Ю. Ю. Трохимчук (Ин-т математики НАН Украины, Киев)

МОДУЛИ НЕПРЕРЫВНОСТИ И АНАЛИТИЧЕСКИЕ ФУНКЦИИ

For a function analytic in a compact domain and continuous in its closure, it is proved that the module of continuity on a boundary of the domain coincides with the module of continuity in its closure.

Доведено, що для функції, аналітичної в компактній області і неперервної в її замиканні, модулі неперервності на межі області і в її замиканні збігаються між собою.

Пусть $K \subset \mathbb{R}^p$ — компакт в евклидовом пространстве \mathbb{R}^p , $p \geq 1$, и $f \colon K \to \mathbb{R}^q$, $q \geq 1$, — непрерывное отображение. Как уже принято, модулем непрерывности отображения f называется функция $\omega_K(f,\delta) = \omega_K(\delta), \ \delta \in [0,\operatorname{diam} K]$, определяемая следующим образом:

$$\omega_K(\delta) = \max_{x_1, x_2 \in K} \left| f(x_1) - f(x_2) \right|$$

при всех x_1, x_2 таких, что $|x_1 - x_2| \le \delta$.

Известно [1], что такая функция монотонно не убывает, полуаддитивна сверху, т. е.

$$\omega(\delta_1 + \delta_2) \le \omega(\delta_1) + \omega(\delta_2),$$

и непрерывна на отрезке $[0, \operatorname{diam} K]$, причем $\omega(0) = 0$.

Если отображение f определено на некотором множестве, то в определении модуля непрерывности следует взять вместо максимума точную верхнюю грань.

Во многих исследованиях непрерывных отображений чаще рассматривают не сами модули непрерывности, а их более простые мажоранты, позволяющие достигать определенных результатов. Например, если мажорантой для $\omega(f,\delta)$ является функция $\omega^*(\delta) = L\delta$, то отсюда следует, что само отображение f липшицево, с константой L, что имеют место всевозможные интегральные представления, связанные с ним, и т. д. Короче, для многих целей рассмотрение таких мажорант оказывается достаточным.

В настоящей статье будем рассматривать следующую ситуацию: даны область $\mathcal{G} \subset \mathbb{C}$, функция f(z), аналитическая в \mathcal{G} , которая непрерывно продолжается на границу $\partial \mathcal{G} = \overline{\mathcal{G}} \setminus \mathcal{G}$. Ставится вопрос: как связаны между собой модули непрерывности функций $f \mid_{\partial \mathcal{G}}$ и $f \mid_{\overline{\mathcal{G}}}$?

Что касается рассмотрения мажоранты этих модулей, то здесь получено много результатов (см., например, [2]).

Нашей же целью является сравнение "чистых" модулей на границе множества $\mathcal G$ и на его замыкании. Мы покажем, что эти модули всегда совпадают.

Приведем несколько общих утверждений о модулях непрерывности.

Пусть в некоторой замкнутой области $\overline{\mathcal{G}} \subset \mathbb{R}^p$ модуль непрерывности $\omega(\delta)$ отображения $f\colon \overline{\mathcal{G}} \to \mathbb{R}^q$ имеет конечное производное число L в точке $\delta=0$ (это еще не производная!). Тогда для соответствующей последовательности $\delta_n>0$ имеем

$$\frac{\omega(\delta_n)}{\delta_n} \ge \frac{|f(x+\xi_n) - f(x)|}{\delta_n}, \quad |\xi_n| = \delta_n.$$

© Ю. Ю. ТРОХИМЧУК, 2010

Но тогда (см. [3]) отображение f будет локально липшицевым с константой L, и если $\overline{\mathcal{G}}$ выпукла, то f липшицева во всей области.

Фактически именно отсюда следует такая теорема.

Теорема 1. Если \mathcal{G} — выпуклая область в \mathbb{R}^p , то либо $\omega'(0) = +\infty$, либо $\omega'(0) = L$. В последнем случае f липшицево, мажорантой для $\omega(\delta)$ является $L\delta$ и сама функция $\omega(\delta)$ липшицева с константой L.

Последнее утверждение следует из свойства полуаддитивности

$$\omega(\delta + \Delta\delta) \le \omega(\delta) + \omega(\Delta\delta)$$

И

$$\frac{\omega(\delta+\Delta\delta)-\omega(\delta)}{\Delta\delta} \leq \frac{\omega\Delta\delta}{\Delta\delta}.$$

Приведем еще одно утверждение

Назовем функцию $f\colon K\to \mathbb{R}^q$ нигде не постоянной, если ни на какой открытой порции K не выполняется равенство $f=\mathrm{const.}$

Теорема 2. Если $K \subset \mathbb{R}^p, \ f \colon K \to \mathbb{R}^q$ — нигде не постоянная функция и для модуля непрерывности $\omega(\delta)$ отображения f выполняется

$$\left| \overline{\lim_{\delta \to 0}} \left| \frac{\ln \omega(\delta)}{\ln \delta} \right| > p,$$

то образ $f(K) \subset \mathbb{R}^q$ имеет длину нуль (т. е. 1-мера Хаусдорфа его равна нулю).

Отметим, что условие непостоянства здесь нужно только для конечности $\ln \omega(\delta)$.

Доказательство. Обозначим через $A_{\varepsilon}(K)$ совокупность всевозможных ε -сетей ${\mathcal E}$ компакта K. Для фиксированного $\varepsilon>0$ рассмотрим число

$$N_{\varepsilon}(K) = \min \{ \operatorname{card} \mathcal{E} \colon \mathcal{E} \in A_{\varepsilon}(K) \}.$$

Воспользуемся известными неравенствами [4]

$$N_{2\varepsilon}(K) \le \mathcal{L}^p(K_{\varepsilon}) / \mathcal{L}^p(B, \varepsilon) \le 15^p N_{2\varepsilon}(K),$$
 (1)

где $K_{\varepsilon}-\varepsilon$ -окрестность $K,(B,\varepsilon)$ — шар радиуса $\varepsilon,~\mathcal{L}^p$ — лебегова мера.

Пусть для последовательности $\{\delta_n\},\ \delta_n \to 0,$ выполняется

$$\frac{\ln \omega(\delta_n)}{\ln \delta_n} \ge p + \eta, \quad \eta > 0;$$

рассмотрим последовательность \mathcal{E}_n ("минимальных") $\frac{\delta_n}{2}$ -сетей компакта K.

По определению, шары $B\left(x,\frac{\delta_n}{2}\right),\ x\in\mathcal{E}_n,$ покрывают все K и число их равно $N_{\delta_n}.$ В каждом из этих шаров выберем пару точек $x',\,x''$ так, чтобы

$$|f(x') - f(x'')| = \operatorname{diam} f(K \cap B);$$

поскольку $|x'-x''| \le \delta_n$, то $|f(x')-f(x'')| \le \omega(\delta_n)$. Далее,

$$\frac{\ln \frac{1}{\omega(\delta_n)}}{\ln \frac{1}{\delta_n}} \ge p + \eta, \qquad \ln \frac{1}{\omega(\delta_n)} \ge (p + \eta) \ln \frac{1}{\delta_n},$$

1108 Ю. Ю. ТРОХИМЧУК

$$\frac{1}{\omega(\delta_n)} \ge \frac{1}{\delta_n^{p+\eta}}, \quad \omega(\delta_n) \le \delta_n^{p+\eta},$$

т. е. $|f(x') - f(x'')| \le \delta_n^{p+\eta}$.

Итак, образ каждой порции $K \cap B$ имеет диаметр $\leq 2\delta_n^{p+\eta}$; число этих порций равно N_{δ_n} . Неравенство (1) принимает здесь вид

$$N_{\delta_n} \le \mathcal{L}^p \left(K_{\delta_n/2} \right) / \mathcal{L}^p \left(B, \frac{\delta_n}{2} \right) \le 15^p N_{\delta_n}.$$

Сумма всех этих диаметров оценивается так:

$$\sum |f(x') - f(x'')| \le \sum_{N_{\delta_n}} \delta_n^{p+\eta} = \delta_n^{\eta} \cdot C \sum \mathcal{L}^p \left(B, \frac{\delta_n}{2} \right) \le \delta_n^{\eta} \cdot C_1 \cdot \mathcal{L}^p \left(K_{\delta_n/2} \right),$$

где C, C_1 — абсолютные константы, а $\mathcal{L}^p\left(K_{\delta_n/2}\right)$, конечно, ограничены сверху; так как η — фиксированное, а $\delta_n \to 0$, отсюда и следует наше утверждение.

Отсюда, конечно, легко следует, что величина

$$\frac{\ln \omega(\delta)}{\ln \delta}$$

для любого компакта K ограничена сверху (грубо говоря, размерностью этого компакта).

Интересно сопоставить наш результат с известным метрическим определением размерности [5]: это нижняя грань $\underline{\lim}\left(-\frac{\ln N_{\varepsilon}(K)}{\ln \varepsilon}\right)$, взятая для всех метрик компакта K. Теорема 2 и привела нас при доказательстве к компактам нулевой размерности.

Перейдем теперь к теме, связанной с аналитическими функциями.

Определим сначала локальный модуль непрерывности $\omega_{\overline{\mathcal{G}}}(f;z_0,\delta)$ непрерывной в $\overline{\mathcal{G}}$ функции f(z) в точке $z_0\in\overline{\mathcal{G}}$ как

$$\max_{|z-z_0| \le \delta z \in \overline{\mathcal{G}}} |f(z) - f(z_0)|.$$

Приведем прежде всего одну лемму [2].

Лема. Пусть \mathcal{G} — произвольное открытое множество и $f(z) \neq \text{const}$ — функция, непрерывная в $\overline{\mathcal{G}}$ и аналитическая в \mathcal{G} . Тогда для каждого $\delta > 0$ найдется точка z_0 , являющаяся граничной точкой одной из компонент множества \mathcal{G} , для которой

$$\omega_{\overline{G}}(f; z_0, \delta) = \omega_{\overline{G}}(f; \delta).$$

Доказательство. Зафиксируем $\delta>0$ и предположим, что $\omega_{\overline{\mathcal{G}}}(f;\delta)>0$. Тогда существуют конечные точки $z_1,\,z_2\in\overline{\mathcal{G}}$ такие, что $|z_1-z_2|\leq\delta$ и

$$|f(z_1) - f(z_2)| = \omega_{\overline{G}}(f; \delta). \tag{2}$$

Доказательство должно быть продолжено лишь в случае, когда каждая из точек z_1 , z_2 принадлежит множеству \mathcal{G} .

В этом случае при некотором $\rho>0$ круги $\{z\colon |z-z_1|<\rho\}$ и $\{z\colon |z-z_2|<\rho\}$ лежат в $\mathcal G$. Выберем среди этих ρ максимальное конечное значение ρ_0 . В круге $\{\zeta\colon |\zeta|\le\rho_0\}$

$$|f(\zeta + z_1) - f(\zeta + z_2)| \le \omega_{\overline{G}}(f; \delta), \tag{3}$$

а в силу (2) и (3)

$$|f(\zeta + z_1) - f(\zeta + z_2)| = \omega_{\overline{G}}(f; \delta) \quad \forall \zeta, \quad |\zeta| \le \rho_0. \tag{4}$$

Поскольку при некотором ζ_0 , $|\zeta|=\rho_0$, хотя бы одна из точек $\zeta+z_1$ и $\zeta+z_2$ является граничной для какой-то из компонент множества \mathcal{G} , из (4) следует утверждение леммы.

Приведем определенное дополнение к проведенному доказательству.

Рассмотрим опять случай, когда пара "экстремальных" точек z_1, z_2 принадлежат области аналитичности \mathcal{G} .

Прежде всего, так как функция $f(\zeta + z_1) - f(\zeta + z_2)$ достигает максимума своего модуля внутри круга $|\zeta| \le \rho_0$, она является там константой:

$$f(\zeta + z_1) - f(\zeta + z_2) = \omega(\delta)e^{i\alpha}$$
 (α — постоянное).

Это равенство означает, что в кругах $|\zeta - z_1| \le \rho_0$, $|\zeta - z_2| \le \rho_0$ из области $\mathcal G$ соответствующие значения функции f отличаются сдвигом на постоянный вектор. Но поскольку f(z) аналитична во всей области $\mathcal G$, данное равенство выполняется в более широком открытом множестве, содержащем эти круги.

Его легко определить; для этого удобнее будет ввести в z-плоскости вспомогательную функцию

$$\varphi(z) = f(z+\zeta) - f(z), \quad \zeta = z_2 - z_1.$$

Искомое множество есть пересечение $\mathcal{G} \cap \mathcal{G}_{-\zeta}$, где через $\mathcal{G}_{-\zeta}$ обозначен сдвиг области \mathcal{G} на вектор $-\zeta$.

Мы рассмотрим внешний граничный континуум области \mathcal{G} : по определению, это граница (односвязной, конечно) неограниченной компоненты дополнения $\mathbb{C}\setminus \overline{\mathcal{G}}$. Нетрудно показать, что внешние граничные континуумы областей $\overline{\mathcal{G}}$ и $\overline{\mathcal{G}}_{-\zeta}$ пересекаются; это следует из того, что пересечение $\overline{\mathcal{G}}\cap \overline{\mathcal{G}}_{-\zeta}$ непусто: оно содержит, например, точку z_1 .

Возьмем точку пересечения из $\partial \mathcal{G} \cap \partial \mathcal{G}_{-\zeta}$; ей соответствуют две граничные точки z_1', z_2' первоначальной области \mathcal{G} такие, что $|z_1' - z_2'| \leq \delta$ и

$$f(z_1') - f(z_2') = \omega(\delta)e^{i\alpha}$$

в силу постоянства функции $\varphi(z)$ в $\overline{\mathcal{G}} \cap \overline{\mathcal{G}}_{-\zeta}$.

Итак, если значение модуля непрерывности аналитической функции достигается внутри области, то оно достигается и на ее границе.

Теорема 3. Пусть $\mathcal{G} \subset \mathbb{C}$ — ограниченная область и $f(z) \neq \text{const}$ — функция, непрерывная в $\overline{\mathcal{G}}$ и аналитическая в \mathcal{G} . Тогда для каждого $\delta > 0$

$$\omega_{\overline{G}}(f;\delta) = \omega_{\partial G}(f;\delta).$$

Это равенство можно заменить (конечно, равносильным ему) неравенством, которое хорошо сочетается с классическим принципом максимума, а именно,

$$\omega_{\mathcal{G}}(f;\delta) \leq \omega_{\partial \mathcal{G}}(f;\delta).$$

1110 Ю. Ю. ТРОХИМЧУК

Здесь используются уже "вживую" сами модули непрерывности как функции от δ , а не привычные до сих пор их мажоранты. И типичная с ними формулировка такая: если $\omega_{\partial \mathcal{G}}(\delta)$ имеет мажоранту $\omega(\delta)\colon \omega_{\partial \mathcal{G}}(\delta) \le \omega(\delta)$, то и $\omega_{\overline{\mathcal{G}}}(\delta) \le \omega(\delta)$, а модули непрерывности $\omega_{\partial \mathcal{G}}(\delta)$, $\omega_{\overline{\mathcal{G}}}(\delta)$ как функции от δ , со своими индивидуальными значениями, как бы и ни при чем . . .

Доказательство теоремы. Итак, имеем непрерывную в замыкании $\overline{\mathcal{G}}$ функцию f(z), аналитическую в \mathcal{G} . Для удобства сразу продолжим ее на всю плоскость по непрерывности.

Возьмем произвольное $\delta < {
m diam}\, \overline{\mathcal{G}}$ и, по лемме, точку z_0 на границе $\partial \mathcal{G}_0$, для которой

$$\omega_{\overline{G}}(f; z_0, \delta) = \omega_{\overline{G}}(f; \delta).$$

Доказательство проведем сначала для случая односвязной области \mathcal{G} . Предположим, вопреки данному утверждению, что

$$\omega_{\partial \mathcal{G}}(f;\delta) < \omega_{\overline{\mathcal{G}}}(f;\delta);$$

это, конечно, верно и отдельно для \mathcal{G} . Это означает, что в δ -окрестности $U_{\delta}(z)$ каждой граничной точки $z\in\partial\mathcal{G}_0$ выполняется неравенство

$$|f(z') - f(z)| \le \omega_1' = \omega_{\partial \mathcal{G}}(\delta) < \omega_{\overline{G}}(\delta) = \omega$$

для всех $z' \in \partial \mathcal{G}_0 \cap U_{\delta}(z)$.

В то же время в круге $|z-z_0| \leq \delta$ в некоторой точке $\tilde{z} \notin \partial \mathcal{G}$ (очевидно, на окружности $|z-z_0|=\delta$) достигается $\max_{z\in \overline{U}_\delta} \left|f(z)-f(z_0)\right|=\omega(\delta)=\omega.$

Возьмем $\varepsilon>0$ настолько малым, чтобы еще $\omega_1<\omega-\varepsilon=\omega_0$. Рассмотрим множество

$$g = \{z \colon |f(z) - f(z_0)| > \omega_0\}.$$

Очевидно, что $\tilde{z} \in q$.

Открытое множество g (на плоскости, а не только в $\overline{\mathcal{G}}$ — ведь f непрерывна на всей плоскости) не может быть компактным в \mathcal{G} , как и множество $|\psi(z)| > C$ для любой аналитической функции $\psi(z), z \in \mathcal{G}$. Поэтому найдется целая открытая порция (напомним, связной) границы $\partial \mathcal{G}$, принадлежащая g. Выберем на ней произвольную точку ζ_0 :

$$|f(\zeta_0) - f(z_0)| > \omega_0.$$

(Ясно при этом, что $|\zeta_0 - z_0| > \delta$.)

Далее, выбираем на границе $\partial \mathcal{G}$ цепочку точек

$$z_0, z_1, \dots, z_k, \dots, z_n = \zeta_0 \tag{5}$$

со взаимными расстояниями $|z_k - z_{k-1}|$, не превышающими δ , чтобы выполнялось

$$|\Delta f_k| = |f(z_k) - f(z_{k-1})| \le \omega_1 \quad (< \omega_0), \quad k = 1, 2, \dots, n.$$

Легко видеть, что на граничном континууме $\partial \mathcal{G}$ любые две точки можно "соединить" цепочкой его точек, так сказать, вершин ломаной, длины звеньев которой не превышают фиксированного $\delta>0$. При этом ломаная может иметь много самопересечений.

Итак, построена цепочка (5) точек $z_k \in \partial \mathcal{G}$ со свойствами

$$|\Delta f_k| = |f(z_k) - f(z_{k-1})| < \omega_1, \quad k = 1, \dots, n,$$

 $|f(z_n) - f(z_0)| > \omega_0.$ (6)

Приведем теперь одно построение.

Пусть заданы на плоскости n+1 точка

$$z_0, z_1, \ldots, z_k, \ldots, z_n$$

и некоторая функция f(z). Рассмотрим n разностей $f(z_k) - f(z_{k-1}) = \Delta f_k$, k = 1, 2, ..., n, и "последнюю" $f(z_n) - f(z_0)$. Построим новую функцию F(z), для которой соответствующие разности кратны разностям для f(z):

$$\Delta F_k = \frac{\omega_1}{\omega_0} \Delta f_k, \quad k = 1, 2, \dots, n, \quad \mathbf{M} \quad F(z_n) - F(z_0) = \frac{\omega_0}{\omega_1} [f(z_n) - f(z_0)].$$

Обозначим через p(z) полином Лагранжа, у которого $p_0=p(z_0)=\dfrac{\omega_0}{\omega_1}$ и $p(z_k)=p(z_k)-p(z_{k-1})=rac{\omega_1}{\omega_0},$ а через q(z) — полином, для которого $q(z_0)=0$ и при $k, 1 \le k < n,$

$$q_k = q_{k-1} + \frac{\omega_1}{\omega_0} f_{k-1} + \Delta f_k \left[(k-1) \frac{\omega_1}{\omega_0} + \frac{\omega_0}{\omega_1} \right],$$

а при k=n

$$q_n = q(z_n) = n \frac{\omega_1}{\omega_0} f(z_n).$$

Ясно, что при этом $p_k=k\frac{\omega_1}{\omega_0}+\frac{\omega_0}{\omega_1},\;k=0,1,2,\ldots,n.$ Покажем, что функция F(z)=f(z)p(z)-q(z) решает нашу задачу. Действительно, для каждого $k = 2, 3, \dots, n-1$ имеем

$$\Delta F_k = f(z_k)p(z_k) - f(z_{k-1})p(z_{k-1}) - [q(z_k) - q(z_{k-1})] =$$

$$= \Delta f_k p_k + f_{k-1} \Delta p_k - [q_k) - q_{k-1}] = \frac{\omega_1}{\omega_0} \Delta f_k.$$

Далее, для k=1

$$\Delta F_1 = f(z_1)p(z_k) - f(z_0)p(z_0) - [q(z_1) - q(z_0)] =$$

$$= \Delta f_1 p_1 + f_0 \frac{\omega_1}{\omega_0} - q_1 = \Delta f_1 \left(\frac{\omega_1}{\omega_0} + \frac{\omega_0}{\omega_1}\right) + f_0 \frac{\omega_1}{\omega_0} - q_1 = \frac{\omega_1}{\omega_0} \Delta f_1.$$

И, наконец, "последняя" разность

$$\Delta F(z_n) - F(z_0) = f(z_n)p(z_n) - f(z_0)p(z_0) - [q(z_n) - q(z_0)] =$$

$$= [f(z_n) - f(z_0)]p(z_0) + f(z_n)[p(z_n) - p(z_0)] - [q(z_n) - q(z_0)] =$$

$$= [f(z_n) - f(z_0)] \frac{\omega_0}{\omega_1} + n \frac{\omega_1}{\omega_0} f(z_n) - q(z_n) = \frac{\omega_0}{\omega_1} [f(z_n) - f(z_0)].$$

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 8

1112 Ю. Ю. ТРОХИМЧУК

Вернемся к прежней функции f(z) с условиями (6). Рассматривая вместо f(z) функцию $h(z)=\frac{f(z)}{\sqrt{\omega_0\omega_1}},\ \omega_0>\omega_1,\$ и применяя к ней достаточное число раз приведенное только что построение новых функций, но с соответственно измененными разностями, приходим к функции F(z) вида f(z)P(z)+Q(z) (P и Q — полиномы) со свойствами

$$\Delta F_k = \Delta h_k \left(\frac{\omega_1}{\omega_0}\right)^{N+1/2}, \qquad F(z_n) - F(z_0) = \left(\frac{\omega_0}{\omega_1}\right)^{N+1/2} \left[h(z_n) - h(z_0)\right],$$

т. е.

$$|\Delta F_k| \le \left(\frac{\omega_1}{\omega_0}\right)^{N+1}, \qquad |F(z_n) - F(z_0)| \ge \left(\frac{\omega_0}{\omega_1}\right)^{N+1}.$$

Далее имеем

$$F(z_n) - F(z_0) = \sum_{k=1}^{n} \Delta F_k$$

и, с одной стороны,

$$|F(z_n) - F(z_0)| \le \sum_{k=1}^n |\Delta F_k| \le n \left(\frac{\omega_1}{\omega_0}\right)^{N+1},$$

а с другой -

$$|F(z_n) - F(z_0)| \ge \left(\frac{\omega_0}{\omega_1}\right)^{N+1}.$$

Поскольку n фиксировано, при достаточно большом N эти неравенства противоречат одно другому. Теорема для односвязных областей доказана.

Общий случай сводится к доказанному следующим образом.

Здесь, на основании той же леммы, находим точку z_0 на границе $\partial \mathcal{G}$, для которой

$$\omega_{\overline{G}}(f; z_0, \delta) = \omega_{\overline{G}}(f, \delta) = \omega.$$

Пусть снова $\max_{z\in \overline{U}_\delta}|f(z)-f(z_0)|=\omega$ достигается в некоторой точке $\tilde{z}\notin\partial\mathcal{G}$ (очевидно тогда, что на окружности $|z-z_0|=\delta$).

Предположим сначала, что z_0 — достижимая граничная точка области $\mathcal G$. Тогда для произвольной жордановой подобласти в $\mathcal G$, имеющей единственную граничную точку z_0 с $\partial \mathcal G$, содержащей точку $\tilde z$, с остальными точками и внутренностью, принадлежащими $\mathcal G$, применима доказанная теорема, т. е. на ее границе найдется пара точек z', z'', для которых $|z'-z''| \leq \delta$ и $|f(z')-f(z'')| = \omega(\delta)$.

Если эта пара принадлежит области \mathcal{G} , то, как нам уже известно, другая пара найдется и на границе $\partial \mathcal{G}$.

Если это не так, то одна из точек z', z'' совпадет с z_0 . Но тогда жорданову кривую вблизи z_0 можно строить так, что вторая точка из z', z'' будет стремиться к какой-либо граничной точке области \mathcal{G} .

В случае, когда точка z_0 не является достижимой, берем последовательность уже достижимых граничных точек $\{z_n\}$, а соответствующие жордановы области снова строим так, чтобы они содержали точку \tilde{z} . Тогда модули непрерывности $\omega_n(\delta)$ в этих областях будут стремиться к $\omega(\delta)$. Ясно, как в этом случае завершается доказательство теоремы 3.

Из приведенного доказательства фактически следует, что равенство $\omega_{\overline{\mathcal{G}}}=\omega_{\overline{\mathcal{G}}}(z_0,\delta)=\omega_{\partial\mathcal{G}}$ достигается в той же точке z_0 .

Покажем вкратце еще, как можно доказать основную теорему, но в предположении, что она доказана для липшицевых функций.

Прежде всего рассматриваем функцию

$$F(z) = \ln \varphi(z),$$

где $\varphi(z)=f(z)+C,\ C>0$ — достаточно большая константа, которую выбираем позже для нужных оценок, а для логарифма берем главную его ветвь, т. е. $\arg F(z)\in (-\pi,\pi)$.

Очевидно, φ и f имеют одинаковые модули непрерывности $\omega_{\partial \mathcal{G}}(\delta)$ и $\omega_{\overline{\mathcal{G}}}(\delta)$; выбираем на границе $\partial \mathcal{G}$ точки $z_1,\ z_2,\ |z_1-z_2|\leq \delta,$ для которых $\varphi(z_1)-\varphi(z_2)=$ $=\omega_{\partial \mathcal{G}}(\delta)=\omega.$ Тогда получим

$$F(z_1) - F(z_2) = \ln \varphi(z_1) - \ln \varphi(z_2) = \ln \frac{\varphi(z_1)}{\varphi(z_2)} = \ln \left(1 + \frac{\varphi(z_1) - \varphi(z_2)}{\varphi(z_2)}\right).$$

Учитывая равенства (при $|z| \le 1/2$)

$$|\ln(1+z)| = |z| + C_1|z|^2, \quad C_1 < \frac{1}{6},$$

$$\ln(1+|z|) = |z| - C_2|z|^2, \quad C_2 < \frac{1}{3}$$

с точностью до малых второго порядка (зависящих от выбора ${\cal C}$) имеем цепь равенств

$$F(z_1) - F(z_2) = \ln\left(1 + \frac{\varphi(z_1) - \varphi(z_2)}{\varphi(z_2)}\right) = \ln\left(1 + \frac{|z_1 - z_2|^m}{|\varphi(z_2)|}\right) =$$

$$= \left(m = \frac{\ln\omega}{\ln|z_1 - z_2|}\right) = m\ln\left[\left(1 + \frac{|z_1 - z_2|^m}{|\varphi(z_2)|}\right)^{1/m}\right] = \frac{m}{|\varphi(z_2)|}|z_1 - z_2|.$$

Поскольку в силу теоремы 2 величина $\frac{\ln \omega}{\ln \delta}$ ограничена, F — липшицева функция в $\partial \mathcal{G}$ [3]; выбирая теперь z_1, z_2 внутри \mathcal{G} и двигаясь в приведенных равенствах в обратном направлении, легко доказываем (предполагая теорему верной для липшицевых функций), что $\max |\varphi(z_1) - \varphi(z_2)|$ не может быть равно $\omega - \varepsilon$ при любом $\varepsilon > 0$.

- 1. *Степанец А. И.* Методы теории приближений // Праці Ін-ту математики АН України. 1970. Т. 1. – 424 с.
- 2. Тамразов П. М. Контурные и телесные структурные свойства голоморфных функций комплексного переменного // Укр. мат. журн. 1973. 28, № 1. C. 131 162.
- 3. *Трохимчук Ю. Ю.* О дифференциальных свойствах функций // Там же. 1979. **31**, № 3. –
- 4. *Федерер Г.* Геометрическая теория меры. Дополнение 1. М.: Наука, 1987. С. 708 720.
- 5. *Гуревич В., Волмэн Г.* Теория размерности. М., 1948. С. 210 218.
- Трохимчук Ю. Ю. О дифференциальных свойствах действительных и комплексных функций // Укр. мат. журн. – 1979. – 31, № 4. – С. 465 – 469.

Получено 24.11.09