
UDC 517.5

J. Gilewicz (Centre Phys. Théor., Marseille, France),

M. Pindor* (Inst. Theor. Phys., Warsaw Univ., Poland)

GENERAL ALGORITHM OF COMPUTATION
OF c-TABLE AND DETECTION OF VALLEYS

ЗАГАЛЬНИЙ АЛГОРИТМ ОБЧИСЛЕННЯ
c-ТАБЛИЦЬ ТА ВИЗНАЧЕННЯ ТОЧОК МIНIМУМУ

We present a review of all interesting results concerning the c-table obtained by the authors during two last
decades, which are not widely known, because they were presented in publications of a limited circulation. We
discuss different computational aspects of softwares producing the c-tables with presence of blocs and their
evolution following the evolution of computer environment:

effects of use of the 32-bit arithmetic (≈ 8 digits), 64-bit arithmetic (double precision, ≈ 16 digits) and
of Bailey’s Fortran multiprecision package (32 or 64 digits),

concurrence between the ascending and descending algorithms,
relation between complexity of computation and precision, overflow and underflow problems,
concurrence between different formulas allowing to overcome the blocs in the c-table,
practical simple criterion of detecting numerical zeros in the c-table allowing to identify the blocs,
automatic detection of valleys.

Наведено огляд усiх цiкавих результатiв щодо c-таблиць, одержаних авторами протягом двох останнiх
десятилiть, якi маловiдомi з причини публiкацiї у виданнях обмеженого поширення. Розглянуто рiзнi
обчислювальнi аспекти програм, що продукують c-таблицi з наявнiстю блокiв, а також їх еволюцiю,
обумовлену еволюцiєю комп’ютерного середовища, а саме:

наслiдки використання 32-бiтової арифметики (≈ 8 розрядiв), 64-бiтової арифметики (подвiйна
точнiсть, ≈ 16 розрядiв) та високоточного пакету Фортрана Бейлi (32 або 64 розряди),

порiвняння зростаючих та спадних алгоритмiв,
зв’язок мiж складнiстю обчислень i точнiстю, проблеми надпотокiв та недостатнiх потокiв,
порiвняння рiзних формул, шо дозволяють уникнути блокiв у c-таблицях,
практичний простий критерiй для визначення числових нулiв у c-таблицях, що дозволяють iденти-

фiкувати блоки,
автоматичне визначення точок мiнiмуму.

1. Introduction. The application of Padé approximants in computational problems
starts frequently by the computation of the auxiliary table, so called c-table [1]. The
entries of c-table are the Toeplitz determinants of matrices of linear systems defining the
denominators of Padé approximants. The square blocs of zeros in the c-table indicate
the existence of corresponding blocs in the table of Padé approximants. The so called
valleys in the c-table, it is the lines of minimal absolute values of entries located on each
antidiagonal, indicate the lines of best Padé approximants in the Padé table [2]. Notice
that each element of an antidiagonal in c-table or Padé table is computed using the same
coefficients, same information about a considered function. Because the computation of
the c-table is simpler, it is recommended to begin by this computation to obtain global
preliminary information about the interesting Padé approximants before of their own
calculations. Let us recall some definitions.

Let [m/n] be a Padé approximant Pm/Qn to the formal power series f(z) =

=
∑∞

j=1
cjz

j defined by f(z)−Pm(z)/Qn(z) = O(zm+n+1). The normalized denomi-

nator Qn(z) = 1 + q1z + . . . + qnz
n, if it exists, is defined by the linear system∑n

j=0
ck−jqj = −ck, k = m + 1, . . . ,m + n. The determinant of the matrix of this

system is the Toeplitz determinant
*M. Pindor passed away in 2003.

c© J. GILEWICZ, M. PINDOR, 2010

762 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

GENERAL ALGORITHM OF COMPUTATION OF c-TABLE AND DETECTION . . . 763

m ≥ 0, n ≥ 1: Cm
n =

cm cm−1 . . . cm−n+1

cm+1
.
.
cm+n−1 cm

, (1)

where we put ck ≡ 0 if k < 0. Defining Cm
0 := 1 we can build an infinite table of Cm

n ’s,
called c-table:

n
m

0 1 2 3 . . .

0 1 c0 (c0)
2 (c0)

3 . . .

1 1 c1

2 1 c2

...

≡

C0
0 C0

1 C0
2 . . .

C1
0 C1

1 C1
2 . . .

C2
0 C2

1 C2
2 . . .

.

. (2)

The second column of this table contains the coefficients of the power series Cm
1 = cm.

The first row contains the powers of c0, C0
n = (c0)

n and the second row can be computed
recursively by expanding C1

n:

C1
n = −

n∑
j=1

(−1)j(c0)j−1cjC1
n−j . (3)

The c-table was first introduced by Gragg [1]. Baker [3] used an alternative definition
permuting rows in (1), calling the resulting determinants C(m/n) and the corresponding
table C-table. An obvious relation between C(m/n) and Cm

n is

Cm
n = (−1)n(n−1)/2C

(m
n

)
, C

(m
n

)
=

cm−n+1 cm

cm−n+2 cm+1

.

.

cm cm+n−1

.

(4)

An interest in the c-table is due to its direct relation to the Padé table [2] and to a particular
easiness of its computation. The c-table contains an information about a block structure
of the Padé table. Each square block of zeros in the c-table defines a corresponding block
in the Padé table. Moreover, a dominant term of an error of Padé approximant is given
by a ratio of two Toeplitz determinants:

f(z)− Pm(z)

Qn(z)
= (−1)n

Cm+1
n+1

Cn
m

zm+n+1 + (5)

A theory of valleys in the c-table [4] leading to a numerical algorithm of choice of the
best Padé approximant [5] is based on the property (5).

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

764 J. GILEWICZ, M. PINDOR

2. Computation of the c-table in the normal case. We say that the Padé table,
respectively c-table, is normal, if it has no blocks. The determinants Cm

n can be computed
directly by (1), but it is easier to compute the c-table recursively by means of the Sylvester
formula relating five neighborhood entries

NS + EW = C2,

N

W C E

S

. (6)

Starting from the two first columns one can compute the East elements by ascending
algorithm [6]

E = (C2 −NS)/W or E = C/W ∗ C − S/W ∗N. (7)

Alternatively, starting from the two first rows one can compute the South elements by
the descending algorithm

S = (C2 − EW)/N or S = C/N ∗ C − E/N ∗W. (8)

The two last forms in (7) and (8) was used thirty years ago in [6] in order to diminish a
risk of overflows or underflows in 32-bit arithmetic computation. Numerical experiments
show, that Cn

m’s decrease or increase quite rapidly. In contrast to [6] we are not concerned
today with the problem of overflow, because the double precision IEEE standard allows
for a range of exponents sufficiently large for most applications (approximately between
−308 and +308). Moreover the case of overflow is signaled by Inf or Nan conditions,
without aborting a program. Therefore, we can use the first forms of formulas (7) and
(8) which are faster and somewhat precise because of their smaller complexity.

To calculate the whole c-table, we can use either the ascending, or the descending
algorithm, or a combination of the two. In [6] authors have analyzed a complexity of
computation of elements in the c-table when using both algorithms (counting step by
step all multiplications and divisions necessary to obtain the Cn

m). It was shown that
there exists a line separating the c-table in two parts: the lower one where the ascending
algorithm needs a lower computational cost, and the upper one where the descending
algorithm is more advantageous. This line is very close to the diagonal. The following
two elements are situated on the both sides of this line. Each element is followed by
a number of operations needed by the descending algorithm and next by the ascending
one [7] :

C8
11 : 105 266; 159 995 C9

11 : 349 092; 160 070.

On the other side, if we consider problems of precision, situation seems to be di-
fferent. Naively thinking, we could expect, that a precision loss will be approximately
monotonously dependent on a complexity, i.e., on a number of arithmetic operations
necessary to calculate a given element and therefore the line mentioned, would divide
c-table in two parts which should be calculated using different algorithms to minimize
the complexity. However, our numerical experiments seem to show that the ascending
algorithm is, generally, more precise. One could attribute this observation to the fact,
that formula (3) for calculating C1

n contains many additions (subtractions), what is very
dangerous for precision. On the contrary, each calculation using one of the algorithms

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

GENERAL ALGORITHM OF COMPUTATION OF c-TABLE AND DETECTION . . . 765

stemming from Sylvester formula, contains only one subtraction. This explanation can be
verified by calculating C1

n with higher precision, but a conclusion is strongly perturbed
by the fact that often C1

n and Cn
1 differ completely in their behavior as functions of n.

In some cases C1
n rise sharply, when Cn

1 drop very fast. Consequently it is impossible
to say, in advance, which algorithm will give more accurate values, even if C1

n’s are
calculated with extra precision. On the other hand, Bailey’s [8] Fortran package for
multiprecision makes calculations with extra digits as easy that we think, one does not
need to care about more precise algorithm, as even for fifty terms in power series and
64 digits of precision the whole c-table could be calculated in about 5 seconds. Interesti-
ngly, we remarked that running calculation with 32 digits was only marginally faster,
what probably means that with those numbers of digits, function calls, and not actual
arithmetic operations, were the main burden for the processor.

Table 1 illustrates some situations encountered during numerical experimenting.
We are going to compare first three columns with the two remaining ones considered
as being exact. This two columns have first four digits identical, although they have
been calculated with different algorithms, and therefore we consider these digits as
exact.

Some elements of c-table calculated using either ascending or descending algorithms
with different precision for f(z) = −1/z ∗ log(1− z):

a — double precision, ascending alg.;

b — double precision, descending alg.;

c — double precision, descending alg. starting from C1
n computed with 32 digits;

d — full 32 digits, ascending alg.;

e — full 32 digits, descending alg.

Table 1

row a b c d e

9 th column

11 .7086d-54 .7085d-54 .7087d-54 .7087d-54 .7087d-54

12 .5307d-57 .5308d-57 .5304d-57 .5304d-57 .5304d-57

13 .7619d-60 .7607d-60 .7625d-60 .7625d-60 .7625d-60

14 .1867d-62 .1875d-62 .1868d-62 .1868d-62 .1868d-62

15 .7236d-65 .7163d-65 .7148d-65 .7150d-65 .7150d-65

16 .3761d-67 .3834d-67 .4007d-67 .4004d-67 .4004d-67

17 .3768d-69 .3645d-69 .3110d-69 .3115d-69 .3115d-69

18 .1437d-71 .1894d-71 .3242d-71 .3232d-71 .3232d-71

19 .9312d-73 .6939d-73 .4291d-73 .4322d-73 .4322d-73

20 -.6779d-75 .5790d-75 .7369d-75 .7249d-75 .7349d-75

21 .5458d-76 -.1103d-76 .1435d-76 .1489d-76 .1489d-76

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

766 J. GILEWICZ, M. PINDOR

row a b c d e

13 th column

8 .1345d-54 .1345d-54 .1344d-54 .1344d-54 .1344d-54

9 .3457d-64 .3445d-64 .3465d-64 .3465d-64 .3465d-64

10 -.1041d-73 -.1073d-73 -.1035d-73 -.1035d-73 -.1035d-73

11 -.6476d-83 -.5203d-83 -.6039d-83 -.6054d-83 -.6054d-83

12 -.4552d-92 .1140d-91 .1475d-91 .1443d-91 .1443d-91

13 .1653d-97 .9137d-98 .1197d-98 .1387d-98 .1387d-98

14 -.9270d-103 -.7552d-103 .1614d-104 .9683d-105 .9683d-105

15 -.2095d-108 -.6141d-108 -.5007d-110 .2715d-110 .2715d-110

16 -.2044d-111 -.1911d-111 .2723d-114 .2241d-115 .2241d-115

17 -.4047d-115 -.4269d-115 -.1742d-118 .4453d-120 .4453d-120

In Table 1 above we present elements lying below the line discussed above (except
C8

13 and C9
13). Therefore, calculation of these elements using ascending algorithm requi-

res less multiplications/divisions than using descending algorithm. We could then expect
that using the former one would give more precise results. For 9-th column it is, in fact,
the case for rows 11 through 14. Surprisingly, for next columns, descending algorithm,
even with double precision only, gives better results, even if for rows 20 and 21 both
numbers are very bad. For 13-th column elements in rows 8, 9 and 10 lie above the
line and descending algorithm should be better for them, and, generally it is, if we
calculate second row with 32 digits of precision. For 11-th row however ascending
algorithm gives more accurate value, then the descending one, even in case c and again
for 12-th row, descending algorithm is better while further down double precision gives
completely erroneous numbers independently of an algorithm used. Below 13-th row,
even calculation of the second row with 32 digits does not help, and we miss correct
numbers by orders of magnitude.

3. Blocks. Separate question concerns detection of blocks in c-table. Evidently, we
cannot expect to see exact zeros, and much discussion has been devoted to the problem
of computational zero. We think that the method of Vignes [9] is computationally too
expensive to be of practical use in our case. A simple and practical criterion of detecting
zeros in c-table has been proposed by Guzinski [10]. It consists of observing changes
in absolute values of entries in c-table computed in subsequent steps. If there is a rapid
drop in absolute value of a current entry with respect to a preceding one (we have
to select in advance a corresponding factor), we decide that this current value should
be zero. We experimented with this criterion with, generally, positive results, though
we have found that, again, high number of significant digits was absolutely necessary
in some instances. The reason for this was that sometimes loss of precision was so
severe that when working with double precision only, there was no significant drop in
absolute values of elements at a border of a block. This is well illustrated in examples
below.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

GENERAL ALGORITHM OF COMPUTATION OF c-TABLE AND DETECTION . . . 767

First we show a fragment of c-table for a series produced by a rational function

f(x) = 1/(1− x/3)2 − 9x3/(1− x/9)2

and the ascending algorithm (Table 2).

Table 2

3 4 5 6 7 8 9 10

3 -7.04D + 02 6.28D + 03 -5.60D + 04 4.99D + 05 -4.45D + 06 3.97D + 07 -3.54D + 08 3.15D + 09

4 1.98D-01 6.61D-01 2.19D + 00 7.18D + 00 2.34D + 01 7.59D + 01 2.45D + 02 7.88D + 02

5 9.07D-04 6.61D-07 -6.61D-07 6.61D-07 -6.61D-07 6.61D-07 -6.61D-07 6.61D-07

6 4.09D-06 9.06D-10 6.55D-26 -2.26D-26 7.48D-27 -5.19D-27 1.68D-27 8.83D-30

7 1.78D-08 1.24D-12 -3.11D-29 3.48D-47 9.31D-47 2.17D-47 -4.33D-48 4.90D-49

8 6.92D-11 1.71D-15 1.41D-32 -1.28D-49 1.06D-66 -1.69D-67 4.82D-69 1.28D-70

9 1.29D-13 2.34D-18 -1.34D-35 4.09D-53 -2.31D-70 1.07D-87 -1.03D-89 1.45D-91

10 -2.24D-15 3.21D-21 5.94D-39 1.12D-56 9.06D-75 1.42D-92 -1.01-110 -1.59-113

11 -5.22D-17 4.40D-24 4.29D-44 1.73D-60 3.30D-79 2.73D-97 -2.18-116 -1.03-134

12 -8.47D-19 6.04D-27 -1.29D-45 2.68D-64 -4.03D-83 5.77-102 -3.23-121 2.02-140

13 -1.25D-20 8.28D-30 7.78D-49 1.16D-68 2.25D-88 7.42-107 5.52-127

14 -1.78D-22 1.14D-32 -3.96D-52 -1.50D-73 2.01D-92 9.33-112

15 -2.47D-24 1.56D-35 2.04D-55 6.88D-76 2.42D-96

16 -3.40D-26 2.14D-38 -7.76D-59 1.30D-79

17 -4.61D-28 2.93D-41 1.59D-62

It should contain zeros in an infinite block starting at element C6
5 . If we have decided

that a recently calculated element of c-table would be considered to be zero, when its
absolute value was at least 1013 times smaller than that of a preceding element, we
would have correctly detected the block. However if we calculate the same c-table using
the descending algorithm, we get Table 3.

Table 3

3 4 5 6 7 8 9 10

3 7.04D + 02 6.28D + 03 -5.60D + 04 4.99D + 05 -4.45D + 06 3.97D + 07 -3.54D + 08 3.15D + 09

4 1.98D-01 6.61D-01 2.19D + 00 7.18D + 00 2.34D + 01 7.59D + 01 2.45D + 02 7.88D + 02

5 9.07D-04 6.61D-07 -6.61D-07 6.61D-07 -6.61D-07 6.61D-07 -6.61D-07 6.71D-07

6 4.09D-06 9.06D-10 -3.10D-19 2.64D-19 1.61D-18 1.84D-18 -2.88D-17 4.40D-17

7 1.78D-08 1.24D-12 3.63D-22 8.61D-31 -3.19D-30 7.53D-29 -1.13D-27 2.00D-27

8 6.92D-11 1.71D-15 3.03D-24 4.38D-33 -3.39D-41 1.12D-39 -3.93D-38 1.40D-37

9 1.29D-13 2.34D-18 4.75D-27 1.42D-34 1.54D-42 -1.03D-51 -1.22D-48 1.13D-47

10 -2.24D-15 3.21D-21 -1.02D-28 2.92D-36 -7.39D-44 1.68D-51 -3.84D-59 1.30D-57

11 -5.22D-17 4.30D-24 2.13D-31 7.10D-39 3.62D-46 2.13D-53 1.79D-60 8.41D-68

12 -8.54D-19 9.24D-27 -1.48D-34 -9.18D-42 2.79D-49 -1.14D-55 -3.64D-62 -4.62D-69

Now, due to extra loss of accuracy when calculating elements C1
n, elements of c-table

drop only about 10 orders of magnitude between rows 5 and 6 in columns 5 and next

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

768 J. GILEWICZ, M. PINDOR

ones. At the same time, when we proceed from element C17
3 to C16

4 (see Table 2),
none of them lying in the block, there is also a drop in absolute magnitude of about 10
orders of magnitude. This illustrates that to use Guzinski criterion we have to resort to
multidigit precision. In fact when we calculate c-table, for the same function, with 32
digits, we get Table 4.

Table 4

3 4 5 6 7 8 9 10

3 -7.04D + 02 6.28D + 03 -5.60D + 04 4.99D + 05 -4.45D + 06 3.97D + 07 -3.54D + 08 3.15D + 09

4 1.98D-01 6.61D-01 2.19D + 00 7.18D + 00 2.34D + 01 7.59D + 01 2.45D + 02 7.88D + 02

5 9.06D-04 6.61D-07 -6.61D-07 6.61D-07 -6.61D-07 6.61D-07 -6.61D-07 6.61D-07

6 4.09D-06 9.06D-10 -3.68D-39 -2.83D-40 1.71D-40 -3.00D-41 3.09D-42 -3.99D-43

7 1.78D-08 1.24D-12 -3.88D-43 1.07D-72 -3.15D-74 5.66D-76 3.70D-78 1.15D-78

8 6.92D-11 1.71D-15 3.22D-46 4.32D-77 2.25-108 -1.45-110 -2.06-112 -4.88-114

9 1.29D-13 2.34D-18 -7.76D-50 1.06D-81 -1.99-113 1.19-144 -7.78-147 8.63-149

10 -2.24D-15 3.21D-21 1.09D-53 -9.55D-87 -3.87-118 1.07-149 2.05-181 -1.42-183

11 -5.22D-17 4.40D-24 -1.94D-57 4.06D-90 -1.26-122 1.62-154 -1.95-186 -1.57-218

12 -8.47D-19 6.04D-27 -1.29D-60 8.34D-94 1.29-126 1.74-160 3.09-191 1.48-223

13 -1.25D-20 8.28D-30 1.74D-63 5.83D-97 -1.21-130 -2.46-163 -4.78-196

14 -1.78D-22 1.14D-32 1.39D-66 6.60-100 1.22-133 1.48-167

15 -2.47D-24 1.56D-35 -3.19D-69 4.55-103 -4.24-135

16 -3.40D-26 2.14D-38 2.23D-72 1.09-106

17 -4.61D-28 2.93D-41 -8.23D-76

With this precision, both algorithms, the ascending and the descending one, give the
same values for elements of c-table (at least within 4 most significant digits). We easily
see that the smallest drop in absolute values of elements between 5 th and 6th columns
and 4 th ant 5 th row, is 26 orders of magnitude (C7

4 and C6
5). This drop can be made,

of course, arbitrarily large if we resort to calculations with even more digits. E.g. when
we make calculations with 64 digits, we get this drop of absolute values to be around
10−60.

4. Overview of the program: subroutine* c-table(a, c, nm, ll, koptim, eps, ier).
Program first initializes each element of the c-table to 1. Then it calculates C1

n using
formula (3). Next it checks the second column and the second row for zeros, and puts
zeros into other entries of the c-table, so that they form square blocks of zeros with those
found in the second row and the second column. Coordinates of left upper corners of the
blocks found this way, if any, are stored in order of appearance in array nb, a first entry
of which, being a number of the block. Finally, the program calculates systematically all
antidiagonals from the upper left corner C2

2 , first entry unknown at this moment, down.
It starts, each time, from the second column, or the second row, depending on a choice
of a user (ascending or descending algorithm, respectively). Before any of elements is
calculated, it is checked whether it was not already put zero. If so, it means that the
element belongs to one of square blocks already partially, or completely discovered.
In this case program checks whether a previously considered element (on the same

*Two subroutines can be obtained writing to J. Gilewicz: gilewicz@cpt.univ-mrs.fr.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

GENERAL ALGORITHM OF COMPUTATION OF c-TABLE AND DETECTION . . . 769

antidiagonal) and an element two columns to the left (two rows up for descending
algorithm) are both different from zero. If any of them is zero we proceed to a next
element on the same antidiagonal. In the opposite case, we are in the last row, second
column (last column, second row) of a completely discovered block and we have to
calculate a multiplier, that will be necessary to calculate elements just behind (below of)
the block. We also need a number of the block to know where to store the multiplier. We
identify the block by finding its upper left corner, calculate the multiplier using (7) or
(8), store it in a position of an array hh defined by a number of the block, and proceed
to a next element on the antidiagonal.

If the element is not zero (it was initialized to 1), it means that it has not yet been
calculated. Then, at first, the program tries to apply the Sylvester formula, and to this
end it checks whether an element of the c-table, which appears in a denominator of
the formula is not zero. If it is not, the formula (6) is applied, and the element is
calculated. If it is, however, other formulae — Gilewicz formula [2, p. 374] (formula
(85)) or Paszkowski formula [11] are to be applied. To decide which one of them is
appropriate, the program checks an element to the left, for the ascending algorithm, or
up, for the descending one. If it is zero — Gilewicz formula is to be applied, if it is not
— Paszkowski formula is the right one. In both cases the program has to identify the
block. In the first case we need the corresponding multiplier. In the second one we need
to know the block position and size, to find elements entering Paszkowski formula. The
block is identified by finding its left upper corner and then finding its number in the
array nb. The number, necessary if we apply Gilewicz formula, gives us a position of the
multiplier needed in this case, in an array hh. After calculating the current element of the
c-table, we have to check whether it should not be considered as being zero. A procedure
to decide it, even if precision errors prevent the element to vanish, was described, in
detail, above (cf. Guzinski criterion). We remark here that the check is unnecessary for
elements calculated using Gilewicz formula, because to use it, we have to know that we
are just behind (or below of) a block. If we decided that the element is zero, we are
discovering a new block. We check an element right above (or to the left) to see if it
is also zero. If it is not - we have just hit an upper left corner of a new block. In this
case, we open a new entry in the array nb, putting coordinates of the corner there and
proceed to the next element on the current antidiagonal. In the opposite case, we have
just discovered a new part of a block encountered already before. Therefore, we fill with
zeros a new “layer”, as explained on Fig. 1. Then, we proceed to the next element on
the current antidiagonal. In any other case we also proceed to the next element on the
antidiagonal. This way, we systematically calculate all elements of the c-table, defined
by coefficients of the series that we have.

5. Valleys: subroutine c-vallay(c, np, n, nv, nnv). To design a routine detecting
valleys in c-table, we have to take into account the fact that if not many enough coeffi-
cients of the series, being studied, are known, a part of c-table which we can calculate,
may not have well formed valleys. Therefore, we decided that detecting the smallest
element in the last antidiagonal calculated, is not a viable procedure and some more
information is necessary for a user to decide whether the program actually detected a
valley, or he should inspect the whole c-table himself. First, we take into account that
the true valley (that would be detected, if more coefficients were known) may not mani-
fest itself as the deepest of possible spurious valleys seen at that order. Therefore, we

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

770 J. GILEWICZ, M. PINDOR

X X X ↙

X X X X X X X 1 1

X X 0 0 0 ©1 1 1

X X 0 0 0 ©1 1 1

X X 0 0 0 ©1 1 1

X X ©x ©1 ©1 ©1 1 1

X X 1 1 1 1 1 1

X X 1 1 1 1 1 1 1

↗ 1 1

1 1

1

Fig. 1. A fragment of c-table with a block of zeros being discovered. X — an entry already calculated;
1 — an entry unknown as yet; 0 — an entry found to be 0 earlier;©x — an entry just calculated
and found to be zero; ©1 — entries put to 0 to form a square block with ©x and with 0’s; ↗
and↙ indicate a paradiagonal under consideration.

look, in the last antidiagonal calculated, for two minima — the deepest one and the next
one with respect to depth. Next, we look for two analogous minima in an antidiagonal
calculated using two orders of the series less — two, because only there can elements
of c-table correspond to the same paradiagonal. If the two minima found there (if there
is more than one), lie on the same paradiagonals as the corresponding minima in the
last antidaigonal, the first of our criteria (for finding a true valley) is satisfied. Then we
look for an antidiagonal before the last one and perform the same search there. If it is
equally successful, and moreover if paradiagonals along valleys found this way in the
last and before the last, antidaigonals, are neighboring ones, we decide that , actually,
valleys (or one valley) have been found. If any of this criteria is violated, coordinates
of elements at two deepest minima (in absolute values) in the last antidiagonal, returned
by the routine, are given negative signs (they are returned via an array nv; nv(1, i),
i = 1, 2, contain coordinates of a shallower minimum, and nv(2, i), i = 1, 2, contain
coordinates of absolute minimum). It is a signal for a user that the program cannot
decide itself where the true valley is (if it can be found at all) and a human inspection of
c-table is, probably, necessary. To facilitate a decision, program returns also coordinates
of elements lying in supposed valleys on an antidiagonal before the last one (nnv). If
only one valley is found, coordinates of the other one are put to zeros. We have applied
our routine to c-table for −1/z ∗ log(1 − z) with obvious, excellent, results. For thirty
coefficients we got nv(1, i) = (0, 0) — only one valley found; nv(2, i) = (15, 15) — in
this, 29 th, order we can calculate determinants for Padé approximants of the next order
and for this (Stieltjes) function the best is one [15/15]. One order back, the best would
be [14/15] and this is in prefect agreement with values of nnv: (0, 0) — again only one
valley — and (14, 15). We have also applied our routine to the rational function used
above for a discussion of precision problems. An interesting observation we made here
is, that the valley pronounces itself already before an order, corresponding to a sum of

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

GENERAL ALGORITHM OF COMPUTATION OF c-TABLE AND DETECTION . . . 771

degrees of its numerator and denominators, is reached and also that the valley continues
into the area of c-table, which should be a block if we could work with infinite precision.
This last fact can easily be attributed to an appearance of Froissart pairs [2] which,
at each next order, introduce one more zero to the numerator and to the denominator,
perturbing only slightly the rational function being the origin of the series. It could be,
therefore, expected in advance that such perturbed original function would be the best
Padé approximant at any order. Nevertheless it is reassuring that it, actually, is the case.
To demonstrate both these facts clearly we present a part of the c-table calculated for a
rational function of the type (7, 4) using the ascending algorithm (Table 5).

Table 5

1 2 3 4 5 6 7 8

1 6.67D-01 1.11D-01 3.33D-01 8.89D-01 7.04D-01 3.39D-01 5.46D-01 9.01D-01

2 3.33D-01 -2.10D-01 1.23D-02 5.56D-01 1.94D-01 -2.69D-01 -7.62D-03 3.86D-01

3 4.81D-01 3.59D-01 3.50D-01 3.44D-01 2.66D-01 2.18D-01 1.90D-01 1.66D-01

4 -3.83D-01 1.88D-01 -9.28D-02 4.60D-02 -2.28D-02 1.13D-02 -5.61D-03 2.78D-03

5 -8.64D-02 -4.06D-04 -8.38D-05 -9.95D-06 -9.89D-07 -7.85D-08 -2.48D-09 8.97D-10

6 -2.06D-02 -3.76D-05 -3.21D-08 3.51D-10 -8.59D-12 3.29D-13 -1.36D-14 5.68D-16

7 -5.33D-03 -1.86D-06 -1.70D-10 1.53D-14 4.21D-17 1.15D-19 3.17D-22 8.70D-25

8 -1.47D-03 -6.77D-08 -1.79D-12 2.11D-17 4.73D-34 1.19D-37 -4.28D-42 -1.75D-43

9 -4.20D-04 -1.05D-09 -2.72D-14 2.89D-20 -5.93D-38 1.39D-55 6.56D-59 3.35D-62

10 -1.20D-04 1.52D-10 -4.30D-16 3.96D-23 -1.07D-42 3.28D-59 8.80D-77 3.29D-81

11 -3.41D-05 2.72D-11 -6.59D-18 5.43D-26 2.19D-44 8.39D-63 -1.65D-81 3.39D-99

As can be seen, starting from 6th order the smallest elements in c-table are: (5, 2),
(6, 2), (6, 3), (7, 3), (7, 4), (8, 4), (8, 5) - left upper corner of the block, (9, 5), (9, 6),
(10, 6), (10, 7) etc. It must also be remarked that (n + 4, n) and (n + 3, n + 1) differ
by a factor of 2, while (n + 3, n) is smaller at least two orders of magnitude from
(n+4, n− 1) and (n+2, n+1), when we are outside of the block, and many orders of
magnitude, inside it. Our routine finds this valley without any problem. To demonstrate
how it behaves in an ambiguous situation we show results for a series studied by Van
Dyke and discussed also in [2, p. 414]. c-Table for this series is given in Table 6 (we
skipped 0 th row and 0 th column).

Table 6

1 2 3 4 5 6 7 8

1 -7.50D-01 0.00D + 00 1.25D-01 -2.34D-01 5.86D-02 -1.95D-03 -1.13D-01 5.57D-02

2 5.62D-01 9.37D-02 1.56D-02 4.76D-02 2.97D-03 6.66D-03 1.30D-02 3.96D-04

3 -2.97D-01 -1.16D-01 -3.37D-02 -9.47D-03 -5.26D-03 -2.88D-03 -1.46D-03

4 3.63D-01 3.72D-02 2.46D-03 -1.84D-03 1.16D-04 9.03D-05

5 -3.19D-01 -4.19D-03 -2.21D-03 -3.28D-04 -3.42D-05

6 2.92D-01 -1.85D-02 1.42D-03 -1.75D-05

7 -3.25D-01 1.75D-02 -7.69D-04

8 3.02D-01 -3.00D-03

9 -2.90D-01

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

772 J. GILEWICZ, M. PINDOR

There are two minima on the last diagonal: (2, 8) and (6, 4), but none of them seems
to lie in a valley going back, neither there are two minima in the earlier order — only one
at (4, 5), again having no continuation back. Our routine gives for nv(1, i) (−2,−8) and
for nv(2, i) (−6,−4). For nnv it gives (0, 0) and (4, 5). This values indicate clearly,
even without looking at c-table, that the situation is highly obscure and without using
higher order coefficients, one can make only guesses — it is exactly, what we would like
that the routine of this type could say in such a situation.

Conclusion. This paper analyzes the effects of number representations in the
computer and shows how we can to control the numerical errors due to the stability and
to the precision. Unfortunately using certain modern packages we have no information
about the number representation and then we can not say something about the results.

1. Gragg W. B. The Padé table and its relation to certain algorithms of numerical analysis // SIAM Rev. –
1972. – 14. – P. 1 – 62.

2. Gilewicz J. Padé Approximants // Lect. Notes Math. – 1978. – 667.
3. Baker G. A. (Jr.). Essentials of Padé Approximants. – Acad. Press, 1975.
4. Gilewicz J., Magnus A. Valleys in c-table // Padé Approxim. and Appl. Proc. (Antwerp 1979) (Lect.

Notes Math.) – 1979. – 765. – P. 135 – 149.
5. Gilewicz J. From a numerical technique to a method in the Best Padé Approximation // Orthogonal

Polynomials and their Appl. / Ed. J. Vinuesa (Lect. Notes in Pure and Appl. Math.). – 1989. – 117. – P.
35 – 51.

6. Gilewicz J., Leopold E. Subroutine CTABLE for Best Padé Approximant detection. – Marseille: Centre
Phys. Théor., CNRS, 1981. – Rep. CPT-81/P.1324.

7. Gilewicz J. Computation of the c-table related to the Padé approximation. – Marseille: Centre Phys.
Théor., CNRS, 1991. – Rep. CPT-91/P. 2601.

8. Bailey’s Fortran multiprecision package, http://crd.lbl.gov/∼dhbailey/mpdist/
9. Vignes J. Review of stochastic approach to round-off error analysis and its applications // Math. and

Comput. Simulat. – 1988. – 30. – P. 481 – 491.
10. Guziński W. PADELIB: program library for Padé approximation (in Polish) // Inst. Nucl. Res. – Warszawa,

1978.
11. Paszkowski S. Evaluation of C-table // J. Comput. and Appl. Math. – 1992. – 44. – P. 219 – 233.

Received 14.12.09

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

