wi(t)), i = 1,2, be any two solutions of (9) such that inequali-
ties (3), (4) and

h(z2) — h(x1) < K(ab—c)c
Ty — T1 - a?
are satisfied. The basic tool in the proofs of the convergence theorems will be the function

Ay <

2V =c*e(1 —e)a® + ac[(D — 1) + €]y® + 2c[e + (D — 1)|yz+
+eDw? + b(D — 1)2% + 2caDzw + ea® D2*+

+[(1—¢)D —1] [az + w]? + [c(lf€)z+by+az+w]2, (10)
0+ ce

where 0 < € < 1, abfc>5>0,6:absandD71:ﬁ.lndeedwecan
ab—c—

rearrange the terms in (10) to obtain
2V =2Vy +2V3 + 2V,
where
2Vi = ac[(D — 1) +ely® + 2c[e + (D — 1)]yz + b(D — 1)2?,
2V, = ea?Dz? + 2eaDzw + e Dw?
and
2Vs = c?e(1 — )z + [(1 —&)D — 1][az + w]® + [e(1 — &)z + by + az + w]?.

We note that V5 obviously positive definite. Also V;, ¢ = 1,2, regarded as quadratic
forms in y and z, z and w respectively is positive and non-negative. Let us recall that a

real 2 X 2 matrix
aiy as
as a4

is positive definite if and only if it is symmetric, and the elements a1, a4 and a1a4 —asas
are non-negative. Thus we can rearrange the terms in V; as

(v.7) ac[(D—-1)+¢] cle+(D-1)]\ (v
DI\ e (D 1)) sD—1) ) \z)
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from which we have as a condition for the positive definite.

Similarly, V5 is non-negative. Hence V' is positive definite. We can therefore find a
constant Dg > 0, such that

Dg (22 + 9% + 2% +w?) < V. (11)

1
Furthermore, by using Schwartz inequality |y| |z| < 3 (y? + 2?) , it can be easily obtai-
ned that
V < Dy (2® + 9 + 22+ w?), (12)

where D7 is a positive constant.
Using inequalities (11) and (12), we have
Dg (x2+y2—|—z2+w2) <V <Dy (m2—|—y2+z2+w2).

The following result can be easily verified for W = V.
Lemma 1. Let the function W(t) = W(:vg —X1,Y2 — Y1,22 — 21, Wa — wl) be
defined by

QW = ce(1—¢) (zy —x1)* +ac[(D — 1) + €] (y2 — 11)* +
+2ce + (D = 1)] (y2 — w1) (22 — 21) + €D (wy — wy)? +
+b5(D — 1) (22 — 21)% + 2eaD (20 — 21) (ws — w1) + €a®D (22 — 21)* +
+[(1 —e)D —1][a (22 — z1) + (wy — wy)]*+
+le(l—e) (wa —21) + b (y2 — y1) + a(z2 — 21) + (wo — wy))?,

where 0 < ¢ < 1and W(0,0,0,0) = 0, then there exist finite constants Dg > 0, D7 > 0
such that

Dg {(xz —21)? + (g2 — y1)” + (22 — 21)” + (w2 — w1)2} <W <
<Dr{@a—o)+ -y’ + (-2 + (@ —w)’}. (13
If we denote the function W (t) by W (2a(t) — 21(t), y2(t) — y1(t), 22(t) — 21(¢),

ws(t) — w1 (t)), and using the fact that the solutions (z;,y;, z;, w;) , i = 1,2, satisfy the
system (9), then S(t) as defined in (8) becomes

S(t) = {[z2(t) = 21 (O + [y2(t) — 92O + [22(t) — 21 (D) + [wa(t) — wi ()]}

Next we prove a result on the derivative of W (t) with respect to ¢.
Lemma 2. Let the hypotheses (i), (i1) and (iii) of Theorem 1 hold, then there exist
positive finite constants Dg and Dg such that

T < 2Dy5 + Dos™2 0], (14)

where 0 = p(t, 2, Y2, 22, w2) — p(t, T1, Y1, 21, w1).
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Proof. Using the system (9), a direct computation of ar gives after simplification

dW
=W+ W 1
dt 1 2, ( 5)

where
Wi = c(1 —e)H(xg,21)(x0 — x1)* + bee(ya — y1)*+
+0D (20 — 21)* + D(F — a)(wy — wy)?+
+(G(y2,51) — ) [e(1 — &) (w2 — x1) + by2 — y1)+
+aD(z2 — z1) + D(wz — w1)] (Y2 — 1) + H (w2, 1) [b(y2 — y1)+
+aD(z — z1) + D(wa — wy)] (w2 — 1)+
+(F (w2, w1) — a)[e(1 —)(xa — 21) + by2 — y1) + aD(z2 — 21)] (w2 — w1),
Wo =0(t)[c(1 — ) (w2 — 21) + b(y2 — y1) + aD(z2 — z1) + D(wa — w1)]

with
F(wz,w) = %» wy # wi,
G(y2,m1) = W’ Y2 # Y1,

Let x1 = G(y2,41) — ¢ > 0 for yo # y1 and x2 = F(wa,w1) —a > 0 for wy # wy.
Furthermore let H (22, 21) be denote simply by H, and define

6 6 4 6
Zai:]-v Zﬁzzlv Z'yl:la Zgz:lv
i=1 i=1 i=1 i=1
where o; > 0, 5; > 0, v; > 0 and & > 0. Then W; re-arranged as
Wi = Wi+ Wiz + Wiz + Wig + Wis + Wi + Wiz + Wig + Wig + Wa,
where
Wit = {are(l = )H (@3 — 21)" + b (Bree +x1) (v — 1)° +
2 2
+710D (22 — 21)” + &1 Dx2 (we — wy) },
Wiz = {Babes (g2 = 91)* +xae(1 = £) (w2 —21) (42 = 1) +
+ase(l —e)H (zy — x1)° },
Wiz = {ﬁgbcs (y2 — y1)2 +x1aD (y2 — y1) (22 — 21) + 720D (22 — 21)2 }’
Wiy = {54508 (y2 —41)° + x1D (y2 — y1) (wa — w1) + EaDxa (wy — wy)” }7
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Wis = {ase(l = €)H (s — 21)” + bH (22— 22) (32 — 1) + fsbee (92— )* },
Wie = {040(1 —)H (w5 —21)” + aDH (x5 — 1) (22 — 21) + 736D (2 — 21)° },
Wir = {a5c(1 —e)H (xo — m1)2 +
+DH (w5 — 71) (w2 — w1) + &3 Dxa (wy — w)? },

Wig = {aGC(l —&)H (23 — 1) + x2¢(1 — €) (x3 — 1) (wa — wy) +
+&4Dx2 (wy — wy)? }7
Wig = {ﬁﬁb&f (g2 — y1)” + x2b (Y2 — y1) (w2 — w1) + & Dxa (wy — wr)? }

and
Way = {74517 (22 — 21)° + Xx20D (23 — 21) (w2 — w1) + & Dxa (wy — wr)? }
Since each Wy,;, ¢ = 1,...,9, and W5, are quadratic in their respective variables, then

by using the fact that any quadratic of the form Ar? 4+ Brs + Cs? is non-negative if
4AC — B? > 0, it follows that

4 beA
Wip >0 if ngm,
1—c¢
. 45 B3bced
Wiz >0 if XﬁgcﬂiD’
4
Wi >0 if X%gm’
D
4 2e(1 —
Wis >0 if HS%B%(E%
. 40{4’}/30(1 — 5)6
Wig >0 if HST’
4 1-—
Wi >0 if ng,
D
4 DA
Wig >0 if XQSM,
c(l—¢)
4 D
Wig >0 if XzﬁﬁﬁgTch7
and A 5
W 20 if xo < ’yéfﬁ-
a

Thus W7 > Wi, provided that above inequalities are satisfied in addition to

aafabeNg Yo B3bced  Bababeexa
1—e ’ a?D '’ D ’

agla DAy PelsceD 74666
c(l—¢)’ b 7 a?

ngf§4min{

O§x2§4min{
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and H lying in
K(ab—c)c
IO = |:A07(012):| )

h—
where Iy is a closed sub-interval of the Routh — Hurwitz interval <0, (azc)c>7 and
a

23=a? — 2(1 — cvaql(] —
K (ab4_ C) min{a‘gﬁ‘)a Cb€(1 5)7 a4’73(D 5)57 Q5730 % 5)X2} <1
On choosing 2Dg = min {c(1 — €)Ag, bes, 0D, Dx2} , we have
Wi > Wi > 2Dg8 (16)
and if Dy = 2max {c¢(1 —¢),b,aD, D} then
Wy < DgSY216]. (17)

Combining (16) and (17) in (15), inequality (14) is obtained. At last the conclusion to
the proof of Theorem 2 will now be given. For this purpose, let v be any constant in the

1
range l <v <2andsetoc =1— g ,sothat 0 <o < 3 We re-write (14) in the form

d
% + DgS < DyS° W™, (18)

where
W = gl/2-7 (\9| - Dmsl/?) (19)

D
with Do = D—S. If |9] < D1pS"/?, then W* < 0. On the other hand, if || > D;0S"/?,
9
then the definition of W* in (19) gives at least
wW* < S(l/Q*O’) |9|

and also S1/2 < ﬂ Thus
10

9| (1-20)
G1-20)/2 < p}
~ [ Do

and from this together with W* follows
W* < Dy \9|2(1_0) )
where D11 = Dggfl). On using the estimate on W* in inequality (18), we obtain

d Y o) 1
d—VtV + DsS < DgD11 57 |6)*177) < Dy,87¢2(1-) g(1=0)

where D15 > 2Dg D11, which follows from
|p(t, 22, Y2, 22, wa) — p(t, w1, 91, 21, w1)| <

< ¢(t){|$2 — x|+ |y2 — 1| + |22 — 21| + |we —w1|}.
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In view of the fact that v = 2(1 — &), we obtain

d%/ < —DgS + D12¢" S,

and on using inequalities (13), we have

dW
W + (D13 - D14¢V(t))W < 0 (20)
for some constants Dy3 and D14. On integrating the estimate (20) from ¢1 to to, to > t1,
we have

W(tg) < W(t1) exp —D13(t2 — tl) + D14/(]§V(T)d7'

Again, using Lemma 1, we obtain (7), with Dy = D7Dgl, D3 = Dy3 and Dy = Dq4.
Theorem 2 is proved.
Proof of Theorem 1. The proof follows from the estimate (7) and the condition (6)
on ¢(t). On Choosing Dy = D3D; ' in (6). Then, as t = (to — t;) — o0, S(t) — 0,
which proves that as t — oo,

l‘g(t) — ZEl(t) — 0, Zi?g(t) — Jbl(t) — 0,

The theorem is proved.
Remark. If ¢(t) = D5 (a constant), our results will still remain valid.
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