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PERIOD FUNCTIONS FOR C°- AND C1-FLOWS
®YHKIII TTEPIOAIB JJISI C°- TA C-TIOTOKIB

Let F: M xR — M be a continuous flow on a manifold M, V' C M be an open subset, and let {: V' — R
be a continuous function. We say that £ is a period function if F(z, £(x)) = x for all z € V. Recently, for any
open connected subset V' C M, the author has described the structure of the set P(V') of all period functions
on V. Assume that F is topologically conjugate to some C*-flow. It is shown in this paper that, in this case, the
period functions of F' satisfy some additional conditions that, generally speaking, are not satisfied for general
continuous flows.

Hexaiit F: M x R — M — nHenepepBHuii notik Ha MHorouai M, V. C M — Biakpura HiIMHOXHHA 1
&: V — R — nenepepsua ¢ynkuis. Hazsemo & dynkuiero nepiodis, skuwo F(x, &(x)) = x ans Beix x € V.
HewoaBHo 11st KOXHOI BiKpUTOI 3B’s13H0T MHOXHHK V' C M aBTopom OyJIo OMKCaHO CTPYKTYPY MHOXKUHHU
P(V) Beix dynkuiit nepioais Ha V. Ilpunyctumo, 1o F € TononorivHo cnpspkeHnM 10 JEsIKOro MOTOKY KIIacy
CL. YV nawiit poboti nokaszano, mo Toxi GyHKuil nepiogy F 3a10BONBHAIOTH TOAATKOBI YMOBH, SIKi, B3araii
Ka)Ky4H, HE BUKOHYIOTBCS JUISL 3aTaIbHUX HEHEPEPBHUX MOTOKIB.

1. Introduction. Let F: M x R — M be a continuous flow on a topological finite-
dimensional connected manifold M. Let also ¥ be the set of fixed points of F. For
x € M we will denote by o, the orbit of . If z is periodic, then Per(x) will denote the
period of x.

Definition 1.1. Let V C M be a subset and &: V — R be a continuous function.
We will say that £ is a period function or simply a P-function (with respect to F) if
F(z,(z)) =z forall x € V.

The set of all P-functions on V' with respect to a flow F will be denoted by P(F, V),
or simply by P(V'). The following easy lemma explains the term P-function.

Lemma 1.1 [1]. 1. For any subset V. C M the set P(V') is a group with respect to
the pointwise addition.

2. Letx € Vand & € P(V). Then & is locally constant on o, N'V. In particular, if x
is nonperiodic, then £|, v = 0. Suppose x is periodic, and let w be a path component
of o NV. Then £ = n,, Per(o,) for some n,, € Z depending on w.

The following theorem, describing P(V') for open connected subsets V' C M, is a
particular case of results obtained in [1]. It also extends [2] (Theorem 12) to the case of
continuous flows.

Theorem 1.1 [1, 2]. Let M be a finite-dimensional topological manifold possibly
noncompact and with or without boundary, F: M x R — M be a flow, and V. C M
be an open, connected set. Suppose that Int(X) NV = &. Then one of the following
possibilities is realized: either P(V') = {0} or P(V) = {nb},cz for some continuous
Sfunction §: V. — R having the following properties:

(1) 0 >00nV\X, so this set consists of periodic points only.

(2) There exists an open and everywhere dense subset Q C V such that 6(x) =
= Per(x) for all x € Q.

(3) 0 is constant on 0, NV for each x € V.

(4) Put U = F(V x R). Then 0 extends to a P-function on U and there is a circle
action G: U x S' — U defined by G(z,t) = F(x,t0(z)), z € U, t € St =R/Z. The
orbits of this action coincides with the ones of F.
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PERIOD FUNCTIONS FOR C°- AND C1-FLOWS 955

The aim of this paper is to show that if F is conjugate to some C'-flow, then P-
functions of F have additional properties which may fail for P-functions of general
continuous flows (Theorems 1.2 and 1.3).

Before formulating these results let us discuss the behaviour of P-functions under
conjugations of flows.

1.1. Conjugation of flows. Let M be C", r > 1, manifold and F: M xR — M
be a C"-flow. Then in general, F is generated by a C"~!-vector field

F(z) = E(x,t)hzg.

Nonetheless, it is proved by D. Hart [3] that every C"-flow F is C"-conjugate to a C"-
flow generated by a C"-vector field. Thus in order to study P-functions for C"-flows one
can assume that these flows are generated by C"-vector fields.
Now let h: M — M be a homeomorphism and G: M x R — M be the conjugate
flow:
Gi(r) =hoF,oh Yz) = hoF(h 1 (z),1)).

Let also V' C M be an open set and 6: V' — R be a continuous P-function for F. Then
O oh: h=1(V) — R is a P-function for G. Indeed, if z € V and y = h=1(z), then

Gy, 60h™ (y) =ho F(h~'(2),60h~\(2))) = ho h~*(x) = .

In other words P(G,h~1V) = P(F, V) o h. In particular, the groups P(G,h~'V) and
P(F,V) are isomorphic. Thus the structure of the set of P-functions of the flow F
depends only on its conjugate class.

Let E) be the unit (k x k)-matrix, C' be a square (k x k)-matrix, and a,b € R.
Define the following matrices:

C 0 0

E; C 0 a b
S N F CURY G

0 ... Ej C

J,(a % ib) = J,(R(a,b)).

For square matrices B, C' it is also convenient to put B & C' = (g g,) .

Theorem 1.2. LetF be a continuous flow on M and V. C M be a connected open
subset such that P(V)) = {n0},cz for some nonnegative P-function 0: V — [0, 4+00)
being strictly positive on M \ %, see (1) of Theorem 1.1. If F is conjugate to a C'-flow,
then, in fact, 0 > 0 on all of M.

Suppose, in addition, that F is generated by a C'-vector field F. Then for every
z € X there are local coordinates in which the linear part j'F(z) of F at z is given by
the following matrix:

0 B1 0 Br
(—61 0>@"'@(—Bk 0)@0@...@0 (1.1)

Sor some k > 1 and B; € R\ 0.
The proof of this theorem will be given in Section 7.
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956 S. I. MAKSYMENKO

Remark 1.1. Under assumptions of Theorem 1.2 suppose that 6 is C* and 6(z) # 0
for some z € X. In this case existence of (1.1) at z is easy to prove, c.f. [4].

Indeed, define the flow G: M x R — M by G(z,t) = F(x,t0(z)). Then G is
generated by the C!-vector field G = 0F and satisfies G; = id);. Hence G yields a
C!-differentiable R/Z = S*-action on M.

Moreover, G4(z) = z and so G yields a linear S*-action 7,G; on the tangent
space T, M. Now it follows from standard results about S! representations in GL(RR,n)
that the linear part of G at z in some local coordinates is given by (1.1). It remains
to note that j1F(z) = j'G(2)/0(z). Notice that these arguments do not prove that the
matrix (1.1) is non-zero.

Example 1.1. Let F: C x R — C be a continuous flow on C defined by

eQTrit/|z\2 z, z # 0,
F(z,t) =
0, z=0.

The orbits of F are the origin 0 € C and the concentric circles centered at 0. Then
P(C) = {n0},cz, where 0(z) = |2|2. Also notice that #(0) = 0 and & > 0 on C \ 0.
This shows that a non-zero P-function of a continuous flow F may vanish at its fixed
points. It also implies that F in not conjugate to a C'-flow.

Our second result shows that if F is conjugate to a C'-flow, then discontinuity of
P-functions at points of 3 is almost always the result of unboundedness of periods of
points near .

Theorem 1.3. Let F be a C'-flow generated by a C*-vector field, V C M be an
open connected subset such that P(V') = 0, while P(V \ ) = {n0},ez for a certain
non-zero P-function 0: V \ ¥ — R, so 6 can not be continuously extended to all of V.
Suppose that there exists a point z € VN in which j* F(z), the linear part of F at z, is
not similar to a matrix of the form (1.1). Then there exists a sequence {z;}iey CV \ 2
(conmsisting of periodic points) which converges to z and satisfies

lim Per(z;) = lim 0(x;) = +oo.

17— 00 1—00

Example 1.2. Let F: C x R — C be a C*°-flow on C defined by

eQﬂ'it|z|2 z, 240,
F(z,t) =
0, z =0,

where 0 is the origin. Then § = — is a C*> P-function on C \ 0 and P(C\ 0) =

PE
= {n#},cz. On the other hand, llil(l) 6(z) = 400, whence 6 can not be extended even
to a continuous function on C, so P(C) = {0}.

1.2. Structure of the paper. In next section we discuss applications of P-functions
to reparametrizations of flows to circle actions and also describe the relationships of
Theorem 1.3 to the results of other authors.

Section 3 presents a variant of results of M. Newman, A. Dress, D. Hoffman, and
L. N. Mann about lower bounds for diameters of orbits of Z,-actions on manifolds.
Sections 4 and 5 give sufficient conditions for unboundedness of periods of C°- and
C'-flows near singular points. The last two Sections 8 and 7 contain the proofs of
Theorems 1.3 and 1.2 respectively.
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2. P-functions and circle actions. In this section we discuss relation of our results
to the following problem:

Problem 2.1. Let ¥ be a continuous flow on M. Do there exist a continuous
Sl-action on M whose orbits coincides with the ones of F?

The following simple statement shows applications of P-functions to Problem 2.1.

Lemma 2.1. Let 0: M — R be a P-function on all of M. Then the following
map G: M x R — M defined by G(x,t) = F(x,t-0(x)) is a flow on M such that
G1 = idyy, so G factors to a circle action.

Proof. Indeed, Gy(z) = F(z,0(z)) = .

An evident necessary (but not sufficient) condition for Problem 2.1 is that every
orbit of F is either periodic or fixed. Moreover, due to the well-known theorem of
M. Newman the set > should be nowhere dense, see [5-8].

Suppose now that 3 = & and all points are periodic for F. It will be convenient to
call such a flow F a P-flow. Then we have a well-defined function

A: M — (0,4+00), A(z) = Per(x).

This function was studied by many authors. It can be shown that A is lower semicon-
tinuous and the set B of its continuity points is open in M, see e.g. D. Montgomery [9]
and D. B. A. Epstein [10] (§5). Thus in the sense of Definition 1.1 X is a P-function
on B.

There are certain typical situations in which X is discontinuous.

For instance, if A is locally unbounded, then it can not be continuously extended to
all M. Say that a P-flow F has property PB (resp. property PU) if A is locally bounded
(resp. locally unbounded). Equivalently, if F is at least C', then instead of periods one
can consider lengths of orbits with respect to some Riemannian metric on M.

The first example of a PU-flow was constructed by G. Reeb [11]. He produced a
C*> PU-flow on a noncompact manifold. Further D. B. A. Epstein [10] constructed a
real analytic PU-flow on a noncompact 3-manifold, D. Sullivan [12] a C*® PU-flow on
a compact 5-manifold S3 x S! x S, and D. B. A. Epstein and E. Vogt [13] a PU-flow
on a compact 4-manifold defined by polynomial equations, with the vector field defining
the flow given by polynomials, see also E. Vogt [14].

On the other hand, the following well-known example of Seifert fibrations shows
that even if A is discontinuous, then in some cases it can be continuously extended to
all of M so that the obtained function is a P-function.

Example 2.1. Let D?> C C be the closed unit 2-disk centered at the origin, S* =
= 0D? be the unit circle, and 7' = D? x S* be the solid torus. Fix k& > 2 and define the
following flow on T*:

F:TxR—T, F(z,7,t) = (zeQWit/k’TeQwit)7

for (z,7,t) € D? x ST x R. It is easy to see that every (z,7) € T is periodic. Moreover,
Per(z,7) = k if 2 # 0 € D?, while Per(0,7) = 1. Thus the function Per: T? — R is
discontinuous on the central orbit 0 x S*, but it becomes even smooth if we redefine it
on 0 x S' by the value k instead of 1. This new constant function § = k is a P-function
and P(T) = {nk}necz.

Notice that in this example F' is a suspension flow of a periodic homeomorphism
h: D? — D? being a rotation by 27 /k.
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More generally, let h: M — M be a homeomorphism of a connected manifold M
such that the corresponding suspension flow F of h on M x S! is a P-flow. This is pos-
sible if and only if all the points of M are periodic with respect to h. D. Montgomery [9]
shown that such a homeomorphism is periodic itself. Let k£ be the period of h. Then the
periods of orbits of F are bounded with k, so F is a PB-flow. Moreover, similarly to
Example 2.1, it can be shown that P(M) = {nk},cz.

D. B. A. Epstein [10] also proved that if M is a compact orientable 3-manifold then
any C" P-flow with (1 < r < w) has property BP and even there exists a C"-circle
action with the same orbits. In fact he shown that the structure of one-dimensional C"-
foliations (1 < r < o0) on compact orientable 3-manifolds, possibly with boundary, is
similar to Seifert fibrations described in Example 2.1.

The problem of bounded periods has its counterpart for foliations with all leaves
compact. The question is whether the volumes of leaves are locally bounded with re-
spect to some Riemannian metric, see e.g. [15—17]. For instance the mentioned above
statements for flows can be adopted for foliations.

The results of the present paper describe the behaviour of period functions near fixed
poins of C!-flows.

3. Diameters and lengths of orbits. 3.1. Effective Zp-actions. We recall here
results of A. Dress [8] (Lemma 3) and D. Hoffman and L. N. Mann [18] (Theorem 1)
about diameters of orbits of effective Zj-actions.

For z,y € R™ denote by d(z,y) the usual Euclidean distance, and by B,.(x), r > 0,
the open ball of radius r centered at x.

Let W be an open subset of the half-space R} = {x, > 0} and x € W. Define the
radius ., of convexity of W at x as follows. If 2 € Int(R?) N W, then

ry =sup {r > 0: B.(z) C W}.
Otherwise, z € OR? N W and we put
ry =sup {r > 0: (B,(z) NR}) C W}.

Lemma 3.1 ([8], Lemma 3). Let U C R" be an open, relatively compact and con-
nected subset, p be a prime, and h: U - Ubea homeomorphism which induces a
nontrivial Zy-action, that is h # idg but h? = idg. Define two numbers:

D(U) = max { min{d(z,y): y € U}: 2 € U},

cU) = max{d(m,h“(m)): a=0,...,p—1, z€ U\Int(ﬁ)}.

Then D(U) < C(U).

The next Lemma 3.2 is a variant of [18] (Theorem 1). It seems that in the proof of
[18] (Theorem 1) the condition of connectedness of the set U, see (3.1) below, is missed,
c.f. paragraph after the assumption (H) on [18, p. 345]. Therefore we recall the proof
which is also applicable to manifolds with boundary.

Lemma 3.2 (c.f. [18], Theorem 1). Let W C R} = {x,, > 0} be an open subset,
p be a prime, and h: W — W be a homeomorphism which induces a nontrivial Z,-
action. Suppose h(z) = z for some z € W. Let also r, be the radius of convexity of W
at z and r € (0,r,).
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If z € Int(R"} ), then there exist x € 0B, )5(2) and a = 1,...,p — 1 such that
d(z,x) < 2d(z, h*(z)).

If z € ORY, then there exist x € O(Ba,/3(2) "\W) and a =1,...,p — 1 such that
d(z,z) < 4d(z, h*(z)).

Proof. For simplicity denote B,.(z) by B,.
1. First suppose that z € Int(R"} ). For each s € (0,r.) put

Us = B{UA(Bg)U...UhP(By). (3.1

Then Uy is open, relatively compact, and h yields a nontrivial Z,-action on U. Moreover,
by assumption h(z) = z, therefore U; is connected. Then by Lemma 3.1

D(Us) < C(Us).

Notice that B; C U,, whence s < D;.
On the other hand, suppose

d(y,h*(y)) <r—s, forall y€dU, and a=1,...,p— 1. (3.2)
Then in particular, C(Us) < r — s and thus
s < D(Us) <C(Us) <r—s,

whence s < r/2.
Thus if s = r/2, then (3.2) fails, whence there exist y € 9U, /» and b € {0,...,p —
— 1} such that d(y, h®(y)) > r — /2 = r/2. However

[ p—1 i
B
8Ur/2 C iL:JOh (8 r/g),

whence y = h¢(z) for some & € OB, /5. Therefore at least one of the distances d(x, y) or
d(z, hb(y)) is not less than r/4. In other words, d(z, h®(z)) > r/4 for some = € 0B, /3
anda € {1,...,p— 1}. Then

d(z,z) = - = 22 < 2d(x, h*(x)).

S N3

2. Let z € OR’;. For each s € (
half-disk centered at z, and

,72) let Ay = By N Int(OR’} ) be the open upper

Ul = A, Uh(A,) U... URP~L(Ay).

Then U is open, relatively compact, and h yields a nontrivial Z,-action on U]. More-
over, it is easy to see that U is connected, whence by Lemma 3.1

D(Uy) < C(UY).

Moreover, Bj /5 C U]. Therefore s/2 < D(U}). Hence if we suppose that C(U!) <
<r—s,then /2 < r — s and thus s < 2r/3.
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Put s = 2r/3. Then there exists y € 9U,, 5 and b € {1,...,p — 1} such that
d(y,hb(y)) >r —2r/3 =1/3.
___ p-1
Again OU, C |J h'(0As), whence we can find = € 0A,, /3 such that d(z, h*(z)) >
i=0
> r/6 for some a € {1,...,p — 1}. Then

The lemma is proved.

3.2. Periodic orbits. Let F be a Cl-vector field on a manifold M and d be any
Riemannian metric on M. Then for any periodic point = of F' the length I(z) of its orbit
can be calculated as follows:

Per(x)

I(z) = / | F(F(x,t))||dt.

0

Hence
l(x) < Per(z) sup HF(F(ar,t))H (3.3)
te[0,Per(z)]
Also notice that
2diam(o,) < I(z). (3.4)

Indeed, let y, z € o, be points for which d(y, z) = diam(o,). These points divide o,
into two arcs each of which has the length > d(y, z). This implies (3.4).

4. P-functions on the set of nonfixed points. Let V C M be an open subset,
&: V\ ¥ — R be a P-function, and o € R. Define the following map h,: V — M by:

F(z,af(z)), z€V\Z,
halz) = @1
z, reXnNV.

Then h,, is continuous on V' \ 3 but in general it is discontinuous at points of X N V.

The aim of this section is to establish implications between the following five con-
ditions:

(A) The periods of periodic points in V' \ £71(0) are uniformly bounded above with
some constant C > 0, that is for each x € V with {(x) # 0 we have that Per(x) < C.

(B) Every z € ¥ NV has a neighbourhood W C V such that ¢ is regular on W\ X,
that is for every y € W \ X the restriction of £ to o, N W is constant.

(C)o The map h,, is continuous on all of V.

LetzeXNV.

(D), Suppose « = ¢q/p € Q, where g € Z and p € N. There exists a neighbourhood
W C V of z such that h, (W) = W, the restriction h,: W — W is a homeomorphism,
and h? = idy .

(E) There exist T > 0, a Euclidean metric d on some neighbourhood W of z, and
a sequence {z;};cy C V' \ X converging to z such that (x;) # 0 and

d(z,z;) < Tdiam(o,, N W).
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Remark 4.1. By a Euclidean metric on W in (E) we mean a metric induced
by some embedding W C R”. In fact, this condition can be formulated for arbitrary
Riemannian metrics, but for technical reasons (see especially Lemma 5.1) we restrict
ourselves to Euclidean ones.

Remark 4.2. 1If z € ¥ NV has a neighbourhood W C V such that W \ ¥ is
connected, then by (3) of Theorem 1.1 condition (B) holds for z.

Lemma 4.1. The following implications hold true:

(4) = (B) V (C)a-
If o € Q, then for every z € XNV
(B)V (C)a = (D)a-
If h is not the identity on some neighbourhood of z € ¥ NV, then
(D)o = (E),

and we can take T =4 in (E).

Proof. (A) = (B). Since z € £ NV, there exists a neighbourhood W of z such
that F(W x [0, ¢]) C V. Then W satisfies (B). Indeed, let y € W\ ¥. We have to show
that &

If £ = 0 on o, NW there is nothing to prove. Therefore we can assume that £(y) # 0.
Then, by (A), Per(y) < C, whence

o,NW is constant.

oy = F(y x [0,Per(y)]) =F(y x [0,C]) C F(W x [0,C]) C V.

Thus o, NV = o, is connected. Then, by Lemma 1.1, £ is constant along o, and
therefore on o, N W.

(A) = (C)q. It suffices to show that h, is continuous at each z € ¥ N V. Let
V' C V be any neighbourhood of z and W be another neighbourhood of z such that
F(W x [0,¢]) C V'. We claim that h, (W) C V. This will imply continuity of h,, at z.

Letz € W.Ifx € XNW or {(x) = 0, then h,(z) = x € W C V. Otherwise,
&(x) # 0 and z is periodic. Hence hy(z) = F(z,7) for some 7 € [0, Per(x)] C [0, ¢].
Therefore h,(z) € F(W x [0,c]) C V.

(B)V(C)a = (D)a- We have that o« = ¢/p, where ¢ € Z and p € N. For simplicity
denote h,, by h. Since h(z) = z and h is continuous, there exists a neighbourhood B of
2 such that h*(B) C V for all i = 0, ..., p. Denote

W =BUB)U...Uh’ ! (B).

We claim that W satisfies (D).
Indeed, let x € V and suppose that h(z) € V as well. Since h(z) belongs to the
orbit of x, then, by (B), {(z) = &£(h(z)). Hence

h*(z) = F (h(z), a€(h(z))) = F(h(z),aé(z)) =
= F(F(x,oz{(x)), a- {(x)) = F(:E, 2&5(33)). 4.2)

By induction we will get that if h*(z) € V forall i =0,...,5 — 1, then
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W (z) = F(z, jot(z)).

In particular, h*?(z) = F(z, kqé(x)) = x for any k € Z. By (C), we have that h is
continuous on V, whence h yields a homeomorphism of W onto itself and h? |y = idy .

(D)o = (E). Again denote h, by h. Since h is not the identity on W, we can
assume that p is a prime and thus the action of h is effective. This can be done by
replacing h with h™ for some n € N such that p/n is a prime.

Decreasing W we can assume that W' is an open subset of the half-space R} =
= {x,, > 0}. Let d be the corresponding Euclidean metric on W and r, be the radius
of convexity of W at z. Then by Lemma 3.2 for each r € (0,7,) there exist x,, € W
and a, € {1,...,p — 1} such that

d(z,z,) < Sr < Td(z,, h* (z,)) < Tdiam(o,, ),

for some S, T > 0. In fact, S = % and T =2 if z € Int(M), and S = % and T =4
if z € OM. Notice that a, may take only finitely many values. Therefore we can find
a € {1,...,p— 1} and a sequence {x,, };cn such that .l_i)m r; = 0 and a,, = a for all
icN. o

The lemma is proved.

5. Condition (E) for C!-flows. Condition (E) defined in the previous section
gives some lower bound for diameters of orbits of a sequence {z;};en of periodic
points converging to a fixed point z. In this section it is shown that for a C'-flow that
condition allows to estimate periods of z;.

Let M be a C", r > 1, connected, m-dimensional manifold possibly noncompact
and with or without boundary. Let also F' be a C"-vector field on M tangent to 9M and
generating a C"-flow F: M x R — M. Again by ¥ we denote the set of fixed points of
F which coincides with the set of zeros (or singular points) of F.

Proposition 5.1. Let V C M be an open subset, £: V \ ¥ — R be a P-function,
z€ XNV, and {x;}ien CV \ X be a sequence of periodic points converging to z and
satisfying (E). Thus &(x;) # 0, and there exists T > 0 and a Euclidean metric on some
neighbourhood of z such that d(z,x;) < T diam(oy, ). If the periods of x; are bounded
above with some C > 0 (in particular, condition (A) holds true), then

(e1) there exists € > 0 such that |§(z;)| > Per(x;) > € for all i € N, so the periods
are bounded below as well, and

(e2) §1F(2) £0.

For the proof we need some statements. The proofs are straightforward, and we left
them for the reader.

Claim 5.1. Let X be a topological space, K be a compact space, and g: X x K —
— R be a continuous function. Then the following function v: X — R defined by
~v(x) = sup g(z,y) is continuous.

yeK

Claim 5.2. Let K be a compact manifold and
Q: (Qly"'aQn): R" XK%R"

be a continuous map satisfying the following conditions:
(a QOx K)=0.
(b) Foreach k € K the map Qj = Q(-,k): R* — R" is CL.
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0Q; ‘
(c) Foreveryi,j =1,...,n the partial derivative 8£: R™ x K — R of the i-th
L
coordinate function Q; of Q in x; is continuous.
In particular, conditions (b) and (c) hold if K is a manifold and Q is a C* map.

Then there exists a continuous function o: R™ — R such that
1Q(z, k)|l < [lzlla(x), (z,k) € R" X K.

If i1 Q1(0) = 0 for all k € K, then a(0) = 0.

Lemma 5.1. Let F be a Ct-vector field in R"™ such that F(0) = 0 and (F;) be
the local flow of F. Then for every C > 0 there exist a neighbourhood W of the origin
0 € R™ and a continuous function v: W — R such that

[1E(F(z, 1)) < ||z[lv(z)

Sor all (z,t) € W x [-C,C]. If 1 F(0) = 0, then v(0) = 0.

If F is C?, then we have a usual estimation ||F(F (z,t))|| < Al|z||? for some A > 0.

Proof. Since F(0,¢) = 0 for all ¢ € R, there exists a neighbourhood W of z such
that for each (x,t) € W x [—C, C] the point F(z,t) is well-defined and belongs to V,
so F(W x [-C,C]) c V.

Moreover, F is C' and therefore it satisfies assumptions (a)—(c) of Claim 5.2 with
K = [-C, C]. Hence there exists a continuous function a.: W — R such that

|F(z,t)|| < ||#lex), (2, k) € W x [-C,C].

Moreover, F is also C' and F(0) = 0, whence again by Claim 5.2 (for K = @)
there exists a continuous function 3: W — R such that |F(z)|| < |z||8(z). Define
N W = Rby

v(x)= sup oa(x)B(F(z,t)).
te[-C,C]

Then by Claim 5.1 -y is continuous and
I1F(F (@, )| < [F(z,))I5(F (2,1) < [lz)a(z)5(F(z,1) < |[z]ly(z).

Moreover, if 71 F(0) = 0, then 3(0) = 0. Since in addition F(0,¢) = 0, we obtain that
v(0) = sup «(0)5(0) =0 as well.
te[—-C,C]

The lemma is proved.

Proof of Proposition 5.1. We have to show that violating either of assumptions (e;)
or (e2) leads to a contradiction.

By Lemma 5.1 for any C > 0 there exist a neighbourhood W of z and a continuous
function v: W — R such that

|E(F(z,t))|| <d(z,2)y(x), (x,t)eW x[-C,C]. (5.1
Then
d(z,2:) < Tdiam(oy,) & gl(xi) CILED gPer(:Ci)d(z,xi)’y(xi).
Therefore
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0< 2 < Par(wir(e:) < €z h(rs)

Hence if (e1) is violated, i.e., lim Per(z;) = 0, then lim v(x;) = 400, which contra-
dicts to continuity of v near z.l%oo e

Suppose j'F(z) = 0. Then by Lemma 5.1 y(z) = 0, whence lim ~v(z;) = v(z) =
0. Therefore Zlggo Per(z;) = Zlggo |€(zi)| = +o00, which contradiég (;f) boundedness of

periods of ;.

The proposition is proved.

6. Unboundedness of periods. Now let F' be a C'-vector field in R™ such that
F(0) = 0. We can regard F asaC! map F = (F},...,F,): R* — R". Let

=(30)
Ox; i,j=1,...n

be the Jacobi matrix of F' at 0. This matrix also called the linear part of F' at 0. By the
real Jordan’s normal form theorem A is similar to the matrix of the following form:

@1.]% (a + iby)) @ 5_91 I, (A, (6.1)

where A\, € R and a, +ib, € C are all the eigen values of A.

Theorem 1.3 is a direct consequence of the following theorem.

Theorem 6.1. Suppose one of the following conditions holds:

(1) A has an eigen value X such that R(\) # 0.

(2) The matrix (6.1) has either a block J,(+ib) or J,(0) with ¢ > 2.

(3) A = 0 and there exists an open neighbourhood V of 0 in R™ and a continuous
P-function £: V \ ¥ — R which takes non-zero values arbitrary close to 0, that is
0 eV \&H0).

Then there exists a sequence {x;};en C V' \ X which converges to 0 and such that
either every x; is nonperiodic, or every x; is periodic and l_i)m Per(z;) = +o0.

Proof. (1) In this case by Hadamard —Perron’s theorém(,)oe.g. [19], we can find a
nonperiodic orbit o of F such that 0 € 0\ o. This means that there exists a sequence
{z; }ien C o converging to 0.

(2) Consider two cases.

(a) If (6.1) has a block J,(0) with ¢ > 2, then it can be assumed that

0 0 0

A— 1 0 0

(b) Suppose (6.1) has a block J,(£ib) with ¢ > 2. Then we can regard R" as
C? @ R* 4, so the first two coordinates x; and zo are complex. Therefore it can be

supposed that
ib 0 e 0
1 ib e 0

In both cases denote by p; the projection to the first (either real or complex) coordi-
nate, i.e., p1(21,...,Tn) = Z1.
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Lemma 6.1. Let S"~! be the unit sphere in R™ centered at the origin 0, € > 0,
Ye={(21,...,3,) € S | > e},

and C. be the cone over Y, with vertex at 0.
Then for each L > 0 there exists a neighbourhood W = W\ . of 0 such that every

ze(WNnC)\0

is either nonperiodic or periodic with period Per(z) > L.

Proof. Let (F;) be the local flow of F. Then in general, F is defined only on some
open neighbourhood of R™ x 0 in R™ x R. Nevertheless, since F(0,¢) = 0 forall ¢t € R,
it follows that for each L > 0 there exists a neighbourhood V' of 0 such that F' is defined
on V' x [—2L,2L].

We claim that in both cases there exists ¢ > 0 such that

At — 2] > cltas| = cltpr ()] 62)
(a) In this case etz = (21, tz1 + 22,...) and we can put ¢ = 1:
le?*z — x| = [[(0, ta1,..)| > [ta1] = [tp1(2)].

(b) Now ettz = (e'zy, e (txy + x3),...). Notice that we can write e?** =

= 1+ ty(t) for some smooth function v: R — C\ {0}. Denote ¢ = min | [y(t)].

te[—2L,2L
Then ¢ > 0 and

|ete — x| = H(e“’txl —a1,...)|| = [tv(t)as| = cltpi(x)

Since F is a C! map and F(0,¢) = 0 for all ¢ € R, it follows from Claim 5.2 that
there exists a continuous function a: V' — [0, +00) such that
(1) a(0) =0,
Q) ||F(z,t) — e?z| < ||z||a(z) forall (z,t) € V x [—2L,2L].
Hence
I (z,t) — z|| > [le*'s — x|~ |F(z,t) — eMal| > cltpi (z)] —|l]la(z)

for (z,t) € R™ x [—2L, 2L]. Moreover, if p;(z) # 0, then

clpr ()]
Since a(0) = 0, there exists a neighbourhood W C V' of 0 such that

1Bz, 0) — 2] > cltpr ()] — 2] () = elpa (=) (|t| - x”“(””))

a(r) < cel, xeW.

Now let z € (W N C:)\ 0. Then |z| <1 and |p;(x)| > €, whence

L.

lz|| () - lesl

clp1 ()] ce
Therefore ||F(z,t) — x| > ce(|t] — L) for t € [-2L,2L]. In particular, F(x,t) # = for
t € [L,2L]. It follows that x is either nonperiodic, or periodic with the period being

greater than 2L — L = L.
The lemma is proved.
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(3) Suppose that there exists a neighbourhood V' of 0 such that all points in V' \ ¥
are periodic. If the periods of points in V' \ £~1(0) are bounded above, i.e., condition
(A) holds true, then by (ez) of Proposition 5.1 j1F(0) # 0.

Theorem 6.1 is proved.

The following statement extends [2] (Proposition 10).

Proposition 6.1 ([2], Proposition 10). Let F be a C*-vector field on a manifold M,
z € X\ Int(X2), V C M be a neighbourhood of z, and & € P(V') be a P-function. Let
also W = Uxea Wy be the union of those connected components of V \ X for which
2z € W. Then each of the following conditions implies that € =0 on W NV

(@) j'F(2) has an eigen value X such that R(\) # 0;

(b) a real normal Jordan form of j'F(z) has either a block J,(£ib) or J,(0) with
q22

(¢) j'F(2) =0;

(@) ze€nt(Zp) \ Int(2);

(@) &(z) = 0.

Proof. Suppose that £ takes non-zero values on periodic points arbitrary close to z.
First we prove that every of the assumptions (a)—(d) implies (e), and then show that (e)
gives rise to a contradiction.

(a)V(b)V(c) = (e) Suppose j1F(z) satisfies either of the conditions (a), (b) or (c).
Then by assumption on £ and Theorem 6.1 there exists a sequence {z; };eny C V'\ X con-
verging to z and such that every x; is either nonperiodic, or periodic but lim Per(z;) =
— Lo i—00

If every z; is nonperiodic, then by Lemma 1.1 {(z;) = 0, whence by continuity of
& we obtain £(z) = 0 as well.

Suppose every z; is periodic. Then &(x;) = n; Per(z;) for some n; € Z. Since
llg& Per(x;) = 400 and ¢ is continuous, it follows that Zlg& n; = 0, that is n; = 0 for
all sufficiently large i, whence £(x;) = 0 which implies £(z) = 0.

(d) = (c) The assumption z € Int(X) \ Int(X) means that there is a sequence
{zi}ien C Int(X) converging to z. But then j1F(z;) = 0 for all 4. Since F is C*, we
obtain j1F(2) = 0 as well.

(e) Suppose that £(z) = 0. Let U be a neighbourhood of z with compact closure
U C V,and C = sup |{()|. Then the periods of points in U \ £71(0) are bounded

zeU
above with C, that ise ¢ satisfies condition (A), and therefore by Lemma 4.1 condition
(E). Let {z;}ien C U \ X be a sequence converging to z and satisfying (F). Then by
Proposition 5.1 there exists ¢ > 0 such that |£(x;)| > e. Since ¢ is continuous, we get
|€(2)| > € > 0, which contradicts to the assumption £(z) = 0.

The proposition is proved.

7. Proof of Theorem 1.2. Let F be a flow conjugate to a C'-flow. Then by [3],
F is conjugate to a flow generated by a C!-vector field F. As noted in Subsection 1.1,
conjugation does not change the structure of the set of P-functions, therefore we can
assume that F itself is generated by C'-vector field F.

Let @ € P(M) be a nonnegative generator of P(M). Put Y = 671(0). Then Y is
closed.

We claim that Y is also open in M. Indeed, if x is a non-fixed point of F', then by [2]
(Corollary 8) # = 0 on some neighbourhood of x. Suppose z € ¥. Since ¥ is nowhere
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dense in M, it follows from (1) of Proposition 6.1 that # = 0 on some neighbourhood
of = as well.

As M is connected, we obtain that either Y = @ or Y = M. By Theorem 1.1 60 > 0
on M\ ¥, whence Y # M and therefore Y = &, so § > 0 on all of M.

Let z € 3. To establish (1.1) it suffices to prove that

(@) j1F(z) has no eigen values A with R(\) # 0;

(b) areal normal Jordan form of j! F(z) has neither a block J,(4ib) nor J,,(0) with
q=2;

(©) j'F(2) #0.

But if either of these conditions were violated, then it would follow from Proposi-
tion 6.1 that 6(z) = 0. This contradiction completes Theorem 1.2.

8. Proof of Theorem 1.3. Let 2z € X be such that j! F(z) is not similar to a matrix
of the form (1.1). Then for this point z one of the conditions (1)—(3) of Theorem 6.1
holds true. Since every € V' \ X is periodic, it follows from Theorem 6.1 that there
exists a sequence {z; };eny C V' \ ¥ converging to z and such zlggo Per(z;) = +o0.
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